1
|
Zhang G, Huang S, Wei M, Wu Y, Wang J. Excitatory Amino Acid Transporters as Therapeutic Targets in the Treatment of Neurological Disorders: Their Roles and Therapeutic Prospects. Neurochem Res 2025; 50:155. [PMID: 40299102 DOI: 10.1007/s11064-025-04400-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025]
Abstract
Excitatory amino acid transporters (EAATs) are pivotal regulators of glutamate homeostasis in the central nervous system and orchestrate synaptic glutamate clearance through transmembrane transport and the glutamine‒glutamate cycle. The five EAAT subtypes (GLAST/EAAT1, GLT-1/EAAT2, EAAC1/EAAT3, EAAT4, and EAAT5) exhibit spatiotemporal-specific expression patterns in neurons and glial cells, and their dysfunction is implicated in diverse neurological pathologies, including epilepsy, amyotrophic lateral sclerosis (ALS), schizophrenia, depression, and retinal degeneration. Mechanistic studies revealed that astrocytic GLT-1 deficiency disrupts glutamate clearance in ALS motor neurons, whereas GLAST genetic variants are linked to both epilepsy susceptibility and glaucomatous retinal ganglion cell degeneration. Three major challenges persist in ongoing research: ① subtype-specific regulatory mechanisms remain unclear; ② compensatory functions of transporters vary significantly across disease models; and ③ clinical translation lacks standardized evaluation criteria. The interaction mechanisms and dynamic roles of EAATs in neurological disorders were systematically investigated in this study, and an integrated approach combining single-cell profiling, stem cell-based disease modeling, and drug screening platforms was proposed. These findings lay the groundwork for novel therapeutic strategies targeting glutamate homeostasis.
Collapse
Affiliation(s)
- Guirui Zhang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Shupeng Huang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Mingzhen Wei
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Yongmo Wu
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China
| | - Jin Wang
- Department of Medicine, Guangxi University of Science and Technology, Liuzhou, 545005, China.
- Department of Medical Oncology, Liuzhou Workers' Hospital, Liuzhou, 5450054, China.
- The Second Affiliated Hospital of Guangxi, University of Science and Technology, Guangxi Zhuang Autonomous Region, Liuzhou, 5450054, China.
| |
Collapse
|
2
|
Tong K, Song YT, Jing SQ, You Y, Wang SJ, Wu T, Xu H, Zhang JW, Liu L, Hao JR, Sun N, Cao JL, Gao C. Reactive astrocytes mediate postoperative surgery-induced anxiety through modulation of GABAergic signalling in the zona incerta of mice. Br J Anaesth 2025; 134:111-123. [PMID: 39592364 DOI: 10.1016/j.bja.2024.08.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/06/2024] [Accepted: 08/23/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Surgery can induce severe neuroinflammation and negative emotional symptoms, such as anxiety-like behaviour. We studied whether reactive astrocytes in the zona incerta (ZI) mediate surgery-induced anxiety in mice. METHODS Laparotomy under isoflurane 1.5 vol% was used as a model in adult mice. The role of the ZI in surgery-induced anxiety was evaluated by behavioural tests, optical fibre recordings of neuronal activity, in vivo electrophysiological recordings, chemogenetics, and optogenetics. RESULTS Operative mice showed increased anxiety-like behaviour. Immunostaining and optical calcium recording revealed that astrocytes were abnormally activated in the ZI. Pharmacologic (F3, 15=5.837, P=0.044) or genetic manipulation (open field test: t7.41=3.66, P=0.007; elevated plus maze [EPM]: t10=2.70, P=0.022) of astrocyte activation in the ZI relieved anxiety-like behaviour in surgery-treated mice. Compared with the sham group, the surgery group showed increased extrasynaptic GABA concentrations and decreased GABA transporter-3 (GAT-3) expression, and inactivation of GABAergic neurones in the ZI. Upregulating GAT-3 in ZI astrocytes (OFT: t10.83=2.91, P=0.014; EPM: t9.15=3.55, P=0.006) or activating the GABAergic projection from ZI to the median raphe nucleus (ZIGABA→median raphe nucleus) (EPM: entries: F1, 24=3.45, P=0.027; time: F1, 25=4.07, P=0.043) ameliorated surgery-induced anxiety. CONCLUSIONS Reactive astrocytes in the zona incerta mediate surgery-induced anxiety, possibly by regulating GAT-3-mediated GABA homeostasis and inactivating ZIGABA→median raphe nucleus projections in mice.
Collapse
Affiliation(s)
- Kun Tong
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Tong Song
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Si-Qi Jing
- Jiangsu Province Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Shi-Jie Wang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Tong Wu
- Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Han Xu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Wei Zhang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Jun-Li Cao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; Department of Anesthesia, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu, China; School of Life Sciences, Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
3
|
He L, Duan X, Li S, Zhang R, Dai X, Lu M. Unveiling the role of astrocytes in postoperative cognitive dysfunction. Ageing Res Rev 2024; 95:102223. [PMID: 38325753 DOI: 10.1016/j.arr.2024.102223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 02/02/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disorder, characterized by progressive cognitive decline and the accumulation of amyloid-beta plaques, tau tangles, and neuroinflammation in the brain. Postoperative cognitive dysfunction (POCD) is a prevalent and debilitating condition characterized by cognitive decline following neuroinflammation and oxidative stress induced by procedures. POCD and AD are two conditions that share similarities in the underlying mechanisms and pathophysiology. Compared to normal aging individuals, individuals with POCD are at a higher risk for developing AD. Emerging evidence suggests that astrocytes, the most abundant glial cells in the central nervous system, play a critical role in the pathogenesis of these conditions. Comprehensive functions of astrocyte in AD has been extensively explored, but very little is known about POCD may experience late-onset AD pathogenesis. Herein, in this context, we mainly explore the multifaceted roles of astrocytes in the context of POCD, highlighting their involvement in neuroinflammation, neurotransmitter regulation, synaptic plasticity and neurotrophic support, and discuss how POCD may augment the onset of AD. Additionally, we discuss potential therapeutic strategies targeting astrocytes to mitigate or prevent POCD, which hold promise for improving the quality of life for patients undergoing surgeries and against AD in the future.
Collapse
Affiliation(s)
- Liang He
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China.
| | - Xiyuan Duan
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Shikuo Li
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Ruqiang Zhang
- Department of Anesthesiology, Yan'an Hospital of Kunming City, Kunming 650051, China
| | - Xulei Dai
- Department of Clinical Laboratory Science, Xingtai Medical College, Xingtai 050054, China
| | - Meilin Lu
- Department of Anesthesiology, First Affiliated Hospital of Kunming Medical University, Kunming 650032, China.
| |
Collapse
|
4
|
Adermark L, Stomberg R, Söderpalm B, Ericson M. Astrocytic Regulation of Endocannabinoid-Dependent Synaptic Plasticity in the Dorsolateral Striatum. Int J Mol Sci 2024; 25:581. [PMID: 38203752 PMCID: PMC10779090 DOI: 10.3390/ijms25010581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Astrocytes are pivotal for synaptic transmission and may also play a role in the induction and expression of synaptic plasticity, including endocannabinoid-mediated long-term depression (eCB-LTD). In the dorsolateral striatum (DLS), eCB signaling plays a major role in balancing excitation and inhibition and promoting habitual learning. The aim of this study was to outline the role of astrocytes in regulating eCB signaling in the DLS. To this end, we employed electrophysiological slice recordings combined with metabolic, chemogenetic and pharmacological approaches in an attempt to selectively suppress astrocyte function. High-frequency stimulation induced eCB-mediated LTD (HFS-LTD) in brain slices from both male and female rats. The metabolic uncoupler fluorocitrate (FC) reduced the probability of transmitter release and depressed synaptic output in a manner that was independent on cannabinoid 1 receptor (CB1R) activation. Fluorocitrate did not affect the LTD induced by the CB1R agonist WIN55,212-2, but enhanced CB1R-dependent HFS-LTD. Reduced neurotransmission and facilitated HFS-LTD were also observed during chemogenetic manipulation using Gi-coupled DREADDs targeting glial fibrillary acidic protein (GFAP)-expressing cells, during the pharmacological inhibition of connexins using carbenoxolone disodium, or during astrocytic glutamate uptake using TFB-TBOA. While pretreatment with the N-methyl-D-aspartate (NMDA) receptor antagonist 2-amino-5-phosphonopentanoic acid (APV) failed to prevent synaptic depression induced by FC, it blocked the facilitation of HFS-LTD. While the lack of tools to disentangle astrocytes from neurons is a major limitation of this study, our data collectively support a role for astrocytes in modulating basal neurotransmission and eCB-mediated synaptic plasticity.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden
| | - Rosita Stomberg
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| | - Bo Söderpalm
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
- Beroendekliniken, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Mia Ericson
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, 40530 Gothenburg, Sweden; (R.S.); (B.S.); (M.E.)
| |
Collapse
|
5
|
Wilson KM, He JJ. HIV Nef Expression Down-modulated GFAP Expression and Altered Glutamate Uptake and Release and Proliferation in Astrocytes. Aging Dis 2023; 14:152-169. [PMID: 36818564 PMCID: PMC9937695 DOI: 10.14336/ad.2022.0712] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/12/2022] [Indexed: 11/18/2022] Open
Abstract
HIV infection of astrocytes leads to restricted gene expression and replication but abundant expression of HIV early genes Tat, Nef and Rev. A great deal of neuroHIV research has so far been focused on Tat protein, its effects on astrocytes, and its roles in neuroHIV. In the current study, we aimed to determine effects of Nef expression on astrocytes and their function. Using transfection or infection of VSVG-pseudotyped HIV viruses, we showed that Nef expression down-modulated glial fibrillary acidic protein (GFAP) expression. We then showed that Nef expression also led to decreased GFAP mRNA expression. The transcriptional regulation was further confirmed using a GFAP promoter-driven reporter gene assay. We performed transcription factor profiling array to compare the expression of transcription factors between Nef-intact and Nef-deficient HIV-infected cells and identified eight transcription factors with expression changes of 1.5-fold or higher: three up-regulated by Nef (Stat1, Stat5, and TFIID), and five down-regulated by Nef (AR, GAS/ISRE, HIF, Sp1, and p53). We then demonstrated that removal of the Sp1 binding sites from the GFAP promoter resulted in a much lower level of the promoter activity and reversal of Nef effects on the GFAP promoter, confirming important roles of Sp1 in the GFAP promoter activity and for Nef-induced GFAP expression. Lastly, we showed that Nef expression led to increased glutamate uptake and decreased glutamate release by astrocytes and increased astrocyte proliferation. Taken together, these results indicate that Nef leads to down-modulation of GFAP expression and alteration of glutamate metabolism in astrocytes, and astrocyte proliferation and could be an important contributor to neuroHIV.
Collapse
Affiliation(s)
- Kelly M Wilson
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| | - Johnny J He
- Department of Microbiology and Immunology, Center for Cancer Cell Biology, Immunology and Infection, School of Graduate and Postdoctoral Studies, Rosalind Franklin University, Chicago Medical School, North Chicago, IL 60064, USA
| |
Collapse
|
6
|
Kruyer A, Kalivas PW, Scofield MD. Astrocyte regulation of synaptic signaling in psychiatric disorders. Neuropsychopharmacology 2023; 48:21-36. [PMID: 35577914 PMCID: PMC9700696 DOI: 10.1038/s41386-022-01338-w] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/27/2022] [Accepted: 05/01/2022] [Indexed: 02/07/2023]
Abstract
Over the last 15 years, the field of neuroscience has evolved toward recognizing the critical role of astroglia in shaping neuronal synaptic activity and along with the pre- and postsynapse is now considered an equal partner in tripartite synaptic transmission and plasticity. The relative youth of this recognition and a corresponding deficit in reagents and technologies for quantifying and manipulating astroglia relative to neurons continues to hamper advances in understanding tripartite synaptic physiology. Nonetheless, substantial advances have been made and are reviewed herein. We review the role of astroglia in synaptic function and regulation of behavior with an eye on how tripartite synapses figure into brain pathologies underlying behavioral impairments in psychiatric disorders, both from the perspective of measures in postmortem human brains and more subtle influences on tripartite synaptic regulation of behavior in animal models of psychiatric symptoms. Our goal is to provide the reader a well-referenced state-of-the-art understanding of current knowledge and predict what we may discover with deeper investigation of tripartite synapses using reagents and technologies not yet available.
Collapse
Affiliation(s)
- Anna Kruyer
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Peter W Kalivas
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC, USA.
| | - Michael D Scofield
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA.
- Department of Anesthesia & Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA.
| |
Collapse
|
7
|
Talty CE, Norris C, VandeVord P. Defining Experimental Variability in Actuator-Driven Closed Head Impact in Rats. Ann Biomed Eng 2022; 50:1187-1202. [PMID: 35994166 DOI: 10.1007/s10439-022-03012-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 07/04/2022] [Indexed: 11/01/2022]
Abstract
Traumatic brain injury (TBI) is a world-wide health challenge that lacks tools for diagnosis and treatment. There is a need for translational preclinical models to effectively design clinical tools, however, the diversity of models is a barrier to reproducible studies. Actuator-driven closed head impact (AD-CHI) models have translational advantages in replicating the pathophysiological and behavioral outcomes resulting from impact TBI. The main advantages of AD-CHI protocols include versatility of impact parameters such as impact angle, velocity, depth, and dwell time with the ability to interchange tip types, leading to consistent outcomes without the need for craniectomy. Sources of experimental variability within AD-CHI rat models are identified within this review with the aim of supporting further characterization to improve translational value. Primary areas of variability may be attributed to lack of standardization of head stabilization methods, reporting of tip properties, and performance of acute neurological assessments. AD-CHI models were also found to be more prevalently used among pediatric and repeated TBI paradigms. As this model continues to grow in use, establishing the relationships between impact parameters and associated injury outcomes will reduce experimental variability between research groups and encourage meaningful discussions as the community moves towards common data elements.
Collapse
Affiliation(s)
- Caiti-Erin Talty
- Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Blacksburg, VA, USA
| | - Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA
| | - Pamela VandeVord
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA.
- Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|