1
|
Medyanik AD, Anisimova PE, Kustova AO, Tarabykin VS, Kondakova EV. Developmental and Epileptic Encephalopathy: Pathogenesis of Intellectual Disability Beyond Channelopathies. Biomolecules 2025; 15:133. [PMID: 39858526 PMCID: PMC11763800 DOI: 10.3390/biom15010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 01/11/2025] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Developmental and epileptic encephalopathies (DEEs) are a group of neuropediatric diseases associated with epileptic seizures, severe delay or regression of psychomotor development, and cognitive and behavioral deficits. What sets DEEs apart is their complex interplay of epilepsy and developmental delay, often driven by genetic factors. These two aspects influence one another but can develop independently, creating diagnostic and therapeutic challenges. Intellectual disability is severe and complicates potential treatment. Pathogenic variants are found in 30-50% of patients with DEE. Many genes mutated in DEEs encode ion channels, causing current conduction disruptions known as channelopathies. Although channelopathies indeed make up a significant proportion of DEE cases, many other mechanisms have been identified: impaired neurogenesis, metabolic disorders, disruption of dendrite and axon growth, maintenance and synapse formation abnormalities -synaptopathies. Here, we review recent publications on non-channelopathies in DEE with an emphasis on the mechanisms linking epileptiform activity with intellectual disability. We focus on three major mechanisms of intellectual disability in DEE and describe several recently identified genes involved in the pathogenesis of DEE.
Collapse
Affiliation(s)
- Alexandra D. Medyanik
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Polina E. Anisimova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Angelina O. Kustova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| | - Victor S. Tarabykin
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
- Institute of Cell Biology and Neurobiology, Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Elena V. Kondakova
- Institute of Neuroscience, Lobachevsky State University of Nizhny Novgorod, 23 Gagarin Ave., 603022 Nizhny Novgorod, Russia; (A.D.M.); (P.E.A.); (A.O.K.); (E.V.K.)
| |
Collapse
|
2
|
Goyani S, Shukla S, Jadiya P, Tomar D. Calcium signaling in mitochondrial intermembrane space. Biochem Soc Trans 2024; 52:2215-2229. [PMID: 39392359 PMCID: PMC11727339 DOI: 10.1042/bst20240319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The mitochondrial intermembrane space (IMS) is a highly protected compartment, second only to the matrix. It is a crucial bridge, coordinating mitochondrial activities with cellular processes such as metabolites, protein, lipid, and ion exchange. This regulation influences signaling pathways for metabolic activities and cellular homeostasis. The IMS harbors various proteins critical for initiating apoptotic cascades and regulating reactive oxygen species production by controlling the respiratory chain. Calcium (Ca2+), a key intracellular secondary messenger, enter the mitochondrial matrix via the IMS, regulating mitochondrial bioenergetics, ATP production, modulating cell death pathways. IMS acts as a regulatory site for Ca2+ entry due to the presence of different Ca2+ sensors such as MICUs, solute carriers (SLCs); ion exchangers (LETM1/SCaMCs); S100A1, mitochondrial glycerol-3-phosphate dehydrogenase, and EFHD1, each with unique Ca2+ binding motifs and spatial localizations. This review primarily emphasizes the role of these IMS-localized Ca2+ sensors concerning their spatial localization, mechanism, and molecular functions. Additionally, we discuss how these sensors contribute to the progression and pathogenesis of various human health conditions and diseases.
Collapse
Affiliation(s)
- Shanikumar Goyani
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Shatakshi Shukla
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Pooja Jadiya
- Department of Internal Medicine, Section of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| | - Dhanendra Tomar
- Department of Internal Medicine, Section of Cardiovascular Medicine, Section of Molecular Medicine, Wake Forest University School of Medicine, Winston-Salem, NC 27157, U.S.A
| |
Collapse
|
3
|
Balboni N, Babini G, Poeta E, Protti M, Mercolini L, Magnifico MC, Barile SN, Massenzio F, Pignataro A, Giorgi FM, Lasorsa FM, Monti B. Transcriptional and metabolic effects of aspartate-glutamate carrier isoform 1 (AGC1) downregulation in mouse oligodendrocyte precursor cells (OPCs). Cell Mol Biol Lett 2024; 29:44. [PMID: 38553684 PMCID: PMC10979587 DOI: 10.1186/s11658-024-00563-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/20/2024] [Indexed: 04/02/2024] Open
Abstract
Aspartate-glutamate carrier isoform 1 (AGC1) is a carrier responsible for the export of mitochondrial aspartate in exchange for cytosolic glutamate and is part of the malate-aspartate shuttle, essential for the balance of reducing equivalents in the cells. In the brain, mutations in SLC25A12 gene, encoding for AGC1, cause an ultra-rare genetic disease, reported as a neurodevelopmental encephalopathy, whose symptoms include global hypomyelination, arrested psychomotor development, hypotonia and seizures. Among the biological components most affected by AGC1 deficiency are oligodendrocytes, glial cells responsible for myelination processes, and their precursors [oligodendrocyte progenitor cells (OPCs)]. The AGC1 silencing in an in vitro model of OPCs was documented to cause defects of proliferation and differentiation, mediated by alterations of histone acetylation/deacetylation. Disrupting AGC1 activity could possibly reduce the availability of acetyl groups, leading to perturbation of many biological pathways, such as histone modifications and fatty acids formation for myelin production. Here, we explore the transcriptome of mouse OPCs partially silenced for AGC1, reporting results of canonical analyses (differential expression) and pathway enrichment analyses, which highlight a disruption in fatty acids synthesis from both a regulatory and enzymatic stand. We further investigate the cellular effects of AGC1 deficiency through the identification of most affected transcriptional networks and altered alternative splicing. Transcriptional data were integrated with differential metabolite abundance analysis, showing downregulation of several amino acids, including glutamine and aspartate. Taken together, our results provide a molecular foundation for the effects of AGC1 deficiency in OPCs, highlighting the molecular mechanisms affected and providing a list of actionable targets to mitigate the effects of this pathology.
Collapse
Affiliation(s)
- Nicola Balboni
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Babini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Eleonora Poeta
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Michele Protti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Laura Mercolini
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Maria Chiara Magnifico
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Simona Nicole Barile
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Francesca Massenzio
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Antonella Pignataro
- Department of Biosciences, Biotechnologies and Environment, University of Bari, Bari, Italy
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| | | | - Barbara Monti
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy.
| |
Collapse
|