1
|
Segmental Upregulation of ASIC1 Channels in the Formalin Acute Pain Mouse Model. Pharmaceuticals (Basel) 2022; 15:ph15121539. [PMID: 36558990 PMCID: PMC9784454 DOI: 10.3390/ph15121539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 12/07/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hindpaw injection of formalin in rodents is used to assess acute persistent pain. The response to formalin is biphasic. The initial response (first minutes) is thought to be linked to inflammatory, peripheral mechanisms, while the latter (around 30 min after the injection), is linked to central mechanisms. This model is useful to analyze the effect of drugs at one or both phases, and the involvement of ion channels in the response. Acid-sensing ion channels (ASICs) regulate synaptic activities and play important roles in pain conditions. Recently, psalmotoxin-1 (Pctx-1), a toxin that inhibits ASIC1a-constituted channels, and antisense ASIC1a-RNA, intrathecal administered in mice were shown to affect both phases of the test. METHODS The mouse formalin test was performed on C57/BL6 7- to 9-week-old mice. Behavioral tests were conducted and tissue was extracted to detect proteins (ASIC1 and pERK) and ASIC1-mRNA and mir485-5p levels. RESULTS The injection of formalin was accompanied by an increase in ASIC1 levels. This was detected at the contralateral anterior cingulate cortex (ACC) compared to the ipsilateral side, and both sides of the ACC of vehicle-injected animals. At the spinal cord and dorsal root ganglia, ASIC1 levels followed a gradient stronger at lumbar (L) 3 and decreased towards L5. Gender differences were detected at the ACC; with female mice showing higher ASIC1a levels at the ACC. No significant changes in ASIC1-mRNA levels were detected. Evidence suggests ASIC1 upregulation depends on regulatory microRNAs. CONCLUSION This work highlights the important role of ASIC1 in pain and the potential role of pharmacological therapies aimed at this channel.
Collapse
|
2
|
Verkest C, Salinas M, Diochot S, Deval E, Lingueglia E, Baron A. Mechanisms of Action of the Peptide Toxins Targeting Human and Rodent Acid-Sensing Ion Channels and Relevance to Their In Vivo Analgesic Effects. Toxins (Basel) 2022; 14:toxins14100709. [PMID: 36287977 PMCID: PMC9612379 DOI: 10.3390/toxins14100709] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 09/30/2022] [Accepted: 10/02/2022] [Indexed: 11/16/2022] Open
Abstract
Acid-sensing ion channels (ASICs) are voltage-independent H+-gated cation channels largely expressed in the nervous system of rodents and humans. At least six isoforms (ASIC1a, 1b, 2a, 2b, 3 and 4) associate into homotrimers or heterotrimers to form functional channels with highly pH-dependent gating properties. This review provides an update on the pharmacological profiles of animal peptide toxins targeting ASICs, including PcTx1 from tarantula and related spider toxins, APETx2 and APETx-like peptides from sea anemone, and mambalgin from snake, as well as the dimeric protein snake toxin MitTx that have all been instrumental to understanding the structure and the pH-dependent gating of rodent and human cloned ASICs and to study the physiological and pathological roles of native ASICs in vitro and in vivo. ASICs are expressed all along the pain pathways and the pharmacological data clearly support a role for these channels in pain. ASIC-targeting peptide toxins interfere with ASIC gating by complex and pH-dependent mechanisms sometimes leading to opposite effects. However, these dual pH-dependent effects of ASIC-inhibiting toxins (PcTx1, mambalgin and APETx2) are fully compatible with, and even support, their analgesic effects in vivo, both in the central and the peripheral nervous system, as well as potential effects in humans.
Collapse
Affiliation(s)
- Clément Verkest
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Department of Anesthesiology, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Miguel Salinas
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Sylvie Diochot
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Emmanuel Deval
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Eric Lingueglia
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
| | - Anne Baron
- CNRS (Centre National de la Recherche Scientifique), IPMC (Institut de Pharmacologie Moléculaire et Cellulaire), LabEx ICST (Laboratory of Excellence in Ion Channel Science and Therapeutics), FHU InovPain (Fédération Hospitalo-Universitaire “Innovative Solutions in Refractory Chronic Pain”), Université Côte d’Azur, 660 Route des Lucioles, Sophia-Antipolis, 06560 Nice, France
- Correspondence:
| |
Collapse
|
3
|
Wang Y, Hu X, Sun Y, Huang Y. The Role of ASIC1a in Inflammatory Immune Diseases: A Potential Therapeutic Target. Front Pharmacol 2022; 13:942209. [PMID: 35873582 PMCID: PMC9304623 DOI: 10.3389/fphar.2022.942209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 06/20/2022] [Indexed: 11/26/2022] Open
Abstract
It is acknowledged that chronic inflammation is associated with a rise in extracellular proton concentrations. The acid-sensing ion channel 1a (ASIC1a) belongs to the extracellular H+-activated cation channel family. Recently, many studies have been conducted on ASIC1a and inflammatory immune diseases. Here, in this review, we will focus on the role of ASIC1a in several inflammatory immune diseases so as to provide new perspectives for clinical treatment.
Collapse
Affiliation(s)
- Yinghong Wang
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaojie Hu
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
| | - Yancai Sun
- Department of Pharmacy, Anhui Provincial Cancer Hospital, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| | - Yan Huang
- Anhui Provincial Laboratory of Inflammatory and Immunity Disease, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei, China
- *Correspondence: Yancai Sun, ; Yan Huang,
| |
Collapse
|
4
|
Salinas Castellanos LC, Gatto RG, Menchón SA, Blaustein M, Uchitel OD, Weissmann C. Dynamic Distribution of ASIC1a Channels and Other Proteins within Cells Detected through Fractionation. MEMBRANES 2022; 12:389. [PMID: 35448360 PMCID: PMC9027401 DOI: 10.3390/membranes12040389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/21/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023]
Abstract
Proteins in eukaryotic cells reside in different cell compartments. Many studies require the specific localization of proteins and the detection of any dynamic changes in intracellular protein distribution. There are several methods available for this purpose that rely on the fractionation of the different cell compartments. Fractionation protocols have evolved since the first use of a centrifuge to isolate organelles. In this study, we described a simple method that involves the use of a tabletop centrifuge and different detergents to obtain cell fractions enriched in cytosolic (Cyt), plasma membrane (PM), membranous organelle (MO), and nuclear (Nu) proteins and identify the proteins in each fraction. This method serves to identify transmembrane proteins such as channel subunits as well as PM-embedded or weakly associated proteins. This protocol uses a minute amount of cell material and typical equipment present in laboratories, and it takes approximately 3 h. The process was validated using endogenous and exogenous proteins expressed in the HEK293T cell line that were targeted to each compartment. Using a specific stimulus as a trigger, we showed and quantified the shuttling of a protein channel (ASIC1a, acid sensing ion channel) from the MO fraction to the PM fraction and the shuttling of a kinase from a cytosolic location to a nuclear location.
Collapse
Affiliation(s)
- Libia Catalina Salinas Castellanos
- Instituto de Fisiología Biologia Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), University of Buenos Aires (UBA), Buenos Aires 1428, Argentina; (L.C.S.C.); (O.D.U.)
| | - Rodolfo Gabriel Gatto
- Department of Bioengineering, University of Illinois at Chicago, Chicago, IL 60607, USA;
| | - Silvia Adriana Menchón
- IFEG-CONICET and FaMAF-Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5016, Argentina;
| | - Matías Blaustein
- Departamento de Fisiología, Biología Molecular y Celular (DFBMC), Facultad de Ciencias Exactas y Naturales (FCEyN), Instituto de Biociencias, Biotecnología y Biología Traslacional (iB3), University of Buenos Aires (UBA), Buenos Aires 1428, Argentina;
| | - Osvaldo Daniel Uchitel
- Instituto de Fisiología Biologia Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), University of Buenos Aires (UBA), Buenos Aires 1428, Argentina; (L.C.S.C.); (O.D.U.)
| | - Carina Weissmann
- Instituto de Fisiología Biologia Molecular y Neurociencias (IFIBYNE), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Departamento de Fisiología, Biología Molecular y Celular (DFBMC), University of Buenos Aires (UBA), Buenos Aires 1428, Argentina; (L.C.S.C.); (O.D.U.)
| |
Collapse
|