1
|
Liu W, Liu Q, Li Z, Zhang C, Li Z, Ke H, Xu X, Wang X, Du H, Talifu Z, Pan Y, Wang X, Mao J, Gao F, Yang D, Yu Y, Liu X, Li J. Multifunctional magneto-electric and exosome-loaded hydrogel enhances neuronal differentiation and immunoregulation through remote non-invasive electrical stimulation for neurological recovery after spinal cord injury. Bioact Mater 2025; 48:510-528. [PMID: 40104021 PMCID: PMC11919302 DOI: 10.1016/j.bioactmat.2025.02.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 02/22/2025] [Accepted: 02/23/2025] [Indexed: 03/20/2025] Open
Abstract
Intervention in the differentiation of neural stem cells (NSCs) is emerging as a highly promising approach for the treatment of spinal cord injury (SCI). However, NSCs at the injury site often suffer from low survival and uncontrolled differentiation. Whereas electrical stimulation has proven effective in regulating the fate of NSCs and promoting tissue repair, however, conventional electrical stimulation therapy has failed to be widely applied due to challenges such as invasiveness and technical complexity. To overcome these limitations, we developed a biomimetic magneto-electric hydrogel incorporating Fe3O4@BaTiO3 core-shell nanoparticles and human umbilical mesenchymal stem cell exosomes (HUMSC-Exos) around the concept of constructing remote noninvasive electrical stimulation for the synergistic treatment of SCI. The Fe3O4@BaTiO3 is activated by the peripheral magnetic field to generate electrical stimulation, which, in conjunction with the synergistic effects of HUMSC-Exos, significantly alleviates the early inflammatory response associated with SCI and enhances the regeneration of newborn neurons and axons, thereby creating favorable conditions for functional recovery post-SCI. Our findings indicate that applying this magneto-exosome hydrogel in a rat model of SCI leads to substantial functional recovery. This innovative combination represents a promising therapeutic strategy for SCI repair.
Collapse
Affiliation(s)
- Wubo Liu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
| | - Qiang Liu
- Department of General Surgery, The First Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 330006, PR China
| | - Zeqin Li
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- Ganan Medical University, Ganzhou, Jiangxi, 341000, PR China
| | - Chunjia Zhang
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
- Department of Rehabilitation Medicine, Peking University Third Hospital, Beijing, 100096, PR China
| | - Zehui Li
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Han Ke
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- Department of Orthopedics, Beijing Chaoyang Hospital, Capital Medical University, Beijing, 100013, PR China
| | - Xin Xu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Xiaoxin Wang
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Huayong Du
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Zuliyaer Talifu
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
- School of Population Medicine and Public Health, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100005, PR China
| | - Yunzhu Pan
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
- Rehabilitation Department, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, 100005, PR China
| | - Xiaoxiong Wang
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
| | - Jingyun Mao
- College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, 350007, PR China
| | - Feng Gao
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Degang Yang
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Yan Yu
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| | - Xinyu Liu
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
| | - Jianjun Li
- Department of Orthopaedics, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, PR China
- China Rehabilitation Research Center, Beijing Bo'ai Hospital, Beijing, 100068, PR China
- University of Health and Rehabilitation Sciences, Qingdao, Shandong, 266100, PR China
- China Rehabilitation Science Institute, Beijing, 100068, PR China
- Beijing Key Laboratory of Neural Injury and Rehabilitation, Beijing, 100068, PR China
- Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, 100068, PR China
- School of Rehabilitation, Capital Medical University, Beijing, 100069, PR China
| |
Collapse
|
2
|
Nuovo GJ, Rice M, Zanesi N, Sawant D, Crilly C, Tili E. The Prevention of Fatal Tauopathy in a Mouse Model of Alzheimer Disease by Blocking BCL2. Appl Immunohistochem Mol Morphol 2025; 33:142-151. [PMID: 39931956 DOI: 10.1097/pai.0000000000001251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 01/09/2025] [Indexed: 05/07/2025]
Abstract
A major goal in Alzheimer disease (AD) research is the reduction of the abnormal tau burden. Using multispectral analyses on brain tissues from humans who died of AD it was documented that neurons with hyperphosphorylated tau protein accumulate many proteins of the BCL2 family, including those that block cell turnover (eg, BCL2, MCL1, BCLXL) and those that promote cell turnover (eg, NOXA, PUMA, BAK, BAX). A mouse model of AD with the humanized hyperphosphorylated tau protein was used to test the hypothesis that shifting this balance to a pro-cell turnover milieu would reduce the tau burden with concomitant clinical improvement. Here, we show that a mouse model of AD with death at 11 to 15 months due to CNS tauopathy had a marked reduction in the tau burden after treatment with the FDA-approved drug venetoclax, which blocks BCL2. The reduction of the number of target neurons positive for hyperphosphorylated tau protein after venetoclax treatment in the brain and spinal cord neurons was 94.5% as determined by immunohistochemistry and 98.1% as documented with the modified Bielchowsky stain. The venetoclax treatment began after documented neurofibrillary tangles (NFTs) were evident and there was a concomitant reduction in neuroinflammation. The treated mice were robust until sacrificed at 13 months as compared with the untreated mice that showed unequivocal evidence of brain and spinal cord damage both clinically and at autopsy. We conclude that otherwise inexorable abnormal tau protein deposition, even after initiation, can be prevented by a drug that blocks one anti-cell turnover protein abundant in the NFTs of human AD.
Collapse
Affiliation(s)
| | | | | | | | | | - Esmerina Tili
- Anesthesiology, Ohio State University College of Medicine, Columbus, OH
| |
Collapse
|
3
|
Belousova E, Salikhova D, Maksimov Y, Nebogatikov V, Sudina A, Goldshtein D, Ustyugov A. Proposed Mechanisms of Cell Therapy for Alzheimer's Disease. Int J Mol Sci 2024; 25:12378. [PMID: 39596443 PMCID: PMC11595163 DOI: 10.3390/ijms252212378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/08/2024] [Accepted: 11/12/2024] [Indexed: 11/28/2024] Open
Abstract
Alzheimer's disease is a progressive neurodegenerative disorder characterized by mitochondria dysfunction, accumulation of beta-amyloid plaques, and hyperphosphorylated tau tangles in the brain leading to memory loss and cognitive deficits. There is currently no cure for this condition, but the potential of stem cells for the therapy of neurodegenerative pathologies is actively being researched. This review discusses preclinical and clinical studies that have used mouse models and human patients to investigate the use of novel types of stem cell treatment approaches. The findings provide valuable insights into the applications of stem cell-based therapies and include the use of neural, glial, mesenchymal, embryonic, and induced pluripotent stem cells. We cover current studies on stem cell replacement therapy where cells can functionally integrate into neural networks, replace damaged neurons, and strengthen impaired synaptic circuits in the brain. We address the paracrine action of stem cells acting via secreted factors to induce neuroregeneration and modify inflammatory responses. We focus on the neuroprotective functions of exosomes as well as their neurogenic and synaptogenic effects. We look into the shuttling of mitochondria through tunneling nanotubes that enables the transfer of healthy mitochondria by restoring the normal functioning of damaged cells, improving their metabolism, and reducing the level of apoptosis.
Collapse
Affiliation(s)
- Ekaterina Belousova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Diana Salikhova
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Yaroslav Maksimov
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Vladimir Nebogatikov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| | - Anastasiya Sudina
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
- Research Institute of Molecular and Cellular Medicine of the Medical Institute Peoples’ Friendship, University of Russia, Moscow 117198, Russia
| | - Dmitry Goldshtein
- Research Centre for Medical Genetics, Moscow 115522, Russia; (E.B.); (D.S.); (Y.M.); (A.S.); (D.G.)
| | - Aleksey Ustyugov
- Institute of Physiologically Active Compounds at Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry of the Russian Academy of Sciences, Chernogolovka 142432, Russia;
| |
Collapse
|
4
|
Beraldo-Neto E, Ferreira VF, Vigerelli H, Fernandes KR, Juliano MA, Nencioni ALA, Pimenta DC. Unraveling neuroprotection with Kv1.3 potassium channel blockade by a scorpion venom peptide. Sci Rep 2024; 14:27888. [PMID: 39537765 PMCID: PMC11561340 DOI: 10.1038/s41598-024-79152-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024] Open
Abstract
Voltage-gated potassium channels play a crucial role in cellular repolarization and are potential therapeutic targets in neuroinflammatory disorders and neurodegenerative diseases. This study explores Tityus bahiensis scorpion venom for neuroactive peptides. We identified the αKtx12 peptide as a potent neuroprotective agent. In SH-SY5Y cells, αKtx12 significantly enhances viability, validating its pharmacological potential. And in the animal model, we elucidate central nervous system (CNS) mechanism of αKtx12 through neuroproteomic analyses highlighting αKtx12 as a valuable tool for characterizing neuroplasticity and neurotropism, revealing its ability to elicit more physiological responses. The peptide's potential to promote cell proliferation and neuroprotection suggests a role in functional recovery from nervous system injury or disease. This research unveils the neuroactive potential of scorpion venom-derived αKtx12's, offering insights into its pharmacological utility. The peptide's impact on neuronal processes suggests a promising avenue for therapeutic development, particularly in neurodegenerative conditions.
Collapse
Affiliation(s)
| | | | - Hugo Vigerelli
- Genetics Laboratory, Butantan Institute, São Paulo, Brazil
| | - Karolina Rosa Fernandes
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | - Maria Aparecida Juliano
- Department of Biophysics, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil
| | | | | |
Collapse
|
5
|
Cheng S, Jiang D, Lan X, Liu K, Fan C. Voltage-gated potassium channel 1.3: A promising molecular target in multiple disease therapy. Biomed Pharmacother 2024; 175:116651. [PMID: 38692062 DOI: 10.1016/j.biopha.2024.116651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/21/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024] Open
Abstract
Voltage-gated potassium channel 1.3 (Kv1.3) has emerged as a pivotal player in numerous biological processes and pathological conditions, sparking considerable interest as a potential therapeutic target across various diseases. In this review, we present a comprehensive examination of Kv1.3 channels, highlighting their fundamental characteristics and recent advancements in utilizing Kv1.3 inhibitors for treating autoimmune disorders, neuroinflammation, and cancers. Notably, Kv1.3 is prominently expressed in immune cells and implicated in immune responses and inflammation associated with autoimmune diseases and chronic inflammatory conditions. Moreover, its aberrant expression in certain tumors underscores its role in cancer progression. While preclinical studies have demonstrated the efficacy of Kv1.3 inhibitors, their clinical translation remains pending. Molecular imaging techniques offer promising avenues for tracking Kv1.3 inhibitors and assessing their therapeutic efficacy, thereby facilitating their development and clinical application. Challenges and future directions in Kv1.3 inhibitor research are also discussed, emphasizing the significant potential of targeting Kv1.3 as a promising therapeutic strategy across a spectrum of diseases.
Collapse
Affiliation(s)
- Sixuan Cheng
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Dawei Jiang
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Xiaoli Lan
- Department of Nuclear Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China; Hubei Key Laboratory of Molecular Imaging, Wuhan 430022, China
| | - Kun Liu
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| | - Cheng Fan
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
6
|
Urrutia J, Arrizabalaga-Iriondo A, Sanchez-del-Rey A, Martinez-Ibargüen A, Gallego M, Casis O, Revuelta M. Therapeutic role of voltage-gated potassium channels in age-related neurodegenerative diseases. Front Cell Neurosci 2024; 18:1406709. [PMID: 38827782 PMCID: PMC11140135 DOI: 10.3389/fncel.2024.1406709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 05/02/2024] [Indexed: 06/05/2024] Open
Abstract
Voltage-gated ion channels are essential for membrane potential maintenance, homeostasis, electrical signal production and controlling the Ca2+ flow through the membrane. Among all ion channels, the key regulators of neuronal excitability are the voltage-gated potassium channels (KV), the largest family of K+ channels. Due to the ROS high levels in the aging brain, K+ channels might be affected by oxidative agents and be key in aging and neurodegeneration processes. This review provides new insight about channelopathies in the most studied neurodegenerative disorders, such as Alzheimer Disease, Parkinson's Disease, Huntington Disease or Spinocerebellar Ataxia. The main affected KV channels in these neurodegenerative diseases are the KV1, KV2.1, KV3, KV4 and KV7. Moreover, in order to prevent or repair the development of these neurodegenerative diseases, previous KV channel modulators have been proposed as therapeutic targets.
Collapse
Affiliation(s)
- Janire Urrutia
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ane Arrizabalaga-Iriondo
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Ana Sanchez-del-Rey
- Department of Otorhinolaryngology, Faculty of Medicine, University of the Basque Country, Bilbao, Spain
| | - Agustín Martinez-Ibargüen
- Department of Otorhinolaryngology, Faculty of Medicine, University of the Basque Country, Bilbao, Spain
| | - Mónica Gallego
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Oscar Casis
- Department of Physiology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Miren Revuelta
- Department of Physiology, Faculty of Medicine and Nursery, University of the Basque Country (UPV/EHU), Bilbao, Spain
| |
Collapse
|
7
|
Del Pozo A, Knox KM, Lehmann LM, Davidson S, Rho SL, Jayadev S, Barker-Haliski M. Chronic evoked seizures in young pre-symptomatic APP/PS1 mice induce serotonin changes and accelerate onset of Alzheimer's disease-related neuropathology. Prog Neurobiol 2024; 235:102591. [PMID: 38484965 PMCID: PMC11015961 DOI: 10.1016/j.pneurobio.2024.102591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/29/2024] [Accepted: 03/05/2024] [Indexed: 03/18/2024]
Abstract
OBJECTIVE Hyperexcitability is intimately linked to Alzheimer's disease (AD) pathology, but the precise timing and contributions of neuronal hyperexcitability to disease progression is unclear. Seizure induction in rodent AD models can uncover new therapeutic targets. Further, investigator-evoked seizures can directly establish how hyperexcitability and AD-associated risk factors influence neuropathological hallmarks and disease course at presymptomatic stages. METHODS Corneal kindling is a well-characterized preclinical epilepsy model that allows for precise control of seizure history to pair to subsequent behavioral assessments. 2-3-month-old APP/PS1, PSEN2-N141I, and transgenic control male and female mice were thus sham or corneal kindled for 2 weeks. Seizure-induced changes in glia, serotonin pathway proteins, and amyloid β levels in hippocampus and prefrontal cortex were quantified. RESULTS APP/PS1 females were more susceptible to corneal kindling. However, regardless of sex, APP/PS1 mice experienced extensive seizure-induced mortality versus kindled Tg- controls. PSEN2-N141I mice were not negatively affected by corneal kindling. Mortality correlated with a marked downregulation of hippocampal tryptophan hydroxylase 2 and monoamine oxidase A protein expression versus controls; these changes were not detected in PSEN2-N141I mice. Kindled APP/PS1 mice also exhibited soluble amyloid β upregulation and glial reactivity without plaque deposition. SIGNIFICANCE Evoked convulsive seizures and neuronal hyperexcitability in pre-symptomatic APP/PS1 mice promoted premature mortality without pathological Aβ plaque deposition, whereas PSEN2-N141I mice were unaffected. Disruptions in serotonin pathway metabolism in APP/PS1 mice was associated with increased glial reactivity without Aβ plaque deposition, demonstrating that neuronal hyperexcitability in early AD causes pathological Aβ overexpression and worsens long-term outcomes through a serotonin-related mechanism.
Collapse
Affiliation(s)
- Aaron Del Pozo
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Kevin M Knox
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Leanne M Lehmann
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Stephanie Davidson
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Seongheon Leo Rho
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98195, USA
| | - Melissa Barker-Haliski
- Center for Epilepsy Drug Discovery (CEDD), Department of Pharmacy, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
8
|
Bruno A, Milillo C, Anaclerio F, Buccolini C, Dell’Elice A, Angilletta I, Gatta M, Ballerini P, Antonucci I. Perinatal Tissue-Derived Stem Cells: An Emerging Therapeutic Strategy for Challenging Neurodegenerative Diseases. Int J Mol Sci 2024; 25:976. [PMID: 38256050 PMCID: PMC10815412 DOI: 10.3390/ijms25020976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Over the past 20 years, stem cell therapy has been considered a promising option for treating numerous disorders, in particular, neurodegenerative disorders. Stem cells exert neuroprotective and neurodegenerative benefits through different mechanisms, such as the secretion of neurotrophic factors, cell replacement, the activation of endogenous stem cells, and decreased neuroinflammation. Several sources of stem cells have been proposed for transplantation and the restoration of damaged tissue. Over recent decades, intensive research has focused on gestational stem cells considered a novel resource for cell transplantation therapy. The present review provides an update on the recent preclinical/clinical applications of gestational stem cells for the treatment of protein-misfolding diseases including Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD) and amyotrophic lateral sclerosis (ALS). However, further studies should be encouraged to translate this promising therapeutic approach into the clinical setting.
Collapse
Affiliation(s)
- Annalisa Bruno
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Cristina Milillo
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Federico Anaclerio
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Carlotta Buccolini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Anastasia Dell’Elice
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ilaria Angilletta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Marco Gatta
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Patrizia Ballerini
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Innovative Technologies in Medicine & Dentistry, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| | - Ivana Antonucci
- Center for Advanced Studies and Technology (CAST), “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy; (A.B.); (C.M.); (C.B.); (A.D.); (I.A.)
- Department of Psychological, Health and Territorial Sciences, “G. d’Annunzio” University of Chieti-Pescara, 66100 Chieti, Italy
| |
Collapse
|
9
|
Cui L, Gao L, Geng H, Zhang H, Wei H. Analysis of the relationship between mild cognitive impairment and serum klotho protein and insulin-like growth factor-1 in the elderly. Technol Health Care 2024; 32:1455-1462. [PMID: 37599547 DOI: 10.3233/thc-230462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
BACKGROUND Mild cognitive impairment (MCI) is a mild memory or cognitive impairment. OBJECTIVE To explore the relationship between serum klotho (K1) protein and insulin-like growth factor-1 and mild cognitive impairment in the elderly in order to provide accurate and appropriate indicators for clinical diagnosis and treatment of MCI. METHODS This randomized stratified study adopted a multistage cluster sampling method. 161 elderly patients with mild cognitive impairment were included as the MCI group, and 161 healthy people matched with the MCI group in gender, age and education were selected as the control group. RESULTS The levels of serum K1 protein and insulin-like growth factor-1 in the MCI group were lower than those in the control group (P< 0.05). Both IGF-1 and K1 had predictive value for MCI (P< 0.05). The area under the curve (AUC) of IGF-1 for predicting MCI was 0.859 (95% CI: 0.790∼0.929), and the AUC of K1 for predicting MCI was 0.793 (95% CI: 0.694∼0.892). The value of joint prediction of the two indicators was the highest, with an AUC of 0.939 (95% CI: 0.896-0.993). CONCLUSION High serum K1 and insulin-like growth factor-1 are the protective factors of cognitive impairment in MCI patients. Both IGF-1 and serum K1 proteins have predictive value for MCI, and the combination of the two indicators has the highest predictive value.
Collapse
|
10
|
Pan Y, Kagawa Y, Sun J, Lucas DSD, Takechi R, Mamo JCL, Wai DCC, Norton RS, Jin L, Nicolazzo JA. Peripheral Administration of the Kv1.3-Blocking Peptide HsTX1[R14A] Improves Cognitive Performance in Senescence Accelerated SAMP8 Mice. Neurotherapeutics 2023; 20:1198-1214. [PMID: 37226029 PMCID: PMC10457257 DOI: 10.1007/s13311-023-01387-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2023] [Indexed: 05/26/2023] Open
Abstract
Increased expression of the voltage-gated potassium channel Kv1.3 in activated microglia, and the subsequent release of pro-inflammatory mediators, are closely associated with the progression of Alzheimer's disease (AD). Studies have shown that reducing neuroinflammation through the non-selective blockade of microglial Kv1.3 has the potential to improve cognitive function in mouse models of familial AD. We have previously demonstrated that a potent and highly-selective peptide blocker of Kv1.3, HsTX1[R14A], not only entered the brain parenchyma after peripheral administration in a lipopolysaccharide (LPS)-induced mouse model of inflammation, but also significantly reduced pro-inflammatory mediator release from activated microglia. In this study, we show that microglial expression of Kv1.3 is increased in senescence accelerated mice (SAMP8), an animal model of sporadic AD, and that subcutaneous dosing of HsTX1[R14A] (1 mg/kg) every other day for 8 weeks provided a robust improvement in cognitive deficits in SAMP8 mice. The effect of HsTX1[R14A] on the whole brain was assessed using transcriptomics, which revealed that the expression of genes associated with inflammation, neuron differentiation, synapse function, learning and memory were altered by HsTX1[R14A] treatment. Further study is required to investigate whether these changes are downstream effects of microglial Kv1.3 blockade or a result of alternative mechanisms, including any potential effect of Kv1.3 blockade on other brain cell types. Nonetheless, these results collectively demonstrate the cognitive benefits of Kv1.3 blockade with HsTX1[R14A] in a mouse model of sporadic AD, demonstrating its potential as a therapeutic candidate for this neurodegenerative disease.
Collapse
Affiliation(s)
- Yijun Pan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Yoshiteru Kagawa
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Department of Organ Anatomy, Graduate School of Medicine, Tohoku University, Sendai, Miyagi, 980-8575, Japan
| | - Jiaqi Sun
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - Deanna S Deveson Lucas
- Monash Bioinformatics Platform, Biomedicine Discovery Institute, Monash University, Clayton, VIC, 3800, Australia
| | - Ryusuke Takechi
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - John C L Mamo
- School of Biomedical Sciences, Curtin University, Bentley, WA, 6102, Australia
- School of Public Health, Curtin University, Bentley, WA, 6102, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Liang Jin
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia.
| | - Joseph A Nicolazzo
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia.
| |
Collapse
|
11
|
Qin C, Yang X, Zhang Y, Deng G, Huang X, Zuo Z, Sun F, Cao Z, Chen Z, Wu Y. Functional Characterization of a New Degradation Peptide BmTX4-P1 from Traditional Chinese Scorpion Medicinal Material. Toxins (Basel) 2023; 15:toxins15050340. [PMID: 37235373 DOI: 10.3390/toxins15050340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/28/2023] Open
Abstract
Thermally processed Buthus martensii Karsch scorpion is an important traditional Chinese medical material that has been widely used to treat various diseases in China for over one thousand years. Our recent work showed that thermally processed Buthus martensii Karsch scorpions contain many degraded peptides; however, the pharmacological activities of these peptides remain to be studied. Here, a new degraded peptide, BmTX4-P1, was identified from processed Buthus martensii Karsch scorpions. Compared with the venom-derived wild-type toxin peptide BmTX4, BmTX4-P1 missed some amino acids at the N-terminal and C-terminal regions, while containing six conserved cysteine residues, which could be used to form disulfide bond-stabilized α-helical and β-sheet motifs. Two methods (chemical synthesis and recombinant expression) were used to obtain the BmTX4-P1 peptide, named sBmTX4-P1 and rBmTX4-P1. Electrophysiological experimental results showed that sBmTX4-P1 and rBmTX4-P1 exhibited similar activities to inhibit the currents of hKv1.2 and hKv1.3 channels. In addition, the experimental electrophysiological results of recombinant mutant peptides of BmTX4-P1 indicated that the two residues of BmTX4-P1 (Lys22 and Tyr31) were the key residues for its potassium channel inhibitory activity. In addition to identifying a new degraded peptide, BmTX4-P1, from traditional Chinese scorpion medicinal material with high inhibitory activities against the hKv1.2 and hKv1.3 channels, this study also provided a useful method to obtain the detailed degraded peptides from processed Buthus martensii Karsch scorpions. Thus, the study laid a solid foundation for further research on the medicinal function of these degraded peptides.
Collapse
Affiliation(s)
- Chenhu Qin
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Xuhua Yang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Yuanyuan Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Gang Deng
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Xin Huang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Zheng Zuo
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Fang Sun
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Zhijian Cao
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| | - Zongyun Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Department of Biochemistry and Molecular Biology, College of Basic Medicine, Hubei University of Medicine, Shiyan 442000, China
| | - Yingliang Wu
- College of Life Sciences, Wuhan University, Wuhan 430072, China
- Center for BioDrug Research, Wuhan University, Wuhan 430072, China
| |
Collapse
|
12
|
Duan Y, Lyu L, Zhan S. Stem Cell Therapy for Alzheimer's Disease: A Scoping Review for 2017-2022. Biomedicines 2023; 11:120. [PMID: 36672626 PMCID: PMC9855936 DOI: 10.3390/biomedicines11010120] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/28/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
Alzheimer's disease (AD) has been a major causal factor for mortality among elders around the world. The treatments for AD, however, are still in the stage of development. Stem cell therapy, compared to drug therapies and many other therapeutic options, has many advantages and is very promising in the future. There are four major types of stem cells used in AD therapy: neural stem cells, mesenchymal stem cells, embryonic stem cells, and induced pluripotent stem cells. All of them have applications in the treatments, either at the (1) cellular level, in an (2) animal model, or at the (3) clinical level. In general, many more types of stem cells were studied on the cellular level and animal model, than the clinical level. We suggest for future studies to increase research on various types of stem cells and include cross-disciplinary research with other diseases. In the future, there could also be improvements in the timeliness of research and individualization for stem cell therapies for AD.
Collapse
Affiliation(s)
- Yunxiao Duan
- Department of Biostatistics, Yale School of Public Health, New Haven, CT 06510, USA
| | - Linshuoshuo Lyu
- Department of Environmental Health Sciences, Yale School of Public Health, New Haven, CT 06510, USA
| | - Siyan Zhan
- Department of Epidemiology and Biostatistics, School of Public Health, Peking University, Beijing 100191, China
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing 100191, China
| |
Collapse
|
13
|
de Almeida MMA, Goodkey K, Voronova A. Regulation of microglia function by neural stem cells. Front Cell Neurosci 2023; 17:1130205. [PMID: 36937181 PMCID: PMC10014810 DOI: 10.3389/fncel.2023.1130205] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 02/13/2023] [Indexed: 03/05/2023] Open
Abstract
Neural stem and precursor cells (NPCs) build and regenerate the central nervous system (CNS) by maintaining their pool (self-renewal) and differentiating into neurons, astrocytes, and oligodendrocytes (multipotency) throughout life. This has inspired research into pro-regenerative therapies that utilize transplantation of exogenous NPCs or recruitment of endogenous adult NPCs for CNS regeneration and repair. Recent advances in single-cell RNA sequencing and other "omics" have revealed that NPCs express not just traditional progenitor-related genes, but also genes involved in immune function. Here, we review how NPCs exert immunomodulatory function by regulating the biology of microglia, immune cells that are present in NPC niches and throughout the CNS. We discuss the role of transplanted and endogenous NPCs in regulating microglia fates, such as survival, proliferation, migration, phagocytosis and activation, in the developing, injured and degenerating CNS. We also provide a literature review on NPC-specific mediators that are responsible for modulating microglia biology. Our review highlights the immunomodulatory properties of NPCs and the significance of these findings in the context of designing pro-regenerative therapies for degenerating and diseased CNS.
Collapse
Affiliation(s)
- Monique M. A. de Almeida
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
| | - Kara Goodkey
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
| | - Anastassia Voronova
- Department of Medical Genetics, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Faculty of Medicine & Dentistry, Neuroscience and Mental Health Institute, Edmonton, AB, Canada
- Women and Children’s Health Research Institute, 5-083 Edmonton Clinic Health Academy, University of Alberta, Edmonton, AB, Canada
- Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
- Multiple Sclerosis Centre and Department of Cell Biology, Faculty of Medicine & Dentistry, Edmonton, AB, Canada
| |
Collapse
|
14
|
Calderon-Rivera A, Loya-Lopez S, Gomez K, Khanna R. Plant and fungi derived analgesic natural products targeting voltage-gated sodium and calcium channels. Channels (Austin) 2022; 16:198-215. [PMID: 36017978 PMCID: PMC9423853 DOI: 10.1080/19336950.2022.2103234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Voltage-gated sodium and calcium channels (VGSCs and VGCCs) play an important role in the modulation of physiologically relevant processes in excitable cells that range from action potential generation to neurotransmission. Once their expression and/or function is altered in disease, specific pharmacological approaches become necessary to mitigate the negative consequences of such dysregulation. Several classes of small molecules have been developed with demonstrated effectiveness on VGSCs and VGCCs; however, off-target effects have also been described, limiting their use and spurring efforts to find more specific and safer molecules to target these channels. There are a great number of plants and herbal preparations that have been empirically used for the treatment of diseases in which VGSCs and VGCCs are involved. Some of these natural products have progressed to clinical trials, while others are under investigation for their action mechanisms on signaling pathways, including channels. In this review, we synthesize information from ~30 compounds derived from natural sources like plants and fungi and delineate their effects on VGSCs and VGCCs in human disease, particularly pain. [Figure: see text].
Collapse
Affiliation(s)
- Aida Calderon-Rivera
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Santiago Loya-Lopez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Kimberly Gomez
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA
| | - Rajesh Khanna
- Department of Molecular Pathobiology, College of Dentistry, New York University, New York, NY, USA,NYU Pain Research Center, New York University, New York, NY, USA,CONTACT Rajesh Khanna
| |
Collapse
|
15
|
Lipopolysaccharide-Induced Model of Neuroinflammation: Mechanisms of Action, Research Application and Future Directions for Its Use. Molecules 2022; 27:molecules27175481. [PMID: 36080253 PMCID: PMC9457753 DOI: 10.3390/molecules27175481] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 08/23/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Despite advances in antimicrobial and anti-inflammatory therapies, inflammation and its consequences still remain a significant problem in medicine. Acute inflammatory responses are responsible for directly life-threating conditions such as septic shock; on the other hand, chronic inflammation can cause degeneration of body tissues leading to severe impairment of their function. Neuroinflammation is defined as an inflammatory response in the central nervous system involving microglia, astrocytes, and cytokines including chemokines. It is considered an important cause of neurodegerative diseases, such as Alzheimer’s disease, Parkinson’s disease and amyotrophic lateral sclerosis. Lipopolysaccharide (LPS) is a strong immunogenic particle present in the outer membrane of Gram-negative bacteria. It is a major triggering factor for the inflammatory cascade in response to a Gram-negative bacteria infection. The use of LPS as a strong pro-inflammatory agent is a well-known model of inflammation applied in both in vivo and in vitro studies. This review offers a summary of the pathogenesis associated with LPS exposure, especially in the field of neuroinflammation. Moreover, we analyzed different in vivo LPS models utilized in the area of neuroscience. This paper presents recent knowledge and is focused on new insights in the LPS experimental model.
Collapse
|