1
|
Ye Z, Chan LLH. Effectiveness of aperiodic retinal stimulation in improving temporal visual cortical response. J Neural Eng 2025; 22:026062. [PMID: 40174610 DOI: 10.1088/1741-2552/adc83c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 04/02/2025] [Indexed: 04/04/2025]
Abstract
Objective.Visual prostheses can provide partial visual function in patients with retinal degenerative diseases. However, in clinical trials, patients implanted with retinal prostheses have reported perceptual fading, which is thought to be related to response desensitization. Additionally, natural stimuli consist of aperiodic events across a short temporal span, whereas periodic stimulation (fixed inter-pulse intervals (IPIs)) is the standard approach in retinal prosthesis research. In this study, we investigated how aperiodic stimulation of the epiretinal surface affects electrically evoked responses in the primary visual cortex (V1) compared with periodic stimulation.Approach. In vivoexperiments were conducted in healthy and retinal-degenerated rats. Periodic stimulation consisted of constant IPIs, whereas aperiodic stimulation was provided by mixed IPIs. We calculated the spike time tiling coefficient to assess response consistency across trials, the significant response ratio, and the spike rate to analyze response desensitization.Main results.The results showed a significantly lower consistency of cortical responses in retinal degenerated rats than in healthy rats at 5 Hz. The consistency of the response to periodic stimulation decreased considerably as the frequency was increased to 10 Hz and 20 Hz in both groups and was greatly improved by applying aperiodic stimulation. In addition, aperiodic stimulation evoked a significantly higher spike rate in response to continuous stimulation at high frequencies (e.g. 10 and 20 Hz).Significance. By applying electrical stimulation with varying IPIs directly on the epiretinal surface, we observed promising results in terms of enhancing cortical response consistency and reducing desensitization. This finding presents a potential approach to enhance the effectiveness of retinal prostheses.
Collapse
Affiliation(s)
- Zixin Ye
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| | - Leanne Lai Hang Chan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong Special Administrative Region of China, People's Republic of China
| |
Collapse
|
2
|
Hou Y, Pullela L, Su J, Aluru S, Sista S, Lu X, Beyeler M. Predicting the Temporal Dynamics of Prosthetic Vision. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039044 DOI: 10.1109/embc53108.2024.10782668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Retinal implants are a promising treatment option for degenerative retinal disease. While numerous models have been developed to simulate the appearance of elicited visual percepts ("phosphenes"), these models often either focus solely on spatial characteristics or inadequately capture the complex temporal dynamics observed in clinical trials, which vary heavily across implant technologies, subjects, and stimulus conditions. Here we introduce two computational models designed to accurately predict phosphene fading and persistence under varying stimulus conditions, cross-validated on behavioral data reported by nine users of the Argus II Retinal Prosthesis System. Both models segment the time course of phosphene perception into discrete intervals, decomposing phosphene fading and persistence into either sinusoidal or exponential components. Our spectral model demonstrates state-of-the-art predictions of phosphene intensity over time (r = 0.7 across all participants). Overall, this study lays the groundwork for enhancing prosthetic vision by improving our understanding of phosphene temporal dynamics.
Collapse
|
3
|
Chang L, Ran Y, Yang M, Auferkorte O, Butz E, Hüser L, Haverkamp S, Euler T, Schubert T. Spike desensitisation as a mechanism for high-contrast selectivity in retinal ganglion cells. Front Cell Neurosci 2024; 17:1337768. [PMID: 38269116 PMCID: PMC10806099 DOI: 10.3389/fncel.2023.1337768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 12/19/2023] [Indexed: 01/26/2024] Open
Abstract
In the vertebrate retina, several dozens of parallel channels relay information about the visual world to the brain. These channels are represented by the different types of retinal ganglion cells (RGCs), whose responses are rendered selective for distinct sets of visual features by various mechanisms. These mechanisms can be roughly grouped into synaptic interactions and cell-intrinsic mechanisms, with the latter including dendritic morphology as well as ion channel complement and distribution. Here, we investigate how strongly ion channel complement can shape RGC output by comparing two mouse RGC types, the well-described ON alpha cell and a little-studied ON cell that is EGFP-labelled in the Igfbp5 mouse line and displays an unusual selectivity for stimuli with high contrast. Using patch-clamp recordings and computational modelling, we show that a higher activation threshold and a pronounced slow inactivation of the voltage-gated Na+ channels contribute to the distinct contrast tuning and transient responses in ON Igfbp5 RGCs, respectively. In contrast, such a mechanism could not be observed in ON alpha cells. This study provides an example for the powerful role that the last stage of retinal processing can play in shaping RGC responses.
Collapse
Affiliation(s)
- Le Chang
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | - Yanli Ran
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, and Institute of Physiology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Mingpo Yang
- Key Laboratory of Primate Neurobiology, Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, China
| | | | - Elisabeth Butz
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Laura Hüser
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
| | - Silke Haverkamp
- Max-Planck-Institute for Brain Research, Frankfurt am Main, Germany
- Department of Computational Neuroethology, Max Planck Institute for Neurobiology of Behavior – Caesar, Bonn, Germany
| | - Thomas Euler
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Timm Schubert
- Institute for Ophthalmic Research, University of Tübingen, Tübingen, Germany
- Werner Reichardt Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| |
Collapse
|
4
|
Vėbraitė I, Bar-Haim C, David-Pur M, Hanein Y. Bi-directional electrical recording and stimulation of the intact retina with a screen-printed soft probe: a feasibility study. Front Neurosci 2024; 17:1288069. [PMID: 38264499 PMCID: PMC10804455 DOI: 10.3389/fnins.2023.1288069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Accepted: 12/14/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Electrophysiological investigations of intact neural circuits are challenged by the gentle and complex nature of neural tissues. Bi-directional electrophysiological interfacing with the retina, in its intact form, is particularly demanding and currently there is no feasible approach to achieve such investigations. Here we present a feasibility study of a novel soft multi-electrode array suitable for bi-directional electrophysiological study of the intact retina. Methods Screen-printed soft electrode arrays were developed and tested. The soft probes were designed to accommodate the curvature of the retina in the eye and offer an opportunity to study the retina in its intact form. Results For the first time, we show both electrical recording and stimulation capabilities from the intact retina. In particular, we demonstrate the ability to characterize retina responses to electrical stimulation and reveal stable, direct, and indirect responses compared with ex-vivo conditions. Discussion These results demonstrate the unique performances of the new probe while also suggesting that intact retinas retain better stability and robustness than ex-vivo retinas making them more suitable for characterizing retina responses to electrical stimulation.
Collapse
Affiliation(s)
- Ieva Vėbraitė
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Chen Bar-Haim
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Moshe David-Pur
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yael Hanein
- School of Electrical Engineering, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
5
|
Peiroten L, Zrenner E, Haq W. Artificial Vision: The High-Frequency Electrical Stimulation of the Blind Mouse Retina Decay Spike Generation and Electrogenically Clamped Intracellular Ca 2+ at Elevated Levels. Bioengineering (Basel) 2023; 10:1208. [PMID: 37892938 PMCID: PMC10604554 DOI: 10.3390/bioengineering10101208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
BACKGROUND The electrical stimulation (stim) of retinal neurons enables blind patients to experience limited artificial vision. A rapid response outage of the stimulated ganglion cells (GCs) allows for a low visual sensation rate. Hence, to elucidate the underlying mechanism, we investigated different stim parameters and the role of the neuromodulator calcium (Ca2+). METHODS Subretinal stim was applied on retinal explants (blind rd1 mouse) using multielectrode arrays (MEAs) or single metal electrodes, and the GC activity was recorded using Ca2+ imaging or MEA, respectively. Stim parameters, including voltage, phase polarity, and frequency, were investigated using specific blockers. RESULTS At lower stim frequencies (<5 Hz), GCs responded synaptically according to the stim pulses (stim: biphasic, cathodic-first, -1.6/+1.5 V). In contrast, higher stim frequencies (≥5 Hz) also activated GCs directly and induced a rapid GC spike response outage (<500 ms, MEA recordings), while in Ca2+ imaging at the same frequencies, increased intracellular Ca2+ levels were observed. CONCLUSIONS Our study elucidated the mechanisms involved in stim-dependent GC spike response outage: sustained high-frequency stim-induced spike outage, accompanied by electrogenically clamped intracellular Ca2+ levels at elevated levels. These findings will guide future studies optimizing stim paradigms for electrical implant applications for interfacing neurons.
Collapse
Affiliation(s)
| | | | - Wadood Haq
- Neuroretinal Electrophysiology and Imaging, Institute for Ophthalmic Research, Eberhard-Karls-Universität Tübingen, 72076 Tübingen, Germany; (L.P.)
| |
Collapse
|
6
|
Asghar SA, Mahadevappa M. Integrating Finite Element Method for Multiscale Modeling and Simulation of Retinal Ganglion Cell Stimulation Strategies. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38082879 DOI: 10.1109/embc40787.2023.10340593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The finite element method (FEM) has become an increasingly popular tool for the computational modeling of multiscale biological systems, including the electrode-tissue interface and the behavior of individual neural cells. However, a significant challenge in these studies is integrating multiple levels of complexity, each with its biophysical properties. This paper presents a single platform solution for modeling these multiscale systems using the finite element method. The proposed method combines different finite element formulations tailored to the specific biophysical properties of each scale into a single unified simulation platform. The results of this method are compared to experimental data to demonstrate the accuracy and efficacy of the proposed approach. With the goal of eliciting the most significant possible response from the retinal ganglion cell's (RGC) multiple components, we devised an electrical stimulation strategy and electrode placement setup that took into account both the RGC's horizontal and vertical location. We found that the activity in a single RGC model could be elicited by a cathodic pulse of amplitude 34 µA. We observed that the optimum electrode placement for a neural response is around the initial axon segment, 30 μm from the soma, and 10 μm above the RGC. Our results show that the proposed method can accurately capture the complex behavior of these multiscale systems and provide a valuable tool for further research in retinal prostheses.Clinical Relevance- To develop efficient electrical stimulation schemes for retinal prosthesis applications, this research can shed light on the behavior of the electrode-tissue interface and individual neural cells. Electrical stimulation of RGCs has shown promise in the application of retinal prostheses. Still, a thorough understanding of the electrode-induced electric field is essential for the design of effective and safe stimulation protocols. Electrical stimulation's side effects may require knowledge of multiple physics disciplines (such as thermal or structural deformation owing to implant placement inside the eye). Finding a solution to diseases that cause vision impairment could be aided by a finite element method (FEM) framework that simulates the neuronal response to extracellular electrical stimulation for realistic 3D cell and electrode geometries.
Collapse
|
7
|
Kwan WC, Brunton EK, Begeng JM, Richardson RT, Ibbotson MR, Tong W. Timing is Everything: Stochastic Optogenetic Stimulation Reduces Adaptation in Retinal Ganglion Cells. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083106 DOI: 10.1109/embc40787.2023.10340849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Optogenetics gives us unprecedented power to investigate brain connectivity. The ability to activate neural circuits with single cell resolution and its ease of application has provided a wealth of knowledge in brain function. More recently, optogenetics has shown tremendous utility in prosthetics applications, including vision restoration for patients with retinitis pigmentosa. One of the disadvantages of optogenetics, however, is its poor temporal bandwidth, i.e. the cell's inability to fire at a rate that matches the optical stimulation rate at high frequencies (>30 Hz). This research proposes a new strategy to overcome the temporal limits of optogenetic stimulation. Using whole-cell current clamp recordings in mouse retinal ganglion cells expressing channelrhodopsin-2 (H134R variant), we observed that randomizing inter-pulse intervals can significantly increase a retinal ganglion cell's temporal response to high frequency stimulation.Clinical Relevance- A significant disadvantage of optogenetic stimulation is its poor temporal dynamics which prohibit its widespread use in retinal prosthetics. We have shown that randomizing the interval between stimulation pulses reduces adaptation in retinal ganglion cells. This stimulation strategy may contribute to new levels of functional restoration in therapeutics which incorporate optogenetics.
Collapse
|