1
|
Elder NH, Majd A, Bulger EA, Samuel RM, Zholudeva LV, McDevitt TC, Fattahi F. Distinct differentiation trajectories leave lasting impacts on gene regulation and function of V2a interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.03.626573. [PMID: 39677634 PMCID: PMC11642877 DOI: 10.1101/2024.12.03.626573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
During development, early regionalization segregates lineages and directs diverse cell fates. Sometimes, however, distinct progenitors produce analogous cell types. For example, V2a neurons, are excitatory interneurons that emerge from different anteroposterior progenitors. V2a neurons demonstrate remarkable plasticity after spinal cord injury and improve motor function, showing potential for cell therapy. To examine how lineage origins shape their properties, we differentiated V2a neurons from hPSC-derived progenitors with distinct anteroposterior identities. Single-nucleus multiomic analysis revealed lineage-specific transcription factor motifs and numerous differentially expressed genes related to axon growth and calcium handling. Bypassing lineage patterning via transcription factor-induced differentiation yielded neurons distinct from both developmentally relevant populations and human tissue, emphasizing the need to follow developmental steps to generate authentic cell identities. Using in silico and in vitro loss-of-function analyses, we identified CREB5 and TCF7L2 as regulators specific to posterior identities, underscoring the critical role of lieage origins in determining cell states and functions.
Collapse
Affiliation(s)
- Nicholas H. Elder
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
| | - Alireza Majd
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Emily A. Bulger
- Developmental and Stem Cell Biology Graduate Program, University of California, San Francisco, CA 94158, USA
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Current address: Genentech, South San Francisco, California 94080 USA
| | - Ryan M. Samuel
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
| | - Lyandysha V. Zholudeva
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
| | - Todd C. McDevitt
- Gladstone Institute of Cardiovascular Disease, Gladstone Institutes, San Francisco, CA 94158, USA
- Current address: Genentech, South San Francisco, California 94080 USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Faranak Fattahi
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, 94143, USA
- Program in Craniofacial Biology, University of California, San Francisco, San Francisco, CA 94110, USA
| |
Collapse
|
2
|
Xiao W, Li P, Kong F, Kong J, Pan A, Long L, Yan X, Xiao B, Gong J, Wan L. Unraveling the Neural Circuits: Techniques, Opportunities and Challenges in Epilepsy Research. Cell Mol Neurobiol 2024; 44:27. [PMID: 38443733 PMCID: PMC10914928 DOI: 10.1007/s10571-024-01458-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 01/24/2024] [Indexed: 03/07/2024]
Abstract
Epilepsy, a prevalent neurological disorder characterized by high morbidity, frequent recurrence, and potential drug resistance, profoundly affects millions of people globally. Understanding the microscopic mechanisms underlying seizures is crucial for effective epilepsy treatment, and a thorough understanding of the intricate neural circuits underlying epilepsy is vital for the development of targeted therapies and the enhancement of clinical outcomes. This review begins with an exploration of the historical evolution of techniques used in studying neural circuits related to epilepsy. It then provides an extensive overview of diverse techniques employed in this domain, discussing their fundamental principles, strengths, limitations, as well as their application. Additionally, the synthesis of multiple techniques to unveil the complexity of neural circuits is summarized. Finally, this review also presents targeted drug therapies associated with epileptic neural circuits. By providing a critical assessment of methodologies used in the study of epileptic neural circuits, this review seeks to enhance the understanding of these techniques, stimulate innovative approaches for unraveling epilepsy's complexities, and ultimately facilitate improved treatment and clinical translation for epilepsy.
Collapse
Affiliation(s)
- Wenjie Xiao
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Peile Li
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Fujiao Kong
- Department of Anesthesiology, Xiangya Hospital, Central South University, Changsha, Hunan Province, China
| | - Jingyi Kong
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Lili Long
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaoxin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China
| | - Bo Xiao
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, China
| | - Jiaoe Gong
- Department of Neurology, Hunan Children's Hospital, Changsha, Hunan Province, China.
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya Medical School, Changsha, Hunan Province, China.
| |
Collapse
|
3
|
Uzay B, Houcek A, Ma ZZ, Konradi C, Monteggia LM, Kavalali ET. Neurotransmitter release progressively desynchronizes in induced human neurons during synapse maturation and aging. Cell Rep 2023; 42:112042. [PMID: 36701235 PMCID: PMC10366341 DOI: 10.1016/j.celrep.2023.112042] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 11/04/2022] [Accepted: 01/13/2023] [Indexed: 01/26/2023] Open
Abstract
Rapid release of neurotransmitters in synchrony with action potentials is considered a key hardwired property of synapses. Here, in glutamatergic synapses formed between induced human neurons, we show that action potential-dependent neurotransmitter release becomes progressively desynchronized as synapses mature and age. In this solely excitatory network, the emergence of NMDAR-mediated transmission elicits endoplasmic reticulum (ER) stress leading to downregulation of key presynaptic molecules, synaptotagmin-1 and cysteine string protein α, that synchronize neurotransmitter release. The emergence of asynchronous release with neuronal maturity and subsequent aging is maintained by the high-affinity Ca2+ sensor synaptotagmin-7 and suppressed by the introduction of GABAergic transmission into the network, inhibition of NMDARs, and ER stress. These results suggest that long-term disruption of excitation-inhibition balance affects the synchrony of excitatory neurotransmission in human synapses.
Collapse
Affiliation(s)
- Burak Uzay
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Aiden Houcek
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Z Zack Ma
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Christine Konradi
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Lisa M Monteggia
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA
| | - Ege T Kavalali
- Brain Institute, Vanderbilt University, Nashville, TN 37240-7933, USA; Department of Pharmacology, Vanderbilt University, 7130A MRB III 465 21st Avenue South, Nashville, TN 37240-7933, USA.
| |
Collapse
|