1
|
Mani S, Hurley P, van Schaik A, Monk T. The Leaky Integrate-and-Fire Neuron Is a Change-Point Detector for Compound Poisson Processes. Neural Comput 2025; 37:926-956. [PMID: 40112139 DOI: 10.1162/neco_a_01750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 01/02/2025] [Indexed: 03/22/2025]
Abstract
Animal nervous systems can detect changes in their environments within hundredths of a second. They do so by discerning abrupt shifts in sensory neural activity. Many neuroscience studies have employed change-point detection (CPD) algorithms to estimate such abrupt shifts in neural activity. But very few studies have suggested that spiking neurons themselves are online change-point detectors. We show that a leaky integrate-and-fire (LIF) neuron implements an online CPD algorithm for a compound Poisson process. We quantify the CPD performance of an LIF neuron under various regions of its parameter space. We show that CPD can be a recursive algorithm where the output of one algorithm can be input to another. Then we show that a simple feedforward network of LIF neurons can quickly and reliably detect very small changes in input spiking rates. For example, our network detects a 5% change in input rates within 20 ms on average, and false-positive detections are extremely rare. In a rigorous statistical context, we interpret the salient features of the LIF neuron: its membrane potential, synaptic weight, time constant, resting potential, action potentials, and threshold. Our results potentially generalize beyond the LIF neuron model and its associated CPD problem. If spiking neurons perform change-point detection on their inputs, then the electrophysiological properties of their membranes must be related to the spiking statistics of their inputs. We demonstrate one example of this relationship for the LIF neuron and compound Poisson processes and suggest how to test this hypothesis more broadly. Maybe neurons are not noisy devices whose action potentials must be averaged over time or populations. Instead, neurons might implement sophisticated, optimal, and online statistical algorithms on their inputs.
Collapse
Affiliation(s)
- Shivaram Mani
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Paul Hurley
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| | - Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, Australia
| |
Collapse
|
2
|
Monk T, Dennler N, Ralph N, Rastogi S, Afshar S, Urbizagastegui P, Jarvis R, van Schaik A, Adamatzky A. Electrical Signaling Beyond Neurons. Neural Comput 2024; 36:1939-2029. [PMID: 39141803 DOI: 10.1162/neco_a_01696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 05/21/2024] [Indexed: 08/16/2024]
Abstract
Neural action potentials (APs) are difficult to interpret as signal encoders and/or computational primitives. Their relationships with stimuli and behaviors are obscured by the staggering complexity of nervous systems themselves. We can reduce this complexity by observing that "simpler" neuron-less organisms also transduce stimuli into transient electrical pulses that affect their behaviors. Without a complicated nervous system, APs are often easier to understand as signal/response mechanisms. We review examples of nonneural stimulus transductions in domains of life largely neglected by theoretical neuroscience: bacteria, protozoans, plants, fungi, and neuron-less animals. We report properties of those electrical signals-for example, amplitudes, durations, ionic bases, refractory periods, and particularly their ecological purposes. We compare those properties with those of neurons to infer the tasks and selection pressures that neurons satisfy. Throughout the tree of life, nonneural stimulus transductions time behavioral responses to environmental changes. Nonneural organisms represent the presence or absence of a stimulus with the presence or absence of an electrical signal. Their transductions usually exhibit high sensitivity and specificity to a stimulus, but are often slow compared to neurons. Neurons appear to be sacrificing the specificity of their stimulus transductions for sensitivity and speed. We interpret cellular stimulus transductions as a cell's assertion that it detected something important at that moment in time. In particular, we consider neural APs as fast but noisy detection assertions. We infer that a principal goal of nervous systems is to detect extremely weak signals from noisy sensory spikes under enormous time pressure. We discuss neural computation proposals that address this goal by casting neurons as devices that implement online, analog, probabilistic computations with their membrane potentials. Those proposals imply a measurable relationship between afferent neural spiking statistics and efferent neural membrane electrophysiology.
Collapse
Affiliation(s)
- Travis Monk
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Nik Dennler
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Nicholas Ralph
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Shavika Rastogi
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
- Biocomputation Group, University of Hertfordshire, Hatfield, Hertfordshire AL10 9AB, U.K.
| | - Saeed Afshar
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Pablo Urbizagastegui
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Russell Jarvis
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - André van Schaik
- International Centre for Neuromorphic Systems, MARCS Institute, Western Sydney University, Sydney, NSW 2747, Australia
| | - Andrew Adamatzky
- Unconventional Computing Laboratory, University of the West of England, Bristol BS16 1QY, U.K.
| |
Collapse
|
3
|
Gamage R, Rossetti I, Niedermayer G, Münch G, Buskila Y, Gyengesi E. Chronic neuroinflammation during aging leads to cholinergic neurodegeneration in the mouse medial septum. J Neuroinflammation 2023; 20:235. [PMID: 37833764 PMCID: PMC10576363 DOI: 10.1186/s12974-023-02897-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/14/2023] [Indexed: 10/15/2023] Open
Abstract
BACKGROUND Low-grade, chronic inflammation in the central nervous system characterized by glial reactivity is one of the major hallmarks for aging-related neurodegenerative diseases like Alzheimer's disease (AD). The basal forebrain cholinergic neurons (BFCN) provide the primary source of cholinergic innervation of the human cerebral cortex and may be differentially vulnerable in various neurodegenerative diseases. However, the impact of chronic neuroinflammation on the cholinergic function is still unclear. METHODS To gain further insight into age-related cholinergic decline, we investigated the cumulative effects of aging and chronic neuroinflammation on the structure and function of the septal cholinergic neurons in transgenic mice expressing interleukin-6 under the GFAP promoter (GFAP-IL6), which maintains a constant level of gliosis. Immunohistochemistry combined with unbiased stereology, single cell 3D morphology analysis and in vitro whole cell patch-clamp measurements were used to validate the structural and functional changes of BFCN and their microglial environment in the medial septum. RESULTS Stereological estimation of MS microglia number displayed significant increase across all three age groups, while a significant decrease in cholinergic cell number in the adult and aged groups in GFAP-IL6 mice compared to control. Moreover, we observed age-dependent alterations in the electrophysiological properties of cholinergic neurons and an increased excitability profile in the adult GFAP-IL6 group due to chronic neuroinflammation. These results complimented the significant decrease in hippocampal pyramidal spine density seen with aging and neuroinflammation. CONCLUSIONS We provide evidence of the significant impact of both aging and chronic glial activation on the cholinergic and microglial numbers and morphology in the MS, and alterations in the passive and active electrophysiological membrane properties of septal cholinergic neurons, resulting in cholinergic dysfunction, as seen in AD. Our results indicate that aging combined with gliosis is sufficient to cause cholinergic disruptions in the brain, as seen in dementias.
Collapse
Affiliation(s)
- Rashmi Gamage
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Ilaria Rossetti
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Garry Niedermayer
- School of Science, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Gerald Münch
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia
| | - Erika Gyengesi
- School of Medicine, Western Sydney University, Penrith, NSW, 2751, Australia.
| |
Collapse
|
4
|
Purushotham SS, Buskila Y. Astrocytic modulation of neuronal signalling. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1205544. [PMID: 37332623 PMCID: PMC10269688 DOI: 10.3389/fnetp.2023.1205544] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 05/18/2023] [Indexed: 06/20/2023]
Abstract
Neuronal signalling is a key element in neuronal communication and is essential for the proper functioning of the CNS. Astrocytes, the most prominent glia in the brain play a key role in modulating neuronal signalling at the molecular, synaptic, cellular, and network levels. Over the past few decades, our knowledge about astrocytes and their functioning has evolved from considering them as merely a brain glue that provides structural support to neurons, to key communication elements. Astrocytes can regulate the activity of neurons by controlling the concentrations of ions and neurotransmitters in the extracellular milieu, as well as releasing chemicals and gliotransmitters that modulate neuronal activity. The aim of this review is to summarise the main processes through which astrocytes are modulating brain function. We will systematically distinguish between direct and indirect pathways in which astrocytes affect neuronal signalling at all levels. Lastly, we will summarize pathological conditions that arise once these signalling pathways are impaired focusing on neurodegeneration.
Collapse
Affiliation(s)
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Campbelltown, NSW, Australia
- The MARCS Institute, Western Sydney University, Campbelltown, NSW, Australia
| |
Collapse
|
5
|
Kourosh-Arami M, Hosseini N, Mohsenzadegan M, Komaki A, Joghataei MT. Neurophysiologic implications of neuronal nitric oxide synthase. Rev Neurosci 2021; 31:617-636. [PMID: 32739909 DOI: 10.1515/revneuro-2019-0111] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 03/21/2020] [Indexed: 12/12/2022]
Abstract
The molecular and chemical properties of neuronal nitric oxide synthase (nNOS) have made it a key mediator in many physiological functions and signaling transduction. The NOS monomer is inactive, but the dimer form is active. There are three forms of NOS, which are neuronal (nNOS), inducible (iNOS), and endothelial (eNOS) nitric oxide synthase. nNOS regulates nitric oxide (NO) synthesis which is the mechanism used mostly by neurons to produce NO. nNOS expression and activation is regulated by some important signaling proteins, such as cyclic adenosine monophosphate (cAMP) response element-binding protein (CREB), calmodulin (CaM), heat shock protein 90 (HSP90)/HSP70. nNOS-derived NO has been implicated in modulating many physiological functions, such as synaptic plasticity, learning, memory, neurogenesis, etc. In this review, we have summarized recent studies that have characterized structural features, subcellular localization, and factors that regulate nNOS function. Finally, we have discussed the role of nNOS in the developing brain under a wide range of physiological conditions, especially long-term potentiation and depression.
Collapse
Affiliation(s)
- Masoumeh Kourosh-Arami
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Nasrin Hosseini
- Neuroscience Research Center, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Monireh Mohsenzadegan
- Department of Laboratory Sciences, Allied Medical College, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Alireza Komaki
- Department of Physiology, Medical College, Hamedan University of Medical Sciences, Hamedan, Islamic Republic of Iran
| | - Mohammad Taghi Joghataei
- Department of Neuroscience, School of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Islamic Republic of Iran
| |
Collapse
|
6
|
Wang X, Zhang Y, Cheng W, Gao Y, Li S. Decreased excitatory drive onto hilar neuronal nitric oxide synthase expressing interneurons in chronic models of epilepsy. Brain Res 2021; 1764:147467. [PMID: 33831408 DOI: 10.1016/j.brainres.2021.147467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 11/29/2022]
Abstract
Excitation-inhibition imbalance of GABAergic interneurons is predisposed to develop chronic temporal lobe epilepsy (TLE). We have previously shown that virtually every neuronal nitric oxide synthase (nNOS)-positive cell is a GABAergic inhibitory interneuron in the denate gyrus. The present study was designed to quantify the number of nNOS-containing hilar interneurons using stereology in pilocapine- and kainic acid (KA)-exposed transgenic adult mice that expressed GFP under the nNOS promoter. In addition, we studied the properties of miniature excitatory postsynaptic current (mEPSC) and paired-pulse response ratio (PPR) of evoked EPSC in nNOS interneurons using whole cell recording techniques. Results showed that there were fewer nNOS-immunoreactive interneurons of chronically epileptic animals. Importantly, patch-clamp recordings revealed reduction in mEPSC frequency, indicating diminished global excitatory input. In contrast, PPR of evoked EPSC following the granule cell layer stimulation was increased in epileptic animals suggesting reduced neurotransmitter release from granule cell input. In summary, we propose that impaired excitatory drive onto hippocampal nNOS interneurons may be implicated in the development of refractory epilepsy.
Collapse
Affiliation(s)
- Xiaona Wang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China.
| | - Yaodong Zhang
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Weyland Cheng
- Department of Orthopaedics, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou 450018, Henan, China
| | - Yinbo Gao
- Henan Neurodevelopment Engineering Research Center for Children, Henan Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, 33 Longhu Outer Circle Dong Road, Zhengzhou, 450018, Henan, China
| | - Shao Li
- Department of Physiology, Liaoning Provincial Key Laboratory of Cerebral Diseases, National-Local Joint Engineering Research Center for Drug-Research and Development (R&D) of Neurodegenerative Diseases, Dalian Medical University, Dalian, Liaoning 116044, China
| |
Collapse
|
7
|
Chachlaki K, Prevot V. Nitric oxide signalling in the brain and its control of bodily functions. Br J Pharmacol 2020; 177:5437-5458. [PMID: 31347144 PMCID: PMC7707094 DOI: 10.1111/bph.14800] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 07/10/2019] [Accepted: 07/19/2019] [Indexed: 02/06/2023] Open
Abstract
Nitric oxide (NO) is a versatile molecule that plays key roles in the development and survival of mammalian species by endowing brain neuronal networks with the ability to make continual adjustments to function in response to moment-to-moment changes in physiological input. Here, we summarize the progress in the field and argue that NO-synthetizing neurons and NO signalling in the brain provide a core hub for integrating sensory- and homeostatic-related cues, control key bodily functions, and provide a potential target for new therapeutic opportunities against several neuroendocrine and behavioural abnormalities.
Collapse
Affiliation(s)
- Konstantina Chachlaki
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| | - Vincent Prevot
- Inserm, Laboratory of Development and Plasticity of the Neuroendocrine BrainJean‐Pierre Aubert Research Centre, UMR‐S 1172LilleFrance
- School of MedicineUniversity of LilleLilleFrance
- CHU LilleFHU 1,000 days for HealthLilleFrance
| |
Collapse
|
8
|
López JM, Morona R, González A. Pattern of nitrergic cells and fibers organization in the central nervous system of the Australian lungfish, Neoceratodus forsteri (Sarcopterygii: Dipnoi). J Comp Neurol 2019; 527:1771-1800. [PMID: 30689201 DOI: 10.1002/cne.24645] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 01/18/2019] [Accepted: 01/18/2019] [Indexed: 12/18/2022]
Abstract
The Australian lungfish Neoceratodus forsteri is the only extant species of the order Ceratodontiformes, which retained most of the primitive features of ancient lobe finned-fishes. Lungfishes are the closest living relatives of land vertebrates and their study is important for deducing the neural traits that were conserved, modified, or lost with the transition from fishes to land vertebrates. We have investigated the nitrergic system with neural nitric oxide synthase (NOS) immunohistochemistry and NADPH-diaphorase (NADPH-d) histochemistry, which yielded almost identical results except for the primary olfactory projections and the terminal and preoptic nerve fibers labeled only for NADPH-d. Combined immunohistochemistry was used for simultaneous detection of NOS with catecholaminergic, cholinergic, and serotonergic structures, aiming to establish accurately the localization of the nitrergic elements and to assess possible interactions between these neurotransmitter systems. The results demonstrated abundant nitrergic cells in the basal ganglia, amygdaloid complex, preoptic area, basal hypothalamus, mesencephalic tectum and tegmentum, laterodorsal tegmental nucleus, reticular formation, spinal cord, and retina. In addition, low numbers of nitrergic cells were observed in the olfactory bulb, all pallial divisions, lateral septum, suprachiasmatic nucleus, prethalamic and thalamic areas, posterior tubercle, pretectum, torus semicircularis, cerebellar nucleus, interpeduncular nucleus, the medial octavolateral nucleus, nucleus of the solitary tract, and the dorsal column nucleus. Colocalization of NOS and tyrosine hydroxylase was observed in numerous cells of the ventral tegmental area/substantia nigra complex. Comparison with other vertebrates, using a neuromeric analysis, reveals that the nitrergic system of Neoceratodus shares many neuroanatomical features with tetrapods and particularly with amphibians.
Collapse
Affiliation(s)
- Jesús M López
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Ruth Morona
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| | - Agustín González
- Department of Cell Biology, Faculty of Biology, University Complutense of Madrid, Madrid, Spain
| |
Collapse
|
9
|
The differential impact of acute microglia activation on the excitability of cholinergic neurons in the mouse medial septum. Brain Struct Funct 2019; 224:2297-2309. [DOI: 10.1007/s00429-019-01905-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 06/07/2019] [Indexed: 12/30/2022]
|
10
|
Zhou QG, Zhu XH, Nemes AD, Zhu DY. Neuronal nitric oxide synthase and affective disorders. IBRO Rep 2018; 5:116-132. [PMID: 30591953 PMCID: PMC6303682 DOI: 10.1016/j.ibror.2018.11.004] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 11/07/2018] [Accepted: 11/13/2018] [Indexed: 01/08/2023] Open
Abstract
Affective disorders including major depressive disorder (MDD), bipolar disorder (BPD), and general anxiety affect more than 10% of population in the world. Notably, neuronal nitric oxide synthase (nNOS), a downstream signal molecule of N-methyl-D-aspartate receptors (NMDARs) activation, is abundant in many regions of the brain such as the prefrontal cortex (PFC), hippocampus, amygdala, dorsal raphe nucleus (DRN), locus coeruleus (LC), and hypothalamus, which are closely associated with the pathophysiology of affective disorders. Decreased levels of the neurotransmitters including 5-hydroxytryptamine or serotonin (5-HT), noradrenalin (NA), and dopamine (DA) as well as hyperactivity of the hypothalamic-pituitary-adrenal (HPA) axis are common pathological changes of MDD, BPD, and anxiety. Increasing data suggests that nNOS in the hippocampus play a crucial role in the etiology of MDD whereas nNOS-related dysregulation of the nitrergic system in the LC is closely associated with the pathogenesis of BPD. Moreover, hippocampal nNOS is implicated in the role of serotonin receptor 1 A (5-HTR1 A) in modulating anxiety behaviors. Augment of nNOS and its carboxy-terminal PDZ ligand (CAPON) complex mediate stress-induced anxiety and disrupting the nNOS-CAPON interaction by small molecular drug generates anxiolytic effect. To date, however, the function of nNOS in affective disorders is not well reviewed. Here, we summarize works about nNOS and its signal mechanisms implicated in the pathophysiology of affective disorders. On the basis of this review, it is suggested that future research should more fully focus on the role of nNOS in the pathomechanism and treatment of affective disorders.
Collapse
Affiliation(s)
- Qi-Gang Zhou
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Xian-Hui Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| | - Ashley D Nemes
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, USA
| | - Dong-Ya Zhu
- Department of Clinical Pharmacology, Pharmacy College, Nanjing Medical University, Nanjing 211166, PR China
| |
Collapse
|
11
|
Cameron M, Kékesi O, Morley JW, Tapson J, Breen PP, van Schaik A, Buskila Y. Calcium Imaging of AM Dyes Following Prolonged Incubation in Acute Neuronal Tissue. PLoS One 2016; 11:e0155468. [PMID: 27183102 PMCID: PMC4868260 DOI: 10.1371/journal.pone.0155468] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Accepted: 04/30/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium-imaging is a sensitive method for monitoring calcium dynamics during neuronal activity. As intracellular calcium concentration is correlated to physiological and pathophysiological activity of neurons, calcium imaging with fluorescent indicators is one of the most commonly used techniques in neuroscience today. Current methodologies for loading calcium dyes into the tissue require prolonged incubation time (45-150 min), in addition to dissection and recovery time after the slicing procedure. This prolonged incubation curtails experimental time, as tissue is typically maintained for 6-8 hours after slicing. Using a recently introduced recovery chamber that extends the viability of acute brain slices to more than 24 hours, we tested the effectiveness of calcium AM staining following long incubation periods post cell loading and its impact on the functional properties of calcium signals in acute brain slices and wholemount retinae. We show that calcium dyes remain within cells and are fully functional >24 hours after loading. Moreover, the calcium dynamics recorded >24 hrs were similar to the calcium signals recorded in fresh tissue that was incubated for <4 hrs. These results indicate that long exposure of calcium AM dyes to the intracellular cytoplasm did not alter the intracellular calcium concentration, the functional range of the dye or viability of the neurons. This data extends our previous work showing that a custom recovery chamber can extend the viability of neuronal tissue, and reliable data for both electrophysiology and imaging can be obtained >24hrs after dissection. These methods will not only extend experimental time for those using acute neuronal tissue, but also may reduce the number of animals required to complete experimental goals.
Collapse
Affiliation(s)
- Morven Cameron
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Orsolya Kékesi
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - John W. Morley
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| | - Jonathan Tapson
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Paul P. Breen
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - André van Schaik
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
| | - Yossi Buskila
- School of Medicine, Western Sydney University, Penrith, NSW, Australia
- Biomedical Engineering and Neuroscience group, The MARCS Institute, Western Sydney University, Penrith, NSW, Australia
| |
Collapse
|
12
|
Liang Z, Zhang L, Wang X, Gao F, Wang X, Zhou S, Yu S, Zhan RZ. Distribution and neurochemical features of neuronal nitric oxide synthase-expressing interneurons in the rat dentate gyrus. Brain Res 2013; 1505:11-21. [PMID: 23419891 DOI: 10.1016/j.brainres.2013.02.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2012] [Revised: 02/09/2013] [Accepted: 02/09/2013] [Indexed: 12/13/2022]
Abstract
Neuronal nitric oxide synthase (nNOS)-expressing interneurons are abundant in the dentate gyrus (DG) of rodents. In the present study, we immunohistochemically analyzed nNOS-positive cells in the rat DG by focusing on their GABAergicity, laminar distribution, and co-localization with calcium-binding proteins and neuropeptides. Experiments were conducted in adult male Sprague Dawley rats. Within the DG, nNOS-positive cells were found to reside in all three layers of DG; percentages of distribution in the molecular layer, granule cell layer and the hilus are 25.4%, 9.4% and 65.2%, respectively. Almost every nNOS-positive cell expressed glutamic acid decarboxylase 67 (GAD67) or glutamic acid decarboxylase 65 (GAD65). In the molecular layer, nearly two-thirds of GAD67-positive cells expressed nNOS. Percentages of nNOS-positive interneurons that expressed cholecystokinin, vasoactive intestinal polypeptide, parvalbumin, somatostatin, neuropeptide Y, and calretinin were approximately 0.8%, 1.8%, 9.2%, 10.3%, 13.8%, and 24.4%, respectively. In the molecular layer, the number of nNOS-positive cells far exceeded the sum total of cells positive for both nNOS and any of the above mentioned calcium-binding proteins or neuropeptides, indicating that a large proportion of nNOS-positive interneurons seldom express calcium-binding proteins or neuropeptides in this area. We conclude that nNOS expressing cells are an important neurochemically defined type of GABAergic interneuron in the rat DG showing a specific laminar-dependent distribution and expressing calcium-binding proteins and neuropeptides at different frequencies. In the molecular layer, most nNOS-positive interneurons do not express calcium-binding proteins or neuropeptides; they could be the missing pieces in the GABAergic interneuron jigsaw puzzle of this DG layer.
Collapse
Affiliation(s)
- Zhaoliang Liang
- Institute of Physiology, Shandong University School of Medicine, 44 Wenhua Xi Road, Jinan, China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Duchemin S, Boily M, Sadekova N, Girouard H. The complex contribution of NOS interneurons in the physiology of cerebrovascular regulation. Front Neural Circuits 2012; 6:51. [PMID: 22907993 PMCID: PMC3414732 DOI: 10.3389/fncir.2012.00051] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 07/19/2012] [Indexed: 12/23/2022] Open
Abstract
Following the discovery of the vasorelaxant properties of nitric oxide (NO) by Furchgott and Ignarro, the finding by Bredt and coll. of a constitutively expressed NO synthase in neurons (nNOS) led to the presumption that neuronal NO may control cerebrovascular functions. Consequently, numerous studies have sought to determine whether neuraly-derived NO is involved in the regulation of cerebral blood flow (CBF). Anatomically, axons, dendrites, or somata of NO neurons have been found to contact the basement membrane of blood vessels or perivascular astrocytes in all segments of the cortical microcirculation. Functionally, various experimental approaches support a role of neuronal NO in the maintenance of resting CBF as well as in the vascular response to neuronal activity. Since decades, it has been assumed that neuronal NO simply diffuses to the local blood vessels and produce vasodilation through a cGMP-PKG dependent mechanism. However, NO is not the sole mediator of vasodilation in the cerebral microcirculation and is known to interact with a myriad of signaling pathways also involved in vascular control. In addition, cerebrovascular regulation is the result of a complex orchestration between all components of the neurovascular unit (i.e., neuronal, glial, and vascular cells) also known to produce NO. In this review article, the role of NO interneuron in the regulation of cortical microcirculation will be discussed in the context of the neurovascular unit.
Collapse
Affiliation(s)
- Sonia Duchemin
- Department of Pharmacology, Université de Montréal Montreal, QC, Canada
| | | | | | | |
Collapse
|
14
|
Jaglin XH, Hjerling-Leffler J, Fishell G, Batista-Brito R. The origin of neocortical nitric oxide synthase-expressing inhibitory neurons. Front Neural Circuits 2012; 6:44. [PMID: 22787442 PMCID: PMC3391688 DOI: 10.3389/fncir.2012.00044] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 06/20/2012] [Indexed: 01/08/2023] Open
Abstract
Inhibitory neurons are critical for regulating effective transfer of sensory information and network stability. The precision of inhibitory function likely derives from the existence of a variety of interneuron subtypes. Their specification is largely dependent on the locale of origin of interneuron progenitors. Neocortical and hippocampal inhibitory neurons originate the subpallium, namely in the medial and caudal ganglionic eminences (MGE and CGE), and in the preoptic area (POA). In the hippocampus, neuronal nitric oxide synthase (nNOS)-expressing cells constitute a numerically large GABAergic interneuron population. On the contrary, nNOS-expressing inhibitory neurons constitute the smallest of the known neocortical GABAergic neuronal subtypes. The origins of most neocortical GABAergic neuron subtypes have been thoroughly investigated, however, very little is known about the origin of, or the genetic programs underlying the development of nNOS neurons. Here, we show that the vast majority of neocortical nNOS-expressing neurons arise from the MGE rather than the CGE. Regarding their molecular signature, virtually all neocortical nNOS neurons co-express the neuropeptides somatostatin (SST) and neuropeptide Y (NPY), and about half of them express the calcium-binding protein calretinin (CR). nNOS neurons thus constitute a small cohort of the MGE-derived SST-expressing population of cortical inhibitory neurons. Finally, we show that conditional removal of the transcription factor Sox6 in MGE-derived GABAergic cortical neurons results in an absence of SST and CR expression, as well as reduced expression of nNOS in neocortical nNOS neurons. Based on their respective abundance, origin and molecular signature, our results suggest that neocortical and hippocampal nNOS GABAergic neurons likely subserve different functions and have very different physiological relevance in these two cortical structures.
Collapse
Affiliation(s)
- Xavier H Jaglin
- NYU Neuroscience Institute, New York University Langone Medical Center New York, NY, USA
| | | | | | | |
Collapse
|
15
|
Dittrich L, Heiss JE, Warrier DR, Perez XA, Quik M, Kilduff TS. Cortical nNOS neurons co-express the NK1 receptor and are depolarized by Substance P in multiple mammalian species. Front Neural Circuits 2012; 6:31. [PMID: 22679419 PMCID: PMC3367498 DOI: 10.3389/fncir.2012.00031] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2012] [Accepted: 05/06/2012] [Indexed: 11/17/2022] Open
Abstract
We have previously demonstrated that Type I neuronal nitric oxide synthase (nNOS)-expressing neurons are sleep-active in the cortex of mice, rats, and hamsters. These neurons are known to be GABAergic, to express Neuropeptide Y (NPY) and, in rats, to co-express the Substance P (SP) receptor NK1, suggesting a possible role for SP in sleep/wake regulation. To evaluate the degree of co-expression of nNOS and NK1 in the cortex among mammals, we used double immunofluorescence for nNOS and NK1 and determined the anatomical distribution in mouse, rat, and squirrel monkey cortex. Type I nNOS neurons co-expressed NK1 in all three species although the anatomical distribution within the cortex was species-specific. We then performed in vitro patch clamp recordings in cortical neurons in mouse and rat slices using the SP conjugate tetramethylrhodamine-SP (TMR-SP) to identify NK1-expressing cells and evaluated the effects of SP on these neurons. Bath application of SP (0.03–1 μM) resulted in a sustained increase in firing rate of these neurons; depolarization persisted in the presence of tetrodotoxin. These results suggest a conserved role for SP in the regulation of cortical sleep-active neurons in mammals.
Collapse
Affiliation(s)
- Lars Dittrich
- Biosciences Division, Center for Neuroscience, SRI International, Menlo Park CA, USA
| | | | | | | | | | | |
Collapse
|