1
|
Hindriks R. Characterization of Second-Order Mixing Effects in Reconstructed Cross-Spectra of Random Neural Fields. Brain Topogr 2024; 37:647-658. [PMID: 38472533 PMCID: PMC11393026 DOI: 10.1007/s10548-024-01040-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 02/06/2024] [Indexed: 03/14/2024]
Abstract
Functional connectivity in electroencephalography (EEG) and magnetoencephalography (MEG) data is commonly assessed by using measures that are insensitive to instantaneously interacting sources and as such would not give rise to false positive interactions caused by instantaneous mixing of true source signals (first-order mixing). Recent studies, however, have drawn attention to the fact that such measures are still susceptible to instantaneous mixing from lagged sources (i.e. second-order mixing) and that this can lead to a large number of false positive interactions. In this study we relate first- and second-order mixing effects on the cross-spectra of reconstructed source activity to the properties of the resolution operators that are used for the reconstruction. We derive two identities that relate first- and second-order mixing effects to the transformation properties of measurement and source configurations and exploit them to establish several basic properties of signal mixing. First, we provide a characterization of the configurations that are maximally and minimally sensitive to second-order mixing. It turns out that second-order mixing effects are maximal when the measurement locations are far apart and the sources coincide with the measurement locations. Second, we provide a description of second-order mixing effects in the vicinity of the measurement locations in terms of the local geometry of the point-spread functions of the resolution operator. Third, we derive a version of Lagrange's identity for cross-talk functions that establishes the existence of a trade-off between the magnitude of first- and second-order mixing effects. It also shows that, whereas the magnitude of first-order mixing is determined by the inner product of cross-talk functions, the magnitude of second-order mixing is determined by a generalized cross-product of cross-talk functions (the wedge product) which leads to an intuitive geometric understanding of the trade-off. All results are derived within the general framework of random neural fields on cortical manifolds.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Department of Mathematics, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
2
|
Safavi S, Panagiotaropoulos TI, Kapoor V, Ramirez-Villegas JF, Logothetis NK, Besserve M. Uncovering the organization of neural circuits with Generalized Phase Locking Analysis. PLoS Comput Biol 2023; 19:e1010983. [PMID: 37011110 PMCID: PMC10109521 DOI: 10.1371/journal.pcbi.1010983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 04/17/2023] [Accepted: 02/27/2023] [Indexed: 04/05/2023] Open
Abstract
Despite the considerable progress of in vivo neural recording techniques, inferring the biophysical mechanisms underlying large scale coordination of brain activity from neural data remains challenging. One obstacle is the difficulty to link high dimensional functional connectivity measures to mechanistic models of network activity. We address this issue by investigating spike-field coupling (SFC) measurements, which quantify the synchronization between, on the one hand, the action potentials produced by neurons, and on the other hand mesoscopic "field" signals, reflecting subthreshold activities at possibly multiple recording sites. As the number of recording sites gets large, the amount of pairwise SFC measurements becomes overwhelmingly challenging to interpret. We develop Generalized Phase Locking Analysis (GPLA) as an interpretable dimensionality reduction of this multivariate SFC. GPLA describes the dominant coupling between field activity and neural ensembles across space and frequencies. We show that GPLA features are biophysically interpretable when used in conjunction with appropriate network models, such that we can identify the influence of underlying circuit properties on these features. We demonstrate the statistical benefits and interpretability of this approach in various computational models and Utah array recordings. The results suggest that GPLA, used jointly with biophysical modeling, can help uncover the contribution of recurrent microcircuits to the spatio-temporal dynamics observed in multi-channel experimental recordings.
Collapse
Affiliation(s)
- Shervin Safavi
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- IMPRS for Cognitive and Systems Neuroscience, University of Tübingen, Tübingen, Germany
| | - Theofanis I. Panagiotaropoulos
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Cognitive Neuroimaging Unit, INSERM, CEA, CNRS, Université Paris-Saclay, NeuroSpin center, 91191 Gif/Yvette, France
| | - Vishal Kapoor
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai 201602, China
| | - Juan F. Ramirez-Villegas
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Institute of Science and Technology Austria (IST Austria), Klosterneuburg, Austria
| | - Nikos K. Logothetis
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- International Center for Primate Brain Research (ICPBR), Center for Excellence in Brain Science and Intelligence Technology (CEBSIT), Chinese Academy of Sciences (CAS), Shanghai 201602, China
- Centre for Imaging Sciences, Biomedical Imaging Institute, The University of Manchester, Manchester, United Kingdom
| | - Michel Besserve
- Department of Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- Department of Empirical Inference, Max Planck Institute for Intelligent Systems and MPI-ETH Center for Learning Systems, Tübingen, Germany
| |
Collapse
|
3
|
Orczyk JJ, Kajikawa Y. Magnifying Traveling Waves on the Scalp. Brain Topogr 2022; 35:162-168. [PMID: 34086189 PMCID: PMC8759578 DOI: 10.1007/s10548-021-00853-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 05/26/2021] [Indexed: 01/03/2023]
Abstract
Traveling waves appear in various signals that measure neuronal activity. Some signals measured in animals have singles-cell resolution and directly point to neuronal activity. In those cases, activation of distributed neurons forms a wave front, and the front propagates across the cortical surface. Other signals are variants of neuroelectric potentials, i.e. electroencephalography, electrocorticography and field potentials. Instead of having fine spatial resolution, these signals reflect the activity of neuronal populations via volume conduction (VC). Sources of traveling waves in neuroelectric potentials have not been well addressed so far. As animal studies show propagating activation of neurons that spread in measured areas, it is often considered that neuronal activations during scalp waves have similar trajectories of activation, spreading like scalp waves. However, traveling waves on the scalp differ from those found directly on the cortical surface in several dimensions: traveling velocity, traveling distance and areal size occupied by single polarity. We describe that the simplest sources can produce scalp waves with perceived spatial dimensions which are actually a magnification of neuronal activity emanating from local sources due to VC. This viewpoint is not a rigorous proof of our magnification concept. However, we suggest the possibility that the actual dimensions of neuronal activity producing traveling waves is not as large as the dimension of the traveling waves.
Collapse
Affiliation(s)
- John J. Orczyk
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY
| | - Yoshinao Kajikawa
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, NY,Department of Psychiatry, New York University School of Medicine, New York, NY
| |
Collapse
|
4
|
Orczyk JJ, Barczak A, Costa-Faidella J, Kajikawa Y. Cross Laminar Traveling Components of Field Potentials due to Volume Conduction of Non-Traveling Neuronal Activity in Macaque Sensory Cortices. J Neurosci 2021; 41:7578-7590. [PMID: 34321312 PMCID: PMC8425975 DOI: 10.1523/jneurosci.3225-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 06/25/2021] [Accepted: 06/29/2021] [Indexed: 11/21/2022] Open
Abstract
Field potentials (FPs) reflect neuronal activities in the brain, and often exhibit traveling peaks across recording sites. While traveling FPs are interpreted as propagation of neuronal activity, not all studies directly reveal such propagating patterns of neuronal activation. Neuronal activity is associated with transmembrane currents that form dipoles and produce negative and positive fields. Thereby, FP components reverse polarity between those fields and have minimal amplitudes at the center of dipoles. Although their amplitudes could be smaller, FPs are never flat even around these reversals. What occurs around the reversal has not been addressed explicitly, although those are rationally in the middle of active neurons. We show that sensory FPs around the reversal appeared with peaks traveling across cortical laminae in macaque sensory cortices. Interestingly, analyses of current source density did not depict traveling patterns but lamina-delimited current sinks and sources. We simulated FPs produced by volume conduction of a simplified 2 dipoles' model mimicking sensory cortical laminar current source density components. While FPs generated by single dipoles followed the temporal patterns of the dipole moments without traveling peaks, FPs generated by concurrently active dipole moments appeared with traveling components in the vicinity of dipoles by superimposition of individually non-traveling FPs generated by single dipoles. These results indicate that not all traveling FP are generated by traveling neuronal activity, and that recording positions need to be taken into account to describe FP peak components around active neuronal populations.SIGNIFICANCE STATEMENT Field potentials (FPs) generated by neuronal activity in the brain occur with fields of opposite polarity. Likewise, in the cerebral cortices, they have mirror-imaged waveforms in upper and lower layers. We show that FPs appear like traveling across the cortical layers. Interestingly, the traveling FPs occur without traveling components of current source density, which represents transmembrane currents associated with neuronal activity. These seemingly odd findings are explained using current source density models of multiple dipoles. Concurrently active, non-traveling dipoles produce FPs as mixtures of FPs produced by individual dipoles, and result in traveling FP waveforms as the mixing ratio depends on the distances from those dipoles. The results suggest that not all traveling FP components are associated with propagating neuronal activity.
Collapse
Affiliation(s)
- John J Orczyk
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Annamaria Barczak
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
| | - Jordi Costa-Faidella
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Brainlab - Cognitive Neuroscience Research Group, Department of Clinical Psychology and Psychobiology, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Catalonia 08035, Spain
- Institut de Recerca Sant Joan de Déu, Esplugues de Llobregat, Spain, Barcelona, Catalonia 08950
| | - Yoshinao Kajikawa
- Translational Neuroscience Division, Nathan S. Kline Institute for Psychiatric Research, Orangeburg, New York 10962
- Department of Psychiatry, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
5
|
Use of common average reference and large-Laplacian spatial-filters enhances EEG signal-to-noise ratios in intrinsic sensorimotor activity. J Neurosci Methods 2021; 353:109089. [PMID: 33508408 DOI: 10.1016/j.jneumeth.2021.109089] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/18/2020] [Accepted: 01/21/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Oscillations in the resting-state scalp electroencephalogram (EEG) represent various intrinsic brain activities. One of the characteristic EEG oscillations is the sensorimotor rhythm (SMR)-with its arch-shaped waveform in alpha- and betabands-that reflect sensorimotor activity. The representation of sensorimotor activity by the SMR depends on the signal-to-noise ratio achieved by EEG spatial filters. NEW METHOD We employed simultaneous recording of EEG and functional magnetic resonance imaging, and 10-min resting-state brain activities were recorded in 19 healthy volunteers. To compare the EEG spatial-filtering methods commonly used for extracting sensorimotor cortical activities, we assessed nine different spatial-filters: a default reference of EEG amplifier system, a common average reference (CAR), small-, middle- and large-Laplacian filters, and four types of bipolar manners (C3-Cz, C3-F3, C3-P3, and C3-T7). We identified the brain region that correlated with the EEG-SMR power obtained after each spatial-filtering method was applied. Subsequently, we calculated the proportion of the significant voxels in the sensorimotor cortex as well as the sensorimotor occupancy in all significant regions to examine the sensitivity and specificity of each spatial-filter. RESULTS The CAR and large-Laplacian spatial-filters were superior at improving the signal-to-noise ratios for extracting sensorimotor activity from the EEG-SMR signal. COMPARISON WITH EXISTING METHODS Our results are consistent with the spatial-filter selection to extract task-dependent activation for better control of EEG-SMR-based interventions. Our approach has the potential to identify the optimal spatial-filter for EEG-SMR. CONCLUSIONS Evaluating spatial-filters for extracting spontaneous sensorimotor activity from the EEG is a useful procedure for constructing more effective EEG-SMR-based interventions.
Collapse
|
6
|
Ahmadi N, Constandinou T, Bouganis CS. Impact of referencing scheme on decoding performance of LFP-based brain-machine interface. J Neural Eng 2020; 18. [PMID: 33242850 DOI: 10.1088/1741-2552/abce3c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 11/26/2020] [Indexed: 12/19/2022]
Abstract
OBJECTIVE There has recently been an increasing interest in local field potential (LFP) for brain-machine interface (BMI) applications due to its desirable properties (signal stability and low bandwidth). LFP is typically recorded with respect to a single unipolar reference which is susceptible to common noise. Several referencing schemes have been proposed to eliminate the common noise, such as bipolar reference, current source density (CSD), and common average reference (CAR). However, to date, there have not been any studies to investigate the impact of these referencing schemes on decoding performance of LFP-based BMIs. APPROACH To address this issue, we comprehensively examined the impact of different referencing schemes and LFP features on the performance of hand kinematic decoding using a deep learning method. We used LFPs chronically recorded from the motor cortex area of a monkey while performing reaching tasks. MAIN RESULTS Experimental results revealed that local motor potential (LMP) emerged as the most informative feature regardless of the referencing schemes. Using LMP as the feature, CAR was found to yield consistently better decoding performance than other referencing schemes over long-term recording sessions. Significance Overall, our results suggest the potential use of LMP coupled with CAR for enhancing the decoding performance of LFP-based BMIs.
Collapse
Affiliation(s)
- Nur Ahmadi
- Electrical and Electronic Engineering, Imperial College London, South Kensington Campus, London, London, SW7 2AZ, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Timothy Constandinou
- Electrical & Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| | - Christos-Savvas Bouganis
- Electrical and Electronic Engineering, Imperial College London, London, London, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND
| |
Collapse
|
7
|
Oscillations in the auditory system and their possible role. Neurosci Biobehav Rev 2020; 113:507-528. [PMID: 32298712 DOI: 10.1016/j.neubiorev.2020.03.030] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/25/2020] [Accepted: 03/30/2020] [Indexed: 12/26/2022]
Abstract
GOURÉVITCH, B., C. Martin, O. Postal, J.J. Eggermont. Oscillations in the auditory system, their possible role. NEUROSCI BIOBEHAV REV XXX XXX-XXX, 2020. - Neural oscillations are thought to have various roles in brain processing such as, attention modulation, neuronal communication, motor coordination, memory consolidation, decision-making, or feature binding. The role of oscillations in the auditory system is less clear, especially due to the large discrepancy between human and animal studies. Here we describe many methodological issues that confound the results of oscillation studies in the auditory field. Moreover, we discuss the relationship between neural entrainment and oscillations that remains unclear. Finally, we aim to identify which kind of oscillations could be specific or salient to the auditory areas and their processing. We suggest that the role of oscillations might dramatically differ between the primary auditory cortex and the more associative auditory areas. Despite the moderate presence of intrinsic low frequency oscillations in the primary auditory cortex, rhythmic components in the input seem crucial for auditory processing. This allows the phase entrainment between the oscillatory phase and rhythmic input, which is an integral part of stimulus selection within the auditory system.
Collapse
|
8
|
A Novel Methodology for Simulation of EEG Traveling Waves on the Folding Surface of the Human Cerebral Cortex. ACTA ACUST UNITED AC 2018. [DOI: 10.1007/978-3-030-01328-8_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2023]
|
9
|
Snyder AC, Issar D, Smith MA. What does scalp electroencephalogram coherence tell us about long-range cortical networks? Eur J Neurosci 2018; 48:2466-2481. [PMID: 29363843 PMCID: PMC6497452 DOI: 10.1111/ejn.13840] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 12/20/2017] [Accepted: 01/17/2018] [Indexed: 01/01/2023]
Abstract
Long-range interactions between cortical areas are undoubtedly a key to the computational power of the brain. For healthy human subjects, the premier method for measuring brain activity on fast timescales is electroencephalography (EEG), and coherence between EEG signals is often used to assay functional connectivity between different brain regions. However, the nature of the underlying brain activity that is reflected in EEG coherence is currently the realm of speculation, because seldom have EEG signals been recorded simultaneously with intracranial recordings near cell bodies in multiple brain areas. Here, we take the early steps towards narrowing this gap in our understanding of EEG coherence by measuring local field potentials with microelectrode arrays in two brain areas (extrastriate visual area V4 and dorsolateral prefrontal cortex) simultaneously with EEG at the nearby scalp in rhesus macaque monkeys. Although we found inter-area coherence at both scales of measurement, we did not find that scalp-level coherence was reliably related to coherence between brain areas measured intracranially on a trial-to-trial basis, despite that scalp-level EEG was related to other important features of neural oscillations, such as trial-to-trial variability in overall amplitudes. This suggests that caution must be exercised when interpreting EEG coherence effects, and new theories devised about what aspects of neural activity long-range coherence in the EEG reflects.
Collapse
Affiliation(s)
- Adam C. Snyder
- Dept. of Electrical and Computer Engineering, Carnegie Mellon Univ., Pittsburgh, PA, USA,Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Deepa Issar
- Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA
| | - Matthew A. Smith
- Dept. of Ophthalmology, Univ. of Pittsburgh, Pittsburgh, PA, USA,Center for the Neural Basis of Cognition, Univ. of Pittsburgh, Pittsburgh, PA, USA,Dept. of Bioengineering, Univ. of Pittsburgh, Pittsburgh, PA, USA,Fox Center for Vision Restoration, Univ. of Pittsburgh, Pittsburgh, PA, USA,Address correspondence to: Matthew A. Smith, Department of Ophthalmology, University of Pittsburgh, Eye and Ear Institute, 203 Lothrop St., 9 Fl., Pittsburgh, PA, 15213, Tel: (412) 647-2313,
| |
Collapse
|
10
|
Abedini M, Tekieh T, Sasanpour P. Recording Neural Activity Based on Surface Plasmon Resonance by Optical Fibers-A Computational Analysis. Front Comput Neurosci 2018; 12:61. [PMID: 30123119 PMCID: PMC6085840 DOI: 10.3389/fncom.2018.00061] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/11/2018] [Indexed: 02/05/2023] Open
Abstract
An all optical, non-destructive method for monitoring neural activity has been proposed and its performance in detection has been analyzed computationally. The proposed method is based on excitation of Surface Plasmon Resonance (SPR) through the structure of optical fibers. The sensor structure consists of a multimode optical fiber where, the cladding of fiber has been removed and thin film of gold structure has been deposited on the surface. Impinging the laser light with appropriate wavelength inside the fiber and based on the total internal reflection, the evanescent wave will excite surface plasmons in the gold thin film. The absorption of light by surface plasmons in the gold structure is severely dependent on the dielectric properties at its vicinity. The electrical activity of neural cells (action potential) can modulate the dielectric properties at its vicinity and hence can modify the absorption of light inside the optical fiber. We have computationally analyzed the performance of the proposed sensor with different available geometries using Finite Element Method (FEM). In this regard, we have shown that the optical response of proposed sensor will track the action potential of the neuron at its vicinity. Based on different geometrical structure, the sensor has absorption in different regions of visible spectrum.
Collapse
Affiliation(s)
- Mitra Abedini
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran
| | - Tahereh Tekieh
- Complex System Group, Department of Physics, Sydney University, Sydney, NSW, Australia
| | - Pezhman Sasanpour
- Department of Medical Physics and Biomedical Engineering, School of Medicine, Shahid Beheshti Medical University, Tehran, Iran.,School of Nanoscience, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
| |
Collapse
|
11
|
Hindriks R, Schmiedt J, Arsiwalla XD, Peter A, Verschure PFMJ, Fries P, Schmid MC, Deco G. Linear distributed source modeling of local field potentials recorded with intra-cortical electrode arrays. PLoS One 2017; 12:e0187490. [PMID: 29253006 PMCID: PMC5734682 DOI: 10.1371/journal.pone.0187490] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 10/20/2017] [Indexed: 01/04/2023] Open
Abstract
Planar intra-cortical electrode (Utah) arrays provide a unique window into the spatial organization of cortical activity. Reconstruction of the current source density (CSD) underlying such recordings, however, requires “inverting” Poisson’s equation. For inter-laminar recordings, this is commonly done by the CSD method, which consists in taking the second-order spatial derivative of the recorded local field potentials (LFPs). Although the CSD method has been tremendously successful in mapping the current generators underlying inter-laminar LFPs, its application to planar recordings is more challenging. While for inter-laminar recordings the CSD method seems reasonably robust against violations of its assumptions, is it unclear as to what extent this holds for planar recordings. One of the objectives of this study is to characterize the conditions under which the CSD method can be successfully applied to Utah array data. Using forward modeling, we find that for spatially coherent CSDs, the CSD method yields inaccurate reconstructions due to volume-conducted contamination from currents in deeper cortical layers. An alternative approach is to “invert” a constructed forward model. The advantage of this approach is that any a priori knowledge about the geometrical and electrical properties of the tissue can be taken into account. Although several inverse methods have been proposed for LFP data, the applicability of existing electroencephalographic (EEG) and magnetoencephalographic (MEG) inverse methods to LFP data is largely unexplored. Another objective of our study therefore, is to assess the applicability of the most commonly used EEG/MEG inverse methods to Utah array data. Our main conclusion is that these inverse methods provide more accurate CSD reconstructions than the CSD method. We illustrate the inverse methods using event-related potentials recorded from primary visual cortex of a macaque monkey during a motion discrimination task.
Collapse
Affiliation(s)
- Rikkert Hindriks
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain
| | - Joscha Schmiedt
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Xerxes D Arsiwalla
- Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra, Barcelona, Spain
| | - Alina Peter
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Paul F M J Verschure
- Synthetic Perceptive Emotive and Cognitive Systems (SPECS) Lab, Center of Autonomous Systems and Neurorobotics, Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu Fabra (UPF), Barcelona, Spain.,Institute for Bioengineering of Catalonia, 08028 Barcelona, Spain.,Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pascal Fries
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany
| | - Michael C Schmid
- Ernst StrÜngmann Institute (ESI) for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.,Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Gustavo Deco
- Center for Brain and Cognition, Computational Neuroscience Group, Department of Information and Communication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.,Institucio Catalana de Recerca i Estudis Avancats (ICREA), Universitat Pompeu Fabra (UPF), Barcelona, Spain
| |
Collapse
|
12
|
Silva Pereira S, Hindriks R, Mühlberg S, Maris E, van Ede F, Griffa A, Hagmann P, Deco G. Effect of Field Spread on Resting-State Magneto Encephalography Functional Network Analysis: A Computational Modeling Study. Brain Connect 2017; 7:541-557. [PMID: 28875718 DOI: 10.1089/brain.2017.0525] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
A popular way to analyze resting-state electroencephalography (EEG) and magneto encephalography (MEG) data is to treat them as a functional network in which sensors are identified with nodes and the interaction between channel time series and the network connections. Although conceptually appealing, the network-theoretical approach to sensor-level EEG and MEG data is challenged by the fact that EEG and MEG time series are mixtures of source activity. It is, therefore, of interest to assess the relationship between functional networks of source activity and the ensuing sensor-level networks. Since these topological features are of high interest in experimental studies, we address the question of to what extent the network topology can be reconstructed from sensor-level functional connectivity (FC) measures in case of MEG data. Simple simulations that consider only a small number of regions do not allow to assess network properties; therefore, we use a diffusion magnetic resonance imaging-constrained whole-brain computational model of resting-state activity. Our motivation lies behind the fact that still many contributions found in the literature perform network analysis at sensor level, and we aim at showing the discrepancies between source- and sensor-level network topologies by using realistic simulations of resting-state cortical activity. Our main findings are that the effect of field spread on network topology depends on the type of interaction (instantaneous or lagged) and leads to an underestimation of lagged FC at sensor level due to instantaneous mixing of cortical signals, instantaneous interaction is more sensitive to field spread than lagged interaction, and discrepancies are reduced when using planar gradiometers rather than axial gradiometers. We, therefore, recommend using lagged interaction measures on planar gradiometer data when investigating network properties of resting-state sensor-level MEG data.
Collapse
Affiliation(s)
- Silvana Silva Pereira
- 1 Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Rikkert Hindriks
- 1 Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Stefanie Mühlberg
- 1 Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain
| | - Eric Maris
- 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Freek van Ede
- 2 Donders Institute for Brain, Cognition and Behaviour, Radboud University, Nijmegen, The Netherlands
| | - Alessandra Griffa
- 3 Department of Radiology, Lausanne University Hospital (CHUV-UNIL), Lausanne, Switzerland .,4 Signal Processing Laboratory 5 , Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland
| | - Patric Hagmann
- 3 Department of Radiology, Lausanne University Hospital (CHUV-UNIL), Lausanne, Switzerland
| | - Gustavo Deco
- 1 Computational Neuroscience Group, Center for Brain and Cognition, Universitat Pompeu Fabra, Barcelona, Spain .,5 Institució Catalana de la Recerca i Estudis Avanats (ICREA), Barcelona, Spain
| |
Collapse
|