1
|
Wu Q, Lin D, Wen X, Wang S, Fisher D, Fu W, Yuan J. Acupuncture effects on emotional reactivity of youth with self-reported depressive symptoms. PSYCHORADIOLOGY 2025; 5:kkaf006. [PMID: 40255324 PMCID: PMC12006798 DOI: 10.1093/psyrad/kkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/25/2025] [Accepted: 04/03/2025] [Indexed: 04/22/2025]
Abstract
Background Emotional symptomatology is a hallmark of depression. Antidepressant often fail to effectively target emotional blunting, while acupuncture, by contrast, has emerged as a promising alternative. However, the exact electrophysiologic mechanisms remain unclear. This study aimed to investigate how acupuncture influences emotional reactivity in youth with self-reported depressive symptoms. Methods A modified oddball paradigm incorporating a negative emotional valence deviant, combined with event-related potential analysis, was used to measure emotional reactivity before and after intervention. Seventy individuals exhibiting depressive symptoms in the previous 2 weeks, were randomly assigned to either a verum or sham acupuncture group. Electroencephalogram data from 59 participants were analyzed following preprocessing and quality assessment. Occipital P1, N170, frontal N1, N2, and parietal P3 components were extracted. The Positive and Negative Affect Schedule (PANAS) was completed after each oddball session. The Massachusetts General Hospital Acupuncture Sensation Scale (MASS) was completed after each intervention session. Results The MASS Index was significantly higher in the verum group. However, significant increases in occipital P1, N170, frontal N1, N2, and parietal P3 amplitudes for high-negative, mild-negative, and neutral pictures were observed after the intervention in both the verum and sham groups, with no significant difference between the groups. Additionally, both groups induced PANAS changes, and positive effect changes were significantly correlated with N170 and P1 (in response to high-negative pictures) changes in the sham group. Conclusion Acupuncture altered emotional reactivity in youth with depressive symptoms, highlighting its potential role, albeit possibly non-specific, in depression prevention and treatment.
Collapse
Affiliation(s)
- Qian Wu
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510030, China
| | - Dehui Lin
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510030, China
| | - Xiuyun Wen
- School of Health Science, Guangdong Pharmaceutical University, Guangzhou 51006, China
| | - Shanze Wang
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510030, China
| | - Derek Fisher
- Department of Psychology, Mount Saint Vincent University, Halifax, Nova Scotia B3M 2J6, Canada
| | - Wenbin Fu
- Department of Acupuncture and Moxibustion, The Second Affiliated hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510030, China
- Innovative Research Team of Acupuncture for Depression and Related Disorders, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine), Guangzhou 510030, China
| | - Jiajin Yuan
- Sichuan Key Laboratory of Psychology and Behavior of Discipline Inspection and Supervision, Institute of Brain and Psychological Sciences, Sichuan Normal University, Chengdu 610066, China
| |
Collapse
|
2
|
Li Y, Zhang B, Liu J, Wang R. Neural energy coding patterns of dopaminergic neural microcircuit and its impairment in major depressive disorder: A computational study. PLoS Comput Biol 2025; 21:e1012961. [PMID: 40193386 PMCID: PMC12002636 DOI: 10.1371/journal.pcbi.1012961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 04/16/2025] [Accepted: 03/13/2025] [Indexed: 04/09/2025] Open
Abstract
Numerous experiments have found that the behavioral characteristics of major depressive disorder (MDD) animals are usually associated with abnormal neural activity patterns and brain energy metabolism. However, the relationship among the behavioral characteristics, neural activity patterns and brain energy metabolism remains unknown. In this paper, we computationally investigated this relationship, with a particular focus on how neural energy coding patterns change in MDD brains, in the VTA-NAc-mPFC dopaminergic pathway of the reward system based on our biological neural network model and neural energy calculation model. Interestingly, our results suggested that the neural energy consumption of the whole VTA-NAc-mPFC microcircuit in MDD group was significantly reduced, which was mainly attributed to the decreasing neural energy consumption in the mPFC region. This observation theoretically supported the view of low-level energy consumption in MDD. We also investigated the neural energy consumption patterns of various neuronal types in our VTA-NAc-mPFC microcircuit under the influence of different dopamine concentrations, and found that there were some specific impairments in MDD, which provided some potential biomarkers for MDD diagnosis. More specifically, we found that the actual neural energy consumption of medium spiny neurons (MSNs) in the NAc region was increased in the MDD group, whereas pyramidal neurons in the mPFC region exhibited higher actual neural energy consumption in the NC group. Additionally, in both neuron types, the actual neural energy required to generate an action potential was higher in the MDD group, suggesting that, given the same energy budget, these neurons in the MDD group tended to generate fewer action potentials. To further explore the relationship between neural coding patterns and neural energy coding patterns in the VTA-NAc-mPFC microcircuit, we in addition calculated P-V correlation for each neuronal type, defined as the Pearson's correlation coefficient between membrane potential and neural power. The results showed that the membrane potential and neural power were not perfectly correlated (P-V correlations ranged from 0.6 to 0.9), and dopamine concentration inputs affected the P-V correlations of the MSN, pyramidal neurons and CB interneurons in the mPFC region. These findings suggested that the joint application of the neural coding theory and neural energy coding theory will be superior to the application of any single theory, and this joint application could help discover new mechanisms in neurocircuits of MDD. Overall, our study not only uncovered the neural energy coding patterns for the VTA-NAc-mPFC neural microcircuit, but also presented a novel pipeline for the study of MDD based on the neural coding theory and neural energy coding theory.
Collapse
Affiliation(s)
- Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China
| | - Bing Zhang
- Department of Anesthesiology, Obstetrics and Gynecology Hospital of Fudan University, Fudan University, Shanghai, China
- Department of Anesthesiology, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Clinical and Translational Research Center, Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jinqi Liu
- University of Rochester, Rochester, New York, United States of America
| | - Rubin Wang
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China
| |
Collapse
|
3
|
Wallace CW, Slinkard CY, Shaughnessy R, Holleran KM, Centanni SW, Lapish CC, Jones SR. Fiber photometry analysis of spontaneous dopamine signals: The z-scored data are not the data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.19.639080. [PMID: 40060421 PMCID: PMC11888193 DOI: 10.1101/2025.02.19.639080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/17/2025]
Abstract
Fluorescent sensors have revolutionized the measurement of molecules in the brain, and the dLight dopamine sensor has been used extensively to examine reward- and cue-evoked dopamine release, but only recently has the field turned its attention to spontaneous release events. Analysis of spontaneous events typically requires evaluation of hundreds of events over minutes to hours, and the most common method of analysis, z-scoring, was not designed for this purpose. Here, we compare the accuracy and reliability of three different analysis methods to identify pharmacologically induced changes in dopamine release and uptake in freely moving C57BL/6J mice. The D1-like receptor antagonist SCH23390 was used to prevent dLight sensors from interacting with dopamine in the extracellular space, while cocaine was used to inhibit uptake and raclopride to increase release of dopamine in the nucleus accumbens. We examined peak-to-peak frequency, peak amplitude, and width, the time spent above an established cutoff. The three methods were 1) the widely-used "Z-Score Method", which automatically smooths baseline drift and normalizes recordings using signal-to-noise ratios, 2) a "Manual Method", in which local baselines were adjusted manually and individual cutoffs were determined for each subject, and 3) the "Prominence Method" that combines z-scoring with prominence assessment to tag individual peaks, then returns to the preprocessed data for kinetic analysis. First, SCH23390 drastically reduced the number of signals detected as expected, but only when the Manual Method was used. Z-scoring failed to identify any changes, due to its amplification of noise when signals were diminished. Cocaine increased signal width as expected using the Manual and Prominence Methods, but not the Z-Score Method. Finally, raclopride-induced increases in amplitude were correctly identified by the Manual and Prominence Methods. The Z-Score Method failed to identify any of the changes in dopamine release and uptake kinetics. Thus, analysis of spontaneous dopamine signals requires assessment of the %ΔF/F values, ideally using the Manual Method, and the use of z-scoring is not appropriate.
Collapse
Affiliation(s)
- Conner W Wallace
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Clare Y Slinkard
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | | | - Katherine M Holleran
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Samuel W Centanni
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| | - Christopher C Lapish
- Department of Anatomy, Cell Biology, and Physiology, Indiana University School of Medicine, Indianapolis, IN
| | - Sara R Jones
- Department of Translational Neuroscience, Wake Forest University School of Medicine, Winston-Salem, NC
| |
Collapse
|
4
|
Chen Z, Duan S, Li J, Su J, Lei H. T-2 toxin triggers depression-like behaviors via upregulation of dopamine transporter in nucleus accumbens of male mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117392. [PMID: 39616663 DOI: 10.1016/j.ecoenv.2024.117392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/20/2024] [Indexed: 01/26/2025]
Abstract
The T-2 toxin is a frequent contaminant in the global environment and agricultural production. Existing evidence suggests that the ingested T-2 toxin can enter the brain and exhibit neurotoxicity. However, it is still unknown whether T-2 toxin causes the depression-like behaviors. In this study, the mice were orally administrated with 1.5 mg/kg T-2 toxin daily for 14 d, and the depression-like behaviors were assessed by the tail suspension test (TST) and sucrose preference test (SPT). Here, the results showed that T-2 toxin exposure induced depression-like behaviors, manifested as behavioral despair and anhedonia, without anxiety-like behaviors. In addition, the reduced dopamine (DA) level and elevated dopamine transporter (DAT) level were found in reward center nucleus accumbens (NAc) receiving DAergic projection from ventral tegmental area (VTA) in brain after T-2 toxin administration, while there was no significant alteration in DA synthesis-related tyrosine hydroxylase (TH) and aromatic L-amino acid decarboxylase (AADC) in VTA and DA storage-related vesicle monoamine transporter 2 (VMAT2) in NAc. The local administration of DAT inhibitor AHN 1-055 hydrochloride into NAc alleviated T-2 toxin caused the depression-like behaviors. Importantly, the chemogenetic activation of the VTADA-NAc circuit increased the DA content in NAc and reversed the T-2 toxin-produced behavioral despair and anhedonia. Thus, our study for the first time illustrates DA dysregulation by upregulated DAT in NAc mediates T-2 toxin-triggered depression-like symptoms in mice. Meanwhile, this study establishes a novel causal relation between the neurotoxicant T-2 toxin exposure and the etiology of depression-like behaviors, and provides reference for the prevention and treatment for mycotoxin-induced depression-like symptoms.
Collapse
Affiliation(s)
- Zhigang Chen
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Shaoyi Duan
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jialu Li
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Jianming Su
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China
| | - Hongyu Lei
- College of Veterinary Medicine, Hunan Agricultural University, Changsha 410125, China.
| |
Collapse
|
5
|
Wang L, Wang S, Mo W, Li Y, Yang Q, Tian Y, Zheng C, Yang J, Ming D. Ultrasound Stimulation Attenuates CRS-Induced Depressive Behavior by Modulating Dopamine Release in the Prefrontal Cortex. IEEE Trans Neural Syst Rehabil Eng 2024; 32:1314-1323. [PMID: 38498742 DOI: 10.1109/tnsre.2024.3378976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Depression is one of the most serious mental disorders affecting modern human life and is often caused by chronic stress. Dopamine system dysfunction is proposed to contribute to the pathophysiology of chronic stress, especially the ventral tegmental area (VTA) which mainly consists of dopaminergic neurons. Focused ultrasound stimulation (FUS) is a promising neuromodulation modality and multiple studies have demonstrated effective ultrasonic activation of cortical, subcortical, and related networks. However, the effects of FUS on the dopamine system and the potential link to chronic stress-induced depressive behaviors are relatively unknown. Here, we measured the effects of FUS targeting VTA on the improvement of depression-like behavior and evaluated the dopamine concentration in the downstream region - medial prefrontal cortex (mPFC). We found that targeting VTA FUS treatment alleviated chronic restraint stress (CRS) -induced anhedonia and despair behavior. Using an in vivo photometry approach, we analyzed the dopamine signal of mPFC and revealed a significant increase following the FUS, positively associated with the improvement of anhedonia behavior. FUS also protected the dopaminergic neurons in VTA from the damage caused by CRS exposure. Thus, these results demonstrated that targeting VTA FUS treatment significantly rescued the depressive-like behavior and declined dopamine level of mPFC induced by CRS. These beneficial effects of FUS might be due to protection in the DA neuron of VTA. Our findings suggest that FUS treatment could serve as a new therapeutic strategy for the treatment of stress-related disorders.
Collapse
|
6
|
Bahmani M, Mehrtabar S, Jafarizadeh A, Zoghi S, Heravi FS, Abbasi A, Sanaie S, Rahnemayan S, Leylabadlo HE. The Gut Microbiota and Major Depressive Disorder: Current Understanding and Novel Therapeutic Strategies. Curr Pharm Biotechnol 2024; 25:2089-2107. [PMID: 38288791 DOI: 10.2174/0113892010281892240116081031] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 09/10/2024]
Abstract
Major depressive disorder (MDD) is a common neuropsychiatric challenge that primarily targets young females. MDD as a global disorder has a multifactorial etiology related to the environment and genetic background. A balanced gut microbiota is one of the most important environmental factors involved in human physiological health. The interaction of gut microbiota components and metabolic products with the hypothalamic-pituitary-adrenal system and immune mediators can reverse depression phenotypes in vulnerable individuals. Therefore, abnormalities in the quantitative and qualitative structure of the gut microbiota may lead to the progression of MDD. In this review, we have presented an overview of the bidirectional relationship between gut microbiota and MDD, and the effect of pre-treatments and microbiomebased approaches, such as probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and a new generation of microbial alternatives, on the improvement of unstable clinical conditions caused by MDD.
Collapse
Affiliation(s)
- Mohaddeseh Bahmani
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saba Mehrtabar
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Jafarizadeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Zoghi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Amin Abbasi
- Liver and Gastrointestinal Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sarvin Sanaie
- Research Center for Integrative Medicine in Aging, Aging Research Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sama Rahnemayan
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | |
Collapse
|
7
|
Li Y, Zhang B, Liu Z, Wang R. Neural energy computations based on Hodgkin-Huxley models bridge abnormal neuronal activities and energy consumption patterns of major depressive disorder. Comput Biol Med 2023; 166:107500. [PMID: 37797488 DOI: 10.1016/j.compbiomed.2023.107500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/07/2023] [Accepted: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Limited by the current experimental techniques and neurodynamical models, the dysregulation mechanisms of decision-making related neural circuits in major depressive disorder (MDD) are still not clear. In this paper, we proposed a neural coding methodology using energy to further investigate it, which has been proven to strongly complement the neurodynamical methodology. We augmented the previous neural energy calculation method, and applied it to our VTA-NAc-mPFC neurodynamical H-H models. We particularly focused on the peak power and energy consumption of abnormal ion channel (ionic) currents under different concentrations of dopamine input, and investigated the abnormal energy consumption patterns for the MDD group. The results revealed that the energy consumption of medium spiny neurons (MSNs) in the NAc region were lower in the MDD group than that of the normal control group despite having the same firing frequencies, peak action potentials, and average membrane potentials in both groups. Dopamine concentration was also positively correlated with the energy consumption of the pyramidal neurons, but the patterns of different interneuron types were distinct. Additionally, the ratio of mPFC's energy consumption to total energy consumption of the whole network in MDD group was lower than that in normal control group, revealing that the mPFC region in MDD group encoded less neural information, which matched the energy consumption patterns of BOLD-fMRI results. It was also in line with the behavioral characteristics that MDD patients demonstrated in the form of reward insensitivity during decision-making tasks. In conclusion, the model in this paper was the first neural network energy computational model for MDD, which showed success in explaining its dynamical mechanisms with an energy consumption perspective. To build on this, we demonstrated that energy consumption levels can be used as a potential indicator for MDD, which also showed a promising pipeline to use an energy methodology for studying other neuropsychiatric disorders.
Collapse
Affiliation(s)
- Yuanxi Li
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China; Department of Neurology, David Geffen School of Medicine, University of California-Los Angeles, Los Angeles, CA, USA.
| | - Bing Zhang
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Zhiqiang Liu
- Shanghai First Maternity and Infant Hospital, Tongji University School of Medicine, Shanghai, China; Anesthesia and Brain Function Research Institute, Tongji University School of Medicine, Shanghai, China.
| | - Rubin Wang
- Institute for Cognitive Neurodynamics, School of Mathematics, East China University of Science and Technology, Shanghai, China.
| |
Collapse
|
8
|
Stanca S, Rossetti M, Bongioanni P. The Cerebellum's Role in Affective Disorders: The Onset of Its Social Dimension. Metabolites 2023; 13:1113. [PMID: 37999209 PMCID: PMC10672979 DOI: 10.3390/metabo13111113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 11/25/2023] Open
Abstract
Major Depressive Disorder (MDD) and Bipolar Disorder (BD) are the most frequent mental disorders whose indeterminate etiopathogenesis spurs to explore new aetiologic scenarios. In light of the neuropsychiatric symptoms characterizing Cerebellar Cognitive Affective Syndrome (CCAS), the objective of this narrative review is to analyze the involvement of the cerebellum (Cbm) in the onset of these conditions. It aims at detecting the repercussions of the Cbm activities on mood disorders based on its functional subdivision in vestibulocerebellum (vCbm), pontocerebellum (pCbm) and spinocerebellum (sCbm). Despite the Cbm having been, for decades, associated with somato-motor functions, the described intercellular pathways, without forgiving the molecular impairment and the alteration in the volumetric relationships, make the Cbm a new important therapeutic target for MDD and BD. Given that numerous studies have showed its activation during mnestic activities and socio-emotional events, this review highlights in the Cbm, in which the altered external space perception (vCbm) is strictly linked to the cognitive-limbic Cbm (pCbm and sCbm), a crucial role in the MDD and BD pathogenesis. Finally, by the analysis of the cerebellar activity, this study aims at underlying not only the Cbm involvement in affective disorders, but also its role in social relationship building.
Collapse
Affiliation(s)
- Stefano Stanca
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Martina Rossetti
- Department of Surgical, Medical, Molecular Pathology and Critical Area, University of Pisa, Via Savi 10, 56126 Pisa, Italy
- NeuroCare Onlus, 56100 Pisa, Italy
| | - Paolo Bongioanni
- NeuroCare Onlus, 56100 Pisa, Italy
- Medical Specialties Department, Azienda Ospedaliero-Universitaria Pisana, 56100 Pisa, Italy
| |
Collapse
|
9
|
Jiang Y, Zou M, Wang Y, Wang Y. Nucleus accumbens in the pathogenesis of major depressive disorder: A brief review. Brain Res Bull 2023; 196:68-75. [PMID: 36889362 DOI: 10.1016/j.brainresbull.2023.03.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Accepted: 03/05/2023] [Indexed: 03/08/2023]
Abstract
Major depressive disorder (MDD) is the most prevalent mental disorder characterized by anhedonia, loss of motivation, avolition, behavioral despair and cognitive abnormalities. Despite substantial advancements in the pathophysiology of MDD in recent years, the pathogenesis of this disorder is not fully understood. Meanwhile,the treatment of MDD with currently available antidepressants is inadequate, highlighting the urgent need for clarifying the pathophysiology of MDD and developing novel therapeutics. Extensive studies have demonstrated the involvement of nuclei such as the prefrontal cortex (PFC), hippocampus (HIP), nucleus accumbens (NAc), hypothalamus, etc., in MDD. NAc,a region critical for reward and motivation,dysregulation of its activity seems to be a hallmark of this mood disorder. In this paper, we present a review of NAc related circuits, cellular and molecular mechanisms underlying MDD and share an analysis of the gaps in current research and possible future research directions.
Collapse
Affiliation(s)
- Yajie Jiang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Manshu Zou
- Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China
| | - Yeqing Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, Hunan Provincial Key Laboratory of Animal Intestinal Function and Regulation, Laboratory of Animal Nutrition and Human Health, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | - Yuhong Wang
- Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, China; Hunan Key Laboratory of Traditional Chinese Medicine Prevention & Treatment of Depressive Diseases, Changsha, China.
| |
Collapse
|
10
|
Matcha Tea Powder's Antidepressant-like Effect through the Activation of the Dopaminergic System in Mice Is Dependent on Social Isolation Stress. Nutrients 2023; 15:nu15030581. [PMID: 36771286 PMCID: PMC9921318 DOI: 10.3390/nu15030581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/02/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Matcha tea powder is believed to have various physiological benefits; however, its detailed mechanism of action has been poorly understood. Here, we investigated whether the mental state of mice, due to social isolation stress, affects the antidepressant-like effect of Matcha tea powder by using the tail suspension test. Oral administration of Matcha tea powder reduced the duration of immobility in the stress-susceptible C57BL/6J strain, but not in BALB/c strain. In C57BL/6J mice, SCH23390, a dopamine D1 receptor blocker, prevented Matcha tea powder from exerting its antidepressant-like effect. Matcha tea powder also increased the number of c-Fos-positive cells in the prefrontal cortex (PFC) region and the nucleus accumbens (NAc) region in C57BL/6J mice, but not in BALB/c mice. In contrast, Matcha tea powder did not change the number of c-Fos-positive cells in the ventral tegmental area (VTA) region. Notably, C57BL/6J mice with a shorter immobility time had a higher number of c-Fos-positive cells in the PFC, NAc, and VTA regions. However, no such correlation was observed in the stress-tolerant BALB/c mice. These results suggest that Matcha tea powder exerts an antidepressant-like effect through the activation of the dopaminergic system including the PFC-NAc-VTA circuit and that mental states are important factors affecting the physiological benefits of Matcha tea powder.
Collapse
|
11
|
Liu Y, Song N, Yao H, Jiang S, Wang Y, Zheng Y, Zhou Y, Ding J, Hu G, Lu M. β-Arrestin2-biased Drd2 agonist UNC9995 alleviates astrocyte inflammatory injury via interaction between β-arrestin2 and STAT3 in mouse model of depression. J Neuroinflammation 2022; 19:240. [PMID: 36183107 PMCID: PMC9526944 DOI: 10.1186/s12974-022-02597-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 09/13/2022] [Indexed: 12/17/2022] Open
Abstract
Background Major depressive disorder (MDD) is a prevalent and devastating psychiatric illness. Unfortunately, the current therapeutic practice, generally depending on the serotonergic system for drug treatment is unsatisfactory and shows intractable side effects. Multiple evidence suggests that dopamine (DA) and dopaminergic signals associated with neuroinflammation are highly involved in the pathophysiology of depression as well as in the mechanism of antidepressant drugs, which is still in the early stage of study and well worthy of investigation. Methods We established two chronic stress models, including chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), to complementarily recapitulate depression-like behaviors. Then, hippocampal tissues were used to detect inflammation-related molecules and signaling pathways. Pathological changes in depressive mouse hippocampal astrocytes were examined by RNA sequencing. After confirming the dopamine receptor 2 (Drd2)/β-arrestin2 signaling changes in the depressive mice brain, we then established the depressive mouse model using the β-arrestin2 knockout mice or administrating the β-arrestin2-biased Drd2 agonist to investigate the roles. Label-free mass spectrometry was used to identify the β-arrestin2-binding proteins as the underlying mechanisms. We modeled neuroinflammation with interleukin-6 (IL-6) and corticosterone treatment and characterized astrocytes using multiple methods including cell viability assay, flow cytometry, and confocal immunofluorescence. Results Drd2-biased β-arrestin2 pathway is significantly changed in the progression of depression, and genetic deletion of β-arrestin2 aggravates neuroinflammation and depressive-like phenotypes. Mechanistically, astrocytic β-arrestin2 retains STAT3 in the cytoplasm by structural combination with STAT3, therefore, inhibiting the JAK–STAT3 pathway-mediated inflammatory activation. Furtherly, pharmacological activation of Drd2/β-arrestin2 pathway by UNC9995 abolishes the inflammation-induced loss of astrocytes and ameliorates depressive-like behaviors in mouse model for depression. Conclusions Drd2/β-arrestin2 pathway is a potential therapeutic target for depression and β-arrestin2-biased Drd2 agonist UNC9995 is identified as a potential anti-depressant strategy for preventing astrocytic dysfunctions and relieving neuropathological manifestations in mouse model for depression, which provides insights for the therapy of depression. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02597-6.
Collapse
Affiliation(s)
- Yang Liu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Nanshan Song
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Hang Yao
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Siyuan Jiang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Yueping Wang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Ying Zheng
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China
| | - Yuanzhang Zhou
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China
| | - Gang Hu
- Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, 210023, China. .,Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China.
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, 101 Longmian Avenue, Nanjing, 211166, Jiangsu, China. .,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|