1
|
Song X, Li R, Chu X, Li Q, Li R, Li Q, Tong KY, Gu X, Ming D. Multilevel analysis of the central-peripheral-target organ pathway: contributing to recovery after peripheral nerve injury. Neural Regen Res 2025; 20:2807-2822. [PMID: 39435615 PMCID: PMC11826472 DOI: 10.4103/nrr.nrr-d-24-00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/06/2024] [Accepted: 09/23/2024] [Indexed: 10/23/2024] Open
Abstract
Peripheral nerve injury is a common neurological condition that often leads to severe functional limitations and disabilities. Research on the pathogenesis of peripheral nerve injury has focused on pathological changes at individual injury sites, neglecting multilevel pathological analysis of the overall nervous system and target organs. This has led to restrictions on current therapeutic approaches. In this paper, we first summarize the potential mechanisms of peripheral nerve injury from a holistic perspective, covering the central nervous system, peripheral nervous system, and target organs. After peripheral nerve injury, the cortical plasticity of the brain is altered due to damage to and regeneration of peripheral nerves; changes such as neuronal apoptosis and axonal demyelination occur in the spinal cord. The nerve will undergo axonal regeneration, activation of Schwann cells, inflammatory response, and vascular system regeneration at the injury site. Corresponding damage to target organs can occur, including skeletal muscle atrophy and sensory receptor disruption. We then provide a brief review of the research advances in therapeutic approaches to peripheral nerve injury. The main current treatments are conducted passively and include physical factor rehabilitation, pharmacological treatments, cell-based therapies, and physical exercise. However, most treatments only partially address the problem and cannot complete the systematic recovery of the entire central nervous system-peripheral nervous system-target organ pathway. Therefore, we should further explore multilevel treatment options that produce effective, long-lasting results, perhaps requiring a combination of passive (traditional) and active (novel) treatment methods to stimulate rehabilitation at the central-peripheral-target organ levels to achieve better functional recovery.
Collapse
Affiliation(s)
- Xizi Song
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Ruixin Li
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Xiaolei Chu
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qi Li
- Department of Rehabilitation, Tianjin University Tianjin Hospital, Tianjin, China
| | - Ruihua Li
- Department of Hand Microsurgery, Tianjin University Tianjin Hospital, Tianjin, China
| | - Qingwen Li
- School of Exercise and Health, Tianjin University of Sport, Tianjin, China
| | - Kai-Yu Tong
- Department of Biomedical Engineering, the Chinese University of Hong Kong, Hong Kong Special Administrative Region, China
| | - Xiaosong Gu
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| | - Dong Ming
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China
- Haihe Laboratory of Brain-Machine Interface and Human-Machine Fusion, Tianjin, China
| |
Collapse
|
2
|
Tu C, Wang SC, Dai MX, Lai SQ, Huang ZW, Yu YP, Chen YB, Zeng JH, Wang L, Zhong ZM. Accumulation of advanced oxidative protein products exacerbate satellite glial cells activation and neuropathic pain. Mol Med 2025; 31:25. [PMID: 39865234 PMCID: PMC11765935 DOI: 10.1186/s10020-025-01076-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/10/2025] [Indexed: 01/28/2025] Open
Abstract
BACKGROUND Neuropathic pain (NP) is a debilitating condition caused by lesion or dysfunction in the somatosensory nervous system. Accumulation of advanced oxidation protein products (AOPPs) is implicated in mechanical hyperalgesia. However, the effects of AOPPs on NP remain unclear. METHODS A rat model of NP was established by chronic constriction injury (CCI) and employed to evaluate the changes of mechanical withdrawal threshold, thermal and cold withdrawal latency, as well as AOPPs levels. The effects of AOPPs on the activation of satellite glial cells (SGCs) in the dorsal root ganglion (DRG), receptor for advanced glycation end-products (RAGE) expression, and NF-κB signaling pathway activation were also investigated using western blotting, immunofluorescence, and the Fluo4-AM fluorescence probe for calcium signaling. Additionally, oxidative stress levels and inflammatory cytokine production in SGCs, triggered by AOPPs exposure, were measured through the DCFH-DA probe for ROS detection and ELISA kits for cytokine quantification. RESULTS CCI significantly elevated the AOPPs levels in the plasma and sciatic nerve and caused AOPPs accumulation in the DRG. Exogenous AOPPs activated SGCs, increased reactive oxygen species and inflammatory response, upregulated the RAGE, and activated NF-κB signaling. The RAGE inhibitor FPS-ZM1 effectively inhibited AOPPs-induced SGC activation. Additionally, AOPPs intervention worsened CCI-induced hyperalgesia and neuroinflammation in vivo. CONCLUSION These results indicate that AOPPs exacerbate the SGC activation and NP following nerve injury, and AOPPs accumulation might play an important role in the pathogenesis of NP.
Collapse
Affiliation(s)
- Chen Tu
- Department of Spine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Shi-Cheng Wang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Meng-Xuan Dai
- Department of Spine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Si-Qi Lai
- Department of Pathology, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Zhi-Wei Huang
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yong-Peng Yu
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Yun-Biao Chen
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China
| | - Ji-Huan Zeng
- Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, China
| | - Liang Wang
- Department of Spine, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China.
| | - Zhao-Ming Zhong
- Division of Spine Surgery, Department of Orthopedics, Nanfang Hospital, Southern Medical University, 1838 North Guangzhou Ave, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
3
|
Marchon ISDS, Melo EDDN, Botinhão MDC, Pires GN, Reis JVR, de Souza ROMA, Leal ICR, Bonavita AGC, Mendonça HR, Muzitano MF, da Silva LL, do Carmo PL, Raimundo JM. Pharmacological potential of 4-dimethylamino chalcone against acute and neuropathic pain in mice. J Pharm Pharmacol 2024; 76:983-994. [PMID: 38733604 DOI: 10.1093/jpp/rgae057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024]
Abstract
OBJECTIVES This work investigated the acute antinociceptive effect of a synthetic chalcone, 4-dimethylamino chalcone (DMAC), as well as its effects on vincristine-induced peripheral neuropathy (VIPN) in mice. METHODS The inhibitory activity of myeloperoxidase was assessed by measuring HOCl formation. Formalin and hot plate tests were used to study the acute antinociceptive effect of DMAC. VIPN was induced through the administration of vincristine sulphate (0.1 mg/kg, i.p., 14 days). Then, DMSO, DMAC (10 or 30 mg/kg; i.p.), or pregabalin (10 mg/kg, i.p.) were administered for 14 consecutive days. Thermal hyperalgesia and mechanical allodynia were evaluated before and after VIPN induction and on days 1, 3, 7, and 14 of treatment. Neurodegeneration and neuroinflammation were assessed through immunohistochemistry for NF200, iNOS, and arginase-1 within the sciatic nerve. KEY FINDINGS DMAC inhibited myeloperoxidase activity in vitro and presented an acute antinociceptive effect in both formalin and hot plate tests, with the involvement of muscarinic and opioid receptors. Treatment with 30 mg/kg of DMAC significantly attenuated thermal hyperalgesia and mechanical allodynia and prevented macrophage proinflammatory polarisation in VIPN mice. CONCLUSIONS Our results show that DMAC, acting through different mechanisms, effectively attenuates VIPN.
Collapse
Affiliation(s)
- Isabela Souza Dos Santos Marchon
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Evelynn Dalila do Nascimento Melo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Mirella da Costa Botinhão
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Greice Nascimento Pires
- Laboratório Integrado de Morfologia, Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade NUPEM, Macaé, RJ 27965-045, Brazil
| | - João Vitor Rocha Reis
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | | | - Ivana Correa Ramos Leal
- Laboratório de Produtos Naturais e Ensaios Biológicos, Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-902, Brazil
| | - André Gustavo Calvano Bonavita
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Henrique Rocha Mendonça
- Laboratório Integrado de Morfologia, Universidade Federal do Rio de Janeiro, Instituto de Biodiversidade e Sustentabilidade NUPEM, Macaé, RJ 27965-045, Brazil
| | - Michelle Frazão Muzitano
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Leandro Louback da Silva
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
| | - Paula Lima do Carmo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
- Laboratório de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27933-378, Brazil
| | - Juliana Montani Raimundo
- Grupo de Pesquisa em Farmacologia de Produtos Bioativos, Universidade Federal do Rio de Janeiro, Centro Multidisciplinar UFRJ-Macaé, Macaé, RJ 27930-560, Brazil
| |
Collapse
|
4
|
Sałat K, Zaręba P, Awtoniuk M, Sałat R. Naturally Inspired Molecules for Neuropathic Pain Inhibition-Effect of Mirogabalin and Cebranopadol on Mechanical and Thermal Nociceptive Threshold in Mice. Molecules 2023; 28:7862. [PMID: 38067591 PMCID: PMC10708129 DOI: 10.3390/molecules28237862] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Neuropathic pain is drug-resistant to available analgesics and therefore novel treatment options for this debilitating clinical condition are urgently needed. Recently, two drug candidates, namely mirogabalin and cebranopadol have become a subject of interest because of their potential utility as analgesics for chronic pain treatment. However, they have not been investigated thoroughly in some types of neuropathic pain, both in humans and experimental animals. METHODS This study used the von Frey test, the hot plate test and the two-plate thermal place preference test supported by image analysis and machine learning to assess the effect of intraperitoneal mirogabalin and subcutaneous cebranopadol on mechanical and thermal nociceptive threshold in mouse models of neuropathic pain induced by streptozotocin, paclitaxel and oxaliplatin. RESULTS Mirogabalin and cebranopadol effectively attenuated tactile allodynia in models of neuropathic pain induced by streptozotocin and paclitaxel. Cebranopadol was more effective than mirogabalin in this respect. Both drugs also elevated the heat nociceptive threshold in mice. In the oxaliplatin model, cebranopadol and mirogabalin reduced cold-exacerbated pain. CONCLUSIONS Since mirogabalin and cebranopadol are effective in animal models of neuropathic pain, they seem to be promising novel therapies for various types of neuropathic pain in patients, in particular those who are resistant to available analgesics.
Collapse
Affiliation(s)
- Kinga Sałat
- Department of Pharmacodynamics, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland
| | - Paula Zaręba
- Chair of Pharmaceutical Chemistry, Faculty of Pharmacy, Jagiellonian University, 9 Medyczna St., 30-688 Krakow, Poland;
| | - Michał Awtoniuk
- Institute of Mechanical Engineering, Warsaw University of Life Sciences, 166 Nowoursynowska St., 02-787 Warsaw, Poland;
| | - Robert Sałat
- Faculty of Electrical and Computer Engineering, Cracow University of Technology, 24 Warszawska St., 31-155 Krakow, Poland;
| |
Collapse
|
5
|
Iafrate L, Benedetti MC, Donsante S, Rosa A, Corsi A, Oreffo ROC, Riminucci M, Ruocco G, Scognamiglio C, Cidonio G. Modelling skeletal pain harnessing tissue engineering. IN VITRO MODELS 2022; 1:289-307. [PMID: 36567849 PMCID: PMC9766883 DOI: 10.1007/s44164-022-00028-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/01/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022]
Abstract
Bone pain typically occurs immediately following skeletal damage with mechanical distortion or rupture of nociceptive fibres. The pain mechanism is also associated with chronic pain conditions where the healing process is impaired. Any load impacting on the area of the fractured bone will stimulate the nociceptive response, necessitating rapid clinical intervention to relieve pain associated with the bone damage and appropriate mitigation of any processes involved with the loss of bone mass, muscle, and mobility and to prevent death. The following review has examined the mechanisms of pain associated with trauma or cancer-related skeletal damage focusing on new approaches for the development of innovative therapeutic interventions. In particular, the review highlights tissue engineering approaches that offer considerable promise in the application of functional biomimetic fabrication of bone and nerve tissues. The strategic combination of bone and nerve tissue engineered models provides significant potential to develop a new class of in vitro platforms, capable of replacing in vivo models and testing the safety and efficacy of novel drug treatments aimed at the resolution of bone-associated pain. To date, the field of bone pain research has centred on animal models, with a paucity of data correlating to the human physiological response. This review explores the evident gap in pain drug development research and suggests a step change in approach to harness tissue engineering technologies to recapitulate the complex pathophysiological environment of the damaged bone tissue enabling evaluation of the associated pain-mimicking mechanism with significant therapeutic potential therein for improved patient quality of life. Graphical abstract Rationale underlying novel drug testing platform development. Pain detected by the central nervous system and following bone fracture cannot be treated or exclusively alleviated using standardised methods. The pain mechanism and specificity/efficacy of pain reduction drugs remain poorly understood. In vivo and ex vivo models are not yet able to recapitulate the various pain events associated with skeletal damage. In vitro models are currently limited by their inability to fully mimic the complex physiological mechanisms at play between nervous and skeletal tissue and any disruption in pathological states. Robust innovative tissue engineering models are needed to better understand pain events and to investigate therapeutic regimes.
Collapse
Affiliation(s)
- Lucia Iafrate
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Maria Cristina Benedetti
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Samantha Donsante
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Alessandro Rosa
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Department of Biology and Biotechnologies “Charles Darwin”, Sapienza University of Rome, Rome, Italy
| | - Alessandro Corsi
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Richard O. C. Oreffo
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| | - Mara Riminucci
- Department of Molecular Medicine, Sapienza University of Rome, Rome, Italy
| | - Giancarlo Ruocco
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Chiara Scognamiglio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
| | - Gianluca Cidonio
- Center for Life Nano- & Neuro-Science (CLN2S), Istituto Italiano di Tecnologia, Rome, Italy
- Bone and Joint Research Group, Stem Cells and Regeneration, Institute of Developmental Sciences, Centre for Human Development, University of Southampton, Southampton, UK
| |
Collapse
|