1
|
Li M, Wang X, Qi B, Cui S, Zheng T, Guan Y, Ma L, Liu S, Li Q, Chen Z, Jian F. Treatment of Syringomyelia Characterized by Focal Dilatation of the Central Canal Using Mesenchymal Stem Cells and Neural Stem Cells. Tissue Eng Regen Med 2024; 21:625-639. [PMID: 38578425 PMCID: PMC11087409 DOI: 10.1007/s13770-024-00637-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 02/03/2024] [Accepted: 03/05/2024] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Syringomyelia is a progressive chronic disease that leads to nerve pain, sensory dissociation, and dyskinesia. Symptoms often do not improve after surgery. Stem cells have been widely explored for the treatment of nervous system diseases due to their immunoregulatory and neural replacement abilities. METHODS In this study, we used a rat model of syringomyelia characterized by focal dilatation of the central canal to explore an effective transplantation scheme and evaluate the effect of mesenchymal stem cells and induced neural stem cells for the treatment of syringomyelia. RESULTS The results showed that cell transplantation could not only promote syrinx shrinkage but also stimulate the proliferation of ependymal cells, and the effect of this result was related to the transplantation location. These reactions appeared only when the cells were transplanted into the cavity. Additionally, we discovered that cell transplantation transformed activated microglia into the M2 phenotype. IGF1-expressing M2 microglia may play a significant role in the repair of nerve pain. CONCLUSION Cell transplantation can promote cavity shrinkage and regulate the local inflammatory environment. Moreover, the proliferation of ependymal cells may indicate the activation of endogenous stem cells, which is important for the regeneration and repair of spinal cord injury.
Collapse
Affiliation(s)
- Mo Li
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Xinyu Wang
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Boling Qi
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Shengyu Cui
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Tianqi Zheng
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Yunqian Guan
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Longbing Ma
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Sumei Liu
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China
| | - Qian Li
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Zhiguo Chen
- Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Key Laboratory of Neurodegeneration, Ministry of Education, Beijing, 100053, China.
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China.
- Center of Parkinson's Disease, Beijing Institute for Brain Disorders, Beijing, China.
| | - Fengzeng Jian
- Department of Neurosurgery, China International Neuroscience Institute, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Research Center of Spine and Spinal Cord, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China.
| |
Collapse
|
2
|
Zhou H, Jing S, Xiong W, Zhu Y, Duan X, Li R, Peng Y, Kumeria T, He Y, Ye Q. Metal-organic framework materials promote neural differentiation of dental pulp stem cells in spinal cord injury. J Nanobiotechnology 2023; 21:316. [PMID: 37667307 PMCID: PMC10478386 DOI: 10.1186/s12951-023-02001-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 09/06/2023] Open
Abstract
Spinal cord injury (SCI) is accompanied by loss of Zn2+, which is an important cause of glutamate excitotoxicity and death of local neurons as well as transplanted stem cells. Dental pulp stem cells (DPSCs) have the potential for neural differentiation and play an immunomodulatory role in the microenvironment, making them an ideal cell source for the repair of central nerve injury, including SCI. The zeolitic imidazolate framework 8 (ZIF-8) is usually used as a drug and gene delivery carrier, which can release Zn2+ sustainedly in acidic environment. However, the roles of ZIF-8 on neural differentiation of DPSCs and the effect of combined treatment on SCI have not been explored. ZIF-8-introduced DPSCs were loaded into gelatin methacryloyl (GelMA) hydrogel and in situ injected into the injured site of SCI rats. Under the effect of ZIF-8, axon number and axon length of DPSCs-differentiated neuro-like cells were significantly increased. In addition, ZIF-8 protected transplanted DPSCs from apoptosis in the damaged microenvironment. ZIF-8 promotes neural differentiation and angiogenesis of DPSCs by activating the Mitogen-activated protein kinase (MAPK) signaling pathway, which is a promising transport nanomaterial for nerve repair.
Collapse
Affiliation(s)
- Heng Zhou
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Shuili Jing
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Wei Xiong
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Yangzhi Zhu
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, 90095, USA
| | - Xingxiang Duan
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Ruohan Li
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Youjian Peng
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Tushar Kumeria
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW, Australia
| | - Yan He
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Institute of Regenerative and Translational Medicine, Tianyou Hospital of Wuhan University of Science and Technology, Wuhan, 430064, Hubei, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| | - Qingsong Ye
- Center of Regenerative Medicine, Department of Stomatology, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
- Department of Oral and Maxillofacial Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02114, USA.
| |
Collapse
|
3
|
Multiple strategies enhance the efficacy of MSCs transplantation for spinal cord injury. Biomed Pharmacother 2023; 157:114011. [PMID: 36410123 DOI: 10.1016/j.biopha.2022.114011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/19/2022] Open
Abstract
Spinal cord injury (SCI) is a serious complication of the central nervous system (CNS) after spine injury, often resulting in severe sensory, motor, and autonomic dysfunction below the level of injury. To date, there is no effective treatment strategy for SCI. Recently, stem cell therapy has brought hope to patients with neurological diseases. Mesenchymal stem cells (MSCs) are considered to be the most promising source of cellular therapy after SCI due to their immunomodulatory, neuroprotective and angiogenic potential. Considering the limited therapeutic effect of MSCs due to the complex pathophysiological environment following SCI, this paper not only reviews the specific mechanism of MSCs to facilitate SCI repair, but also further discusses the research status of these pluripotent stem cells combined with other therapeutic approaches to promote anatomical and functional recovery post-SCI.
Collapse
|
4
|
Yin Q, Zou T, Sun S, Yang D. Cell therapy for neuropathic pain. Front Mol Neurosci 2023; 16:1119223. [PMID: 36923653 PMCID: PMC10008860 DOI: 10.3389/fnmol.2023.1119223] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 02/07/2023] [Indexed: 03/02/2023] Open
Abstract
Neuropathic pain (NP) is caused by a lesion or a condition that affects the somatosensory system. Pathophysiologically, NP can be ascribed to peripheral and central sensitization, implicating a wide range of molecular pathways. Current pharmacological and non-pharmacological approaches are not very efficacious, with over half of NP patients failing to attain adequate pain relief. So far, pharmacological and surgical treatments have focused primarily on symptomatic relief by modulating pain transduction and transmission, without treating the underlying pathophysiology. Currently, researchers are trying to use cell therapy as a therapeutic alternative for the treatment of NP. In fact, mounting pre-clinical and clinical studies showed that the cell transplantation-based therapy for NP yielded some encouraging results. In this review, we summarized the use of cell grafts for the treatment of NP caused by nerve injury, synthesized the latest advances and adverse effects, discussed the possible mechanisms to inform pain physicians and neurologists who are endeavoring to develop cell transplant-based therapies for NP and put them into clinical practice.
Collapse
Affiliation(s)
- QingHua Yin
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - TianHao Zou
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - ShuJun Sun
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Dong Yang
- Department of Pain, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
5
|
Szymoniuk M, Litak J, Sakwa L, Dryla A, Zezuliński W, Czyżewski W, Kamieniak P, Blicharski T. Molecular Mechanisms and Clinical Application of Multipotent Stem Cells for Spinal Cord Injury. Cells 2022; 12:120. [PMID: 36611914 PMCID: PMC9818156 DOI: 10.3390/cells12010120] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/29/2022] Open
Abstract
Spinal Cord Injury (SCI) is a common neurological disorder with devastating psychical and psychosocial sequelae. The majority of patients after SCI suffer from permanent disability caused by motor dysfunction, impaired sensation, neuropathic pain, spasticity as well as urinary complications, and a small number of patients experience a complete recovery. Current standard treatment modalities of the SCI aim to prevent secondary injury and provide limited recovery of lost neurological functions. Stem Cell Therapy (SCT) represents an emerging treatment approach using the differentiation, paracrine, and self-renewal capabilities of stem cells to regenerate the injured spinal cord. To date, multipotent stem cells including mesenchymal stem cells (MSCs), neural stem cells (NSCs), and hematopoietic stem cells (HSCs) represent the most investigated types of stem cells for the treatment of SCI in preclinical and clinical studies. The microenvironment of SCI has a significant impact on the survival, proliferation, and differentiation of transplanted stem cells. Therefore, a deep understanding of the pathophysiology of SCI and molecular mechanisms through which stem cells act may help improve the treatment efficacy of SCT and find new therapeutic approaches such as stem-cell-derived exosomes, gene-modified stem cells, scaffolds, and nanomaterials. In this literature review, the pathogenesis of SCI and molecular mechanisms of action of multipotent stem cells including MSCs, NSCs, and HSCs are comprehensively described. Moreover, the clinical efficacy of multipotent stem cells in SCI treatment, an optimal protocol of stem cell administration, and recent therapeutic approaches based on or combined with SCT are also discussed.
Collapse
Affiliation(s)
- Michał Szymoniuk
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Jakub Litak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Clinical Immunology, Medical University of Lublin, Chodźki 4A, 20-093 Lublin, Poland
| | - Leon Sakwa
- Student Scientific Society, Kazimierz Pulaski University of Technologies and Humanities in Radom, Chrobrego 27, 26-600 Radom, Poland
| | - Aleksandra Dryla
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Zezuliński
- Student Scientific Association at the Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Wojciech Czyżewski
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
- Department of Didactics and Medical Simulation, Medical University of Lublin, Chodźki 4, 20-093 Lublin, Poland
| | - Piotr Kamieniak
- Department of Neurosurgery and Pediatric Neurosurgery, Medical University of Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| | - Tomasz Blicharski
- Department of Rehabilitation and Orthopaedics, Medical University in Lublin, Jaczewskiego 8, 20-954 Lublin, Poland
| |
Collapse
|
6
|
Intrathecal Cell Therapy with Autologous Bone Marrow Stromal Cells as a New Tool for Neurologic Sequels after Spinal Cord Surgery: A Report of Two Cases. REPORTS 2022. [DOI: 10.3390/reports5040043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Background aims: The possibility of permanent neurological sequels after surgery of benign lesions affecting the spinal cord is well known. Frequently, they are irreversible, with no effective treatment other than rehabilitation. However, in recent years, intrathecal cell therapy with autologous bone marrow stromal cells (MSCs) in patients with incomplete paraplegia has shown benefits for diverse sequels of spinal cord injury (SCI). Methods: We present two patients with chronic spinal cord sequels after a surgery, who underwent cell therapy treatment with NC1 medicament (repeated intrathecal administrations of MSCs). Results: In both cases, cell therapy achieved a clear improvement in neurological sequels, such as recovery of gait disturbances, bowel dysfunction, or neuropathic pain. Conclusion: Intrathecal cell therapy with autologous MSCs offers a new approach for neurological sequels after spinal cord surgery.
Collapse
|