1
|
Lachowicz D, Kmita A, Gajewska M, Trynkiewicz E, Przybylski M, Russek SE, Stupic KF, Woodrum DA, Gorny KR, Celinski ZJ, Hankiewicz JH. Aqueous Dispersion of Manganese-Zinc Ferrite Nanoparticles Protected by PEG as a T 2 MRI Temperature Contrast Agent. Int J Mol Sci 2023; 24:16458. [PMID: 38003646 PMCID: PMC10671015 DOI: 10.3390/ijms242216458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
Mixed manganese-zinc ferrite nanoparticles coated with PEG were studied for their potential usefulness in MRI thermometry as temperature-sensitive contrast agents. Particles in the form of an 8.5 nm core coated with a 3.5 nm layer of PEG were fabricated using a newly developed, one-step method. The composition of Mn0.48Zn0.46Fe2.06O4 was found to have a strong thermal dependence of magnetization in the temperature range between 5 and 50 °C. Nanoparticles suspended in an agar gel mimicking animal tissue and showing non-significant impact on cell viability in the biological test were studied with NMR and MRI over the same temperature range. For the concentration of 0.017 mg/mL of Fe, the spin-spin relaxation time T2 increased from 3.1 to 8.3 ms, while longitudinal relaxation time T1 shows a moderate decrease from 149.0 to 125.1 ms. A temperature map of the phantom exposed to the radial temperature gradient obtained by heating it with an 808 nm laser was calculated from T2 weighted spin-echo differential MR images. Analysis of temperature maps yields thermal/spatial resolution of 3.2 °C at the distance of 2.9 mm. The experimental relaxation rate R2 data of water protons were compared with those obtained from calculations using a theoretical model incorporating the motion averaging regime.
Collapse
Affiliation(s)
- Dorota Lachowicz
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Angelika Kmita
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Marta Gajewska
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Elżbieta Trynkiewicz
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
| | - Marek Przybylski
- Academic Centre for Materials and Nanotechnology, AGH University of Krakow, 30-059 Krakow, Poland; (D.L.); (M.G.); (E.T.); (M.P.)
- Faculty of Physics and Applied Computer Science, AGH University of Krakow, 30-059 Krakow, Poland
| | - Stephen E. Russek
- National Institute of Standards and Technology, 325 Broadway St, Boulder, CO 80305, USA; (S.E.R.)
| | - Karl F. Stupic
- National Institute of Standards and Technology, 325 Broadway St, Boulder, CO 80305, USA; (S.E.R.)
| | - David A. Woodrum
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (D.A.W.); (K.R.G.)
| | - Krzysztof R. Gorny
- Department of Radiology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, USA; (D.A.W.); (K.R.G.)
| | - Zbigniew J. Celinski
- Center for the BioFrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; (Z.J.C.); (J.H.H.)
| | - Janusz H. Hankiewicz
- Center for the BioFrontiers Institute, University of Colorado Colorado Springs, 1420 Austin Bluffs Parkway, Colorado Springs, CO 80918, USA; (Z.J.C.); (J.H.H.)
| |
Collapse
|
2
|
Li S, Xu X, Li C, Xu Z, Wu K, Ye Q, Zhang Y, Jiang X, Cang C, Tian C, Wen J. In vivo labeling and quantitative imaging of neuronal populations using MRI. Neuroimage 2023; 281:120374. [PMID: 37729795 DOI: 10.1016/j.neuroimage.2023.120374] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 08/30/2023] [Accepted: 09/10/2023] [Indexed: 09/22/2023] Open
Abstract
The study of neural circuits, which underlies perception, cognition, emotion, and behavior, is essential for understanding the mammalian brain, a complex organ consisting of billions of neurons. To study the structure and function of the brain, in vivo neuronal labeling and imaging techniques are crucial as they provide true physiological information that ex vivo methods cannot offer. In this paper, we present a new strategy for in vivo neuronal labeling and quantification using MRI. We demonstrate the efficacy of this method by delivering the oatp1a1 gene to the target neurons using rAAV2-retro virus. OATP1A1 protein expression on the neuronal membrane increased the uptake of a specific MRI contrast agent (Gd-EOB-DTPA), leading to hyperintense signals on T1W images of labeled neuronal populations. We also used dynamic contrast enhancement-based methods to obtain quantitative information on labeled neuronal populations in vivo.
Collapse
Affiliation(s)
- Shana Li
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiang Xu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Canjun Li
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ziyan Xu
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Ke Wu
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Qiong Ye
- Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China
| | - Yan Zhang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Xiaohua Jiang
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Chunlei Cang
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China
| | - Changlin Tian
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China; Key Laboratory of High Field Magnetic Resonance Image of Anhui Province, High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui, PR China.
| | - Jie Wen
- The First Affiliated Hospital of USTC (Anhui Provincial Hospital), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, PR China.
| |
Collapse
|
3
|
Feng X, Li M, Lin Z, Lu Y, Zhuang Y, Lei J, Liu X, Zhao H. Tetramethylpyrazine promotes axonal remodeling and modulates microglial polarization via JAK2-STAT1/3 and GSK3-NFκB pathways in ischemic stroke. Neurochem Int 2023; 170:105607. [PMID: 37657766 DOI: 10.1016/j.neuint.2023.105607] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/18/2023] [Accepted: 08/30/2023] [Indexed: 09/03/2023]
Abstract
Ischemic stroke results in demyelination that underlies neurological disfunction. Promoting oligodendrogenesis will rescue the injured axons and accelerate remyelination after stroke. Microglia react to ischemia/hypoxia and polarize to M1/M2 phenotypes influencing myelin injury and repair. Tetramethylpyrazine (TMP) has neuroprotective effects in treating cerebrovascular disorders. This study aims to evaluate whether TMP promotes the renovation of damaged brain tissues especially on remyelination and modulates microglia phenotypes following ischemic stroke. Here magnetic resonance imaging (MRI)-diffusion tensor imaging (DTI) and histopathological evaluation are performed to characterize the process of demyelination and remyelination. Immunofluorescence staining is used to prove oligodendrogenesis and microglial polarization. Western blotting is conducted to examine interleukin (IL)-6, IL-10, transforming growth factor β (TGF-β) and Janus protein tyrosine kinase (JAK) 2-signal transducer and activator of transcription (STAT) 1/3-glycogen synthase kinase (GSK) 3-nuclear transcription factor κB (NFκB) signals. Results show TMP alleviates the injury of axons and myelin sheath, increases NG2+, Ki67+/NG2+, CNPase+, Ki67+/CNPase+, Iba1+/Arg-1+ cells and decreases Iba1+ and Iba1+/CD16+ cells in periinfarctions of rats. Particularly, TMP downregulates IL-6 and upregulates IL-10 and TGF-β expressions, besides, enhances JAK2-STAT3 and suppresses STAT1-GSK3-NFκB activation in middle cerebral artery occlusion (MCAo) rats. Then we demonstrate that TMP reverses M1/M2 phenotype via JAK2-STAT1/3 and GSK3-NFκB pathways in lipopolysaccharide (LPS) plus interferon-γ (IFN-γ)-stimulated BV2 microglia. Blocking JAK2 with AG490 counteracts TMP's facilitation on M2 polarization of microglia. This study warrants the promising therapy for stroke with TMP treatment.
Collapse
Affiliation(s)
- Xuefeng Feng
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, China; School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China
| | - Mingcong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Ziyue Lin
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Yuming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China
| | - Jianfeng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, 100069, China
| | - Xiaonan Liu
- Department of Laboratory Animal, Capital Medical University, Beijing, 100069, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, China; Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, 100069, China.
| |
Collapse
|
4
|
Oleson S, Cao J, Wang X, Liu Z. In vivo tracing of the ascending vagal projections to the brain with manganese enhanced magnetic resonance imaging. Front Neurosci 2023; 17:1254097. [PMID: 37781260 PMCID: PMC10540305 DOI: 10.3389/fnins.2023.1254097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction The vagus nerve, the primary neural pathway mediating brain-body interactions, plays an essential role in transmitting bodily signals to the brain. Despite its significance, our understanding of the detailed organization and functionality of vagal afferent projections remains incomplete. Methods In this study, we utilized manganese-enhanced magnetic resonance imaging (MEMRI) as a non-invasive and in vivo method for tracing vagal nerve projections to the brainstem and assessing their functional dependence on cervical vagus nerve stimulation (VNS). Manganese chloride solution was injected into the nodose ganglion of rats, and T1-weighted MRI scans were performed at both 12 and 24 h after the injection. Results Our findings reveal that vagal afferent neurons can uptake and transport manganese ions, serving as a surrogate for calcium ions, to the nucleus tractus solitarius (NTS) in the brainstem. In the absence of VNS, we observed significant contrast enhancements of around 19-24% in the NTS ipsilateral to the injection side. Application of VNS for 4 h further promoted nerve activity, leading to greater contrast enhancements of 40-43% in the NTS. Discussion These results demonstrate the potential of MEMRI for high-resolution, activity-dependent tracing of vagal afferents, providing a valuable tool for the structural and functional assessment of the vagus nerve and its influence on brain activity.
Collapse
Affiliation(s)
- Steven Oleson
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States
| | - Jiayue Cao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Xiaokai Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
| | - Zhongming Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, United States
- Department of Electrical Engineering Computer Science, University of Michigan, Ann Arbor, MI, United States
| |
Collapse
|
5
|
Woo S, Noh Y, Koh SB, Lee SK, Il Lee J, Kim HH, Kim SY, Cho J, Kim C. Associations of ambient manganese exposure with brain gray matter thickness and white matter hyperintensities. Hypertens Res 2023; 46:1870-1879. [PMID: 37185603 DOI: 10.1038/s41440-023-01291-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 04/03/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023]
Abstract
Manganese (Mn) exposure is associated with increased risks of dementia and cerebrovascular disease. However, evidence regarding the impact of ambient Mn exposure on brain imaging markers is scarce. We aimed to investigate the association between ambient Mn exposure and brain imaging markers representing neurodegeneration and cerebrovascular lesions. We recruited a total of 936 adults (442 men and 494 women) without dementia, movement disorders, or stroke from the Republic of Korea. Ambient Mn concentrations were predicted at each participant's residential address using spatial modeling. Neurodegeneration-related brain imaging markers, such as the regional cortical thickness, were estimated using 3 T brain magnetic resonance images. White matter hyperintensity volume (an indicator of cerebrovascular lesions) was also obtained from a certain number of participants (n = 397). Linear regression analyses were conducted after adjusting for potential confounders. A log-transformed ambient Mn concentration was associated with thinner parietal (β = -0.02 mm; 95% confidence interval [CI], -0.05 to -0.01) and occipital cortices (β = -0.03 mm; 95% CI, -0.04 to -0.01) after correcting for multiple comparisons. These associations remained statistically significant in men. An increase in the ambient Mn concentration was also associated with a greater volume of deep white matter hyperintensity in men (β = 772.4 mm3, 95% CI: 36.9 to 1508.0). None of the associations were significant in women. Our findings suggest that ambient Mn exposure may induce cortical atrophy in the general adult population.
Collapse
Affiliation(s)
- Shinyoung Woo
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Young Noh
- Department of Neurology, Gil Medical Center, Gachon University College of Medicine, Incheon, Korea
| | - Sang-Baek Koh
- Department of Preventive Medicine, Wonju College of Medicine, Yonsei University, Wonju, Korea
| | - Seung-Koo Lee
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Jung Il Lee
- Korea Testing and Research Institute, Gwacheon, Korea
| | - Ho Hyun Kim
- Department of Nano-chemical, biological and environmental engineering Seokyeong University, Seoul, Korea
| | - Sun- Young Kim
- Department of Cancer Control and Population Health, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Jaelim Cho
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea.
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| | - Changsoo Kim
- Department of Public Health, Yonsei University College of Medicine, Seoul, Korea.
- Department of Preventive Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute for Environmental Research, Yonsei University College of Medicine, Seoul, Republic of Korea.
- Institute of Human Complexity and Systems Science, Yonsei University, Incheon, Republic of Korea.
| |
Collapse
|
6
|
Barbaro F, Canton L, Carante MP, Colombi A, De Nardo L, Fontana A, Meléndez-Alafort L. The innovative 52g Mn for positron emission tomography (PET) imaging: Production cross section modeling and dosimetric evaluation. Med Phys 2023; 50:1843-1854. [PMID: 36433924 DOI: 10.1002/mp.16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 09/14/2022] [Accepted: 10/10/2022] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Manganese is a paramagnetic element suitable for magnetic resonance imaging (MRI) of neuronal function. However, high concentrations of Mn2 + can be neurotoxic. 52g Mn may be a valid alternative as positron emission tomography (PET) imaging agent, to obtain information similar to that delivered by MRI but using trace levels of Mn2 + , thus reducing its toxicity. Recently, the reaction n a t $^{nat}$ V(α,x)52g Mn has been proposed as a possible alternative to the standard n a t $^{nat}$ Cr(p,x)52g Mn one, but improvements in the modeling were needed to better compare the two production routes. PURPOSE This work focuses on the development of precise simulations and models to compare the 52g Mn production from both reactions in terms of amount of activity and radionuclidic purity (RNP), as well as in terms of dose increase (DI) due to the co-produced radioactive contaminants, versus pure 52g MnCl2 . METHODS The nuclear code Talys has been employed to optimize the n a t $^{nat}$ V(α,x)52g Mn cross section by tuning the parameters of the microscopic level densities. Thick-target yields have been calculated from the expression of the rates as energy convolution of cross sections and stopping powers, and finally integrating the time evolution of the relevant decay chains. Dosimetric assessments of [ x x $^{xx}$ Mn]Cl2 have been accomplished with OLINDA software 2.2.0 using female and male adult phantoms and biodistribution data for 52g MnCl2 in normal mice. At the end, the yield of x x $^{xx}$ Mn radioisotopes estimated for the two production routes have been combined with the dosimetric results, to assess the DI at different times after the end of the irradiation. RESULTS Good agreement was obtained between cross-section calculations and measurements. The comparison of the two reaction channels suggests that n a t $^{nat}$ V(α,x)52g Mn leads to higher yield and higher purity, resulting in more favorable radiation dosimetry for patients. CONCLUSIONS Both n a t $^{nat}$ V(α,x) and n a t $^{nat}$ Cr(p,x) production routes provide clinically acceptable 52g MnCl2 for PET imaging. However, the n a t $^{nat}$ V(α,x)52g Mn reaction provides a DI systematically lower than the one obtainable with n a t $^{nat}$ Cr(p,x)52g Mn and a longer time window in which it can be used clinically (RNP ≥ 99%).
Collapse
Affiliation(s)
- Francesca Barbaro
- INFN, Sezione di Padova, Padova, Italy
- Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy
| | | | - Mario Pietro Carante
- Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy
- INFN, Sezione di Pavia, Pavia, Italy
| | - Alessandro Colombi
- Dipartimento di Fisica dell'Università di Pavia, Pavia, Italy
- INFN, Sezione di Pavia, Pavia, Italy
| | - Laura De Nardo
- INFN, Sezione di Padova, Padova, Italy
- Dipartimento di Fisica e Astronomia dell'Università di Padova, Padova, Italy
| | | | | |
Collapse
|
7
|
Khan YF, Kaushik B, Chowdhary CL, Srivastava G. Ensemble Model for Diagnostic Classification of Alzheimer's Disease Based on Brain Anatomical Magnetic Resonance Imaging. Diagnostics (Basel) 2022; 12:diagnostics12123193. [PMID: 36553199 PMCID: PMC9777931 DOI: 10.3390/diagnostics12123193] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/08/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Alzheimer's is one of the fast-growing diseases among people worldwide leading to brain atrophy. Neuroimaging reveals extensive information about the brain's anatomy and enables the identification of diagnostic features. Artificial intelligence (AI) in neuroimaging has the potential to significantly enhance the treatment process for Alzheimer's disease (AD). The objective of this study is two-fold: (1) to compare existing Machine Learning (ML) algorithms for the classification of AD. (2) To propose an effective ensemble-based model for the same and to perform its comparative analysis. In this study, data from the Alzheimer's Diseases Neuroimaging Initiative (ADNI), an online repository, is utilized for experimentation consisting of 2125 neuroimages of Alzheimer's disease (n = 975), mild cognitive impairment (n = 538) and cognitive normal (n = 612). For classification, the framework incorporates a Decision Tree (DT), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (K-NN) followed by some variations of Support Vector Machine (SVM), such as SVM (RBF kernel), SVM (Polynomial Kernel), and SVM (Sigmoid kernel), as well as Gradient Boost (GB), Extreme Gradient Boosting (XGB) and Multi-layer Perceptron Neural Network (MLP-NN). Afterwards, an Ensemble Based Generic Kernel is presented where Master-Slave architecture is combined to attain better performance. The proposed model is an ensemble of Extreme Gradient Boosting, Decision Tree and SVM_Polynomial kernel (XGB + DT + SVM). At last, the proposed method is evaluated using cross-validation using statistical techniques along with other ML models. The presented ensemble model (XGB + DT + SVM) outperformed existing state-of-the-art algorithms with an accuracy of 89.77%. The efficiency of all the models was optimized using Grid-based tuning, and the results obtained after such process showed significant improvement. XGB + DT + SVM with optimized parameters outperformed all other models with an efficiency of 95.75%. The implication of the proposed ensemble-based learning approach clearly shows the best results compared to other ML models. This experimental comparative analysis improved understanding of the above-defined methods and enhanced their scope and significance in the early detection of Alzheimer's disease.
Collapse
Affiliation(s)
| | - Baijnath Kaushik
- School of CSE, Shri Mata Vaishno Devi University, Katra 182320, India
| | - Chiranji Lal Chowdhary
- School of Information Technology and Engineering, Vellore Institute of Technology, Vellore 632014, India
- Correspondence:
| | - Gautam Srivastava
- Department of Mathematics and Computer Science, Brandon University, Brandon, MB R7A 6A9, Canada
- Research Centre for Interneural Computing, China Medical University, Taichung 40402, Taiwan
- Department of Computer Science and Math, Lebanese American University, Beirut 1102, Lebanon
| |
Collapse
|
8
|
Zheng N, Li M, Wu Y, Kaewborisuth C, Li Z, Gui Z, Wu J, Cai A, Lin K, Su KP, Xiang H, Tian X, Manyande A, Xu F, Wang J. A novel technology for in vivo detection of cell type-specific neural connection with AQP1-encoding rAAV2-retro vector and metal-free MRI. Neuroimage 2022; 258:119402. [PMID: 35732245 DOI: 10.1016/j.neuroimage.2022.119402] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/18/2022] [Accepted: 06/18/2022] [Indexed: 01/10/2023] Open
Abstract
A mammalian brain contains numerous neurons with distinct cell types for complex neural circuits. Virus-based circuit tracing tools are powerful in tracking the interaction among the different brain regions. However, detecting brain-wide neural networks in vivo remains challenging since most viral tracing systems rely on postmortem optical imaging. We developed a novel approach that enables in vivo detection of brain-wide neural connections based on metal-free magnetic resonance imaging (MRI). The recombinant adeno-associated virus (rAAV) with retrograde ability, the rAAV2-retro, encoding the human water channel aquaporin 1 (AQP1) MRI reporter gene was generated to label neural connections. The mouse was micro-injected with the virus at the Caudate Putamen (CPU) region and subjected to detection with Diffusion-weighted MRI (DWI). The prominent structure of the CPU-connected network was clearly defined. In combination with a Cre-loxP system, rAAV2-retro expressing Cre-dependent AQP1 provides a CPU-connected network of specific type neurons. Here, we established a sensitive, metal-free MRI-based strategy for in vivo detection of cell type-specific neural connections in the whole brain, which could visualize the dynamic changes of neural networks in rodents and potentially in non-human primates.
Collapse
Affiliation(s)
- Ning Zheng
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Mei Li
- The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yang Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Challika Kaewborisuth
- Virology and Cell Technology Research Team, National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), Pathumthani 12120, Thailand
| | - Zhen Li
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhu Gui
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Wu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Aoling Cai
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China
| | - Kangguang Lin
- Department of Affective Disorders, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, China
| | - Kuan-Pin Su
- Department of Psychiatry, China Medical University Hospital, Taichung City, Taiwan, China
| | - Hongbing Xiang
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuebi Tian
- Department of Anesthesiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Anne Manyande
- School of Human and Social Sciences, University of West London, Middlesex, TW8 9GA, UK
| | - Fuqiang Xu
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; The Brain Cognition and Brain Disease Institute (BCBDI), NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen Key Laboratory of Viral Vectors for Biomedicine, Shenzhen Institute of Advanced Technology, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai 200031, China
| | - Jie Wang
- Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences-Wuhan National Laboratory for Optoelectronics, Wuhan Institute of Physics and Mathematics, Wuhan 430071, China; Institute of Neuroscience and Brain Diseases, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei, China.
| |
Collapse
|
9
|
Feng XF, Lei JF, Li MZ, Zhan Y, Yang L, Lu Y, Li MC, Zhuang YM, Wang L, Zhao H. Magnetic Resonance Imaging Investigation of Neuroplasticity After Ischemic Stroke in Tetramethylpyrazine-Treated Rats. Front Pharmacol 2022; 13:851746. [PMID: 35559236 PMCID: PMC9086494 DOI: 10.3389/fphar.2022.851746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 03/24/2022] [Indexed: 11/17/2022] Open
Abstract
Ischemic stroke elicits white matter injury typically signed by axonal disintegration and demyelination; thus, the development of white matter reorganization is needed. 2,3,5,6-Tetramethylpyrazine (TMP) is widely used to treat ischemic stroke. This study was aimed to investigate whether TMP could protect the white matter and promote axonal repair after cerebral ischemia. Male Sprague–Dawley rats were subjected to permanent middle cerebral artery occlusion (MCAO) and treated with TMP (10, 20, 40 mg/kg) intraperitoneally for 14 days. The motor function related to gait was evaluated by the gait analysis system. Multiparametric magnetic resonance imaging (MRI) was conducted to noninvasively identify gray-white matter structural integrity, axonal reorganization, and cerebral blood flow (CBF), followed by histological analysis. The expressions of axonal growth-associated protein 43 (GAP-43), synaptophysin (SYN), axonal growth-inhibitory signals, and guidance factors were measured by Western blot. Our results showed TMP reduced infarct volume, relieved gray-white matter damage, promoted axonal remodeling, and restored CBF along the peri-infarct cortex, external capsule, and internal capsule. These MRI findings were confirmed by histopathological data. Moreover, motor function, especially gait impairment, was improved by TMP treatment. Notably, TMP upregulated GAP-43 and SYN and enhanced axonal guidance cues such as Netrin-1/DCC and Slit-2/Robo-1 but downregulated intrinsic growth-inhibitory signals NogoA/NgR/RhoA/ROCK-2. Taken together, our data indicated that TMP facilitated poststroke axonal remodeling and motor functional recovery. Moreover, our findings suggested that TMP restored local CBF, augmented guidance cues, and restrained intrinsic growth-inhibitory signals, all of which might improve the intracerebral microenvironment of ischemic areas and then benefit white matter remodeling.
Collapse
Affiliation(s)
- Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu-Ming Zhuang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
10
|
Yang L, Lei JF, Ouyang JY, Li MZ, Zhan Y, Feng XF, Lu Y, Li MC, Wang L, Zou HY, Zhao H. Effect of Neurorepair for Motor Functional Recovery Enhanced by Total Saponins From Trillium tschonoskii Maxim. Treatment in a Rat Model of Focal Ischemia. Front Pharmacol 2021; 12:763181. [PMID: 34955834 PMCID: PMC8703076 DOI: 10.3389/fphar.2021.763181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Trillium tschonoskii Maxim. (TTM), is a perennial herb from Liliaceae, that has been widely used as a traditional Chinese medicine treating cephalgia and traumatic hemorrhage. The present work was designed to investigate whether the total saponins from Trillium tschonoskii Maxim. (TSTT) would promote brain remodeling and improve gait impairment in the chronic phase of ischemic stroke. A focal ischemic model of male Sprague-Dawley (SD) rats was established by permanent middle cerebral artery occlusion (MCAO). Six hours later, rats were intragastrically treated with TSTT (120, 60, and 30 mg/kg) and once daily up to day 30. The gait changes were assessed by the CatWalk-automated gait analysis system. The brain tissues injuries, cerebral perfusion and changes of axonal microstructures were detected by multimodal magnetic resonance imaging (MRI), followed by histological examinations. The axonal regeneration related signaling pathways including phosphatidylinositol 3-kinases (PI3K)/protein kinase B (AKT)/glycogen synthase kinase-3 (GSK-3)/collapsin response mediator protein-2 (CRMP-2) were measured by western blotting. TSTT treatment significantly improved gait impairment of rats. MRI analysis revealed that TSTT alleviated tissues injuries, significantly improved cerebral blood flow (CBF), enhanced microstructural integrity of axon and myelin sheath in the ipsilesional sensorimotor cortex and internal capsule. In parallel to MRI findings, TSTT preserved myelinated axons and promoted oligodendrogenesis. Specifically, TSTT interventions markedly up-regulated expression of phosphorylated GSK-3, accompanied by increased expression of phosphorylated PI3K, AKT, but reduced phosphorylated CRMP-2 expression. Taken together, our results suggested that TSTT facilitated brain remodeling. This correlated with improving CBF, encouraging reorganization of axonal microstructure, promoting oligodendrogenesis and activating PI3K/AKT/GSK-3/CRMP-2 signaling, thereby improving poststroke gait impairments.
Collapse
Affiliation(s)
- Le Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Jian-Feng Lei
- Medical Imaging Laboratory of Core Facility Center, Capital Medical University, Beijing, China
| | - Jun-Yao Ouyang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Man-Zhong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yu Zhan
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Xue-Feng Feng
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Yun Lu
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Ming-Cong Li
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Lei Wang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hai-Yan Zou
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| | - Hui Zhao
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China.,Beijing Key Lab of TCM Collateral Disease Theory Research, Beijing, China
| |
Collapse
|
11
|
Pyles JM, Massicano AV, Appiah JP, Bartels JL, Alford A, Lapi SE. Production of 52Mn using a semi-automated module. Appl Radiat Isot 2021; 174:109741. [DOI: 10.1016/j.apradiso.2021.109741] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/01/2021] [Accepted: 04/14/2021] [Indexed: 12/14/2022]
|
12
|
In vivo multi-parametric manganese-enhanced MRI for detecting amyloid plaques in rodent models of Alzheimer's disease. Sci Rep 2021; 11:12419. [PMID: 34127752 PMCID: PMC8203664 DOI: 10.1038/s41598-021-91899-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 05/28/2021] [Indexed: 12/14/2022] Open
Abstract
Amyloid plaques are a hallmark of Alzheimer's disease (AD) that develop in its earliest stages. Thus, non-invasive detection of these plaques would be invaluable for diagnosis and the development and monitoring of treatments, but this remains a challenge due to their small size. Here, we investigated the utility of manganese-enhanced MRI (MEMRI) for visualizing plaques in transgenic rodent models of AD across two species: 5xFAD mice and TgF344-AD rats. Animals were given subcutaneous injections of MnCl2 and imaged in vivo using a 9.4 T Bruker scanner. MnCl2 improved signal-to-noise ratio but was not necessary to detect plaques in high-resolution images. Plaques were visible in all transgenic animals and no wild-types, and quantitative susceptibility mapping showed that they were more paramagnetic than the surrounding tissue. This, combined with beta-amyloid and iron staining, indicate that plaque MR visibility in both animal models was driven by plaque size and iron load. Longitudinal relaxation rate mapping revealed increased manganese uptake in brain regions of high plaque burden in transgenic animals compared to their wild-type littermates. This was limited to the rhinencephalon in the TgF344-AD rats, while it was most significantly increased in the cortex of the 5xFAD mice. Alizarin Red staining suggests that manganese bound to plaques in 5xFAD mice but not in TgF344-AD rats. Multi-parametric MEMRI is a simple, viable method for detecting amyloid plaques in rodent models of AD. Manganese-induced signal enhancement can enable higher-resolution imaging, which is key to visualizing these small amyloid deposits. We also present the first in vivo evidence of manganese as a potential targeted contrast agent for imaging plaques in the 5xFAD model of AD.
Collapse
|
13
|
Petrus E, Saar G, Daoust A, Dodd S, Koretsky AP. A hierarchy of manganese competition and entry in organotypic hippocampal slice cultures. NMR IN BIOMEDICINE 2021; 34:e4476. [PMID: 33538073 PMCID: PMC7988546 DOI: 10.1002/nbm.4476] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 01/02/2021] [Indexed: 05/15/2023]
Abstract
Contrast agents improve clinical and basic research MRI. The manganese ion (Mn2+ ) is an essential, endogenous metal found in cells and it enhances MRI contrast because of its paramagnetic properties. Manganese-enhanced MRI (MEMRI) has been widely used to image healthy and diseased states of the body and the brain in a variety of animal models. There has also been some work in translating the useful properties of MEMRI to humans. Mn2+ accumulates in brain regions with high neural activity and enters cells via voltage-dependent channels that flux calcium (Ca2+ ). In addition, metal transporters for zinc (Zn2+ ) and iron (Fe2+ ) can also transport Mn2+ . There is also transfer through channels specific for Mn2+ . Although Mn2+ accumulates in many tissues including brain, the mechanisms and preferences of its mode of entry into cells are not well characterized. The current study used MRI on living organotypic hippocampal slice cultures to detect which transport mechanisms are preferentially used by Mn2+ to enter cells. The use of slice culture overcomes the presence of the blood brain barrier, which limits inferences made with studies of the intact brain in vivo. A range of Mn2+ concentrations were used and their effects on neural activity were assessed to avoid using interfering doses of Mn2+ . Zn2+ and Fe2+ were the most efficient competitors for Mn2+ uptake into the cultured slices, while the presence of Ca2+ or Ca2+ channel antagonists had a more moderate effect. Reducing slice activity via excitatory receptor antagonists was also effective at lowering Mn2+ uptake. In conclusion, a hierarchy of those agents which influence Mn2+ uptake was established to enhance understanding of how Mn2+ enters cells in a cultured slice preparation.
Collapse
Affiliation(s)
- Emily Petrus
- Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Galit Saar
- Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Alexia Daoust
- Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Steve Dodd
- Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| | - Alan P. Koretsky
- Laboratory of Functional and Molecular ImagingNational Institute of Neurological Disorders and Stroke, National Institutes of HealthBethesdaMarylandUSA
| |
Collapse
|
14
|
New Strategies in the Design of Paramagnetic CAs. CONTRAST MEDIA & MOLECULAR IMAGING 2020; 2020:4327479. [PMID: 33071681 PMCID: PMC7537686 DOI: 10.1155/2020/4327479] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 07/31/2020] [Accepted: 08/04/2020] [Indexed: 11/17/2022]
Abstract
Nowadays, magnetic resonance imaging (MRI) is the first diagnostic imaging modality for numerous indications able to provide anatomical information with high spatial resolution through the use of magnetic fields and gradients. Indeed, thanks to the characteristic relaxation time of each tissue, it is possible to distinguish between healthy and pathological ones. However, the need to have brighter images to increase differences and catch important diagnostic details has led to the use of contrast agents (CAs). Among them, Gadolinium-based CAs (Gd-CAs) are routinely used in clinical MRI practice. During these last years, FDA highlighted many risks related to the use of Gd-CAs such as nephrotoxicity, heavy allergic effects, and, recently, about the deposition within the brain. These alerts opened a debate about the opportunity to formulate Gd-CAs in a different way but also to the use of alternative and safer compounds to be administered, such as manganese- (Mn-) based agents. In this review, the physical principle behind the role of relaxivity and the T1 boosting will be described in terms of characteristic correlation times and inner and outer spheres. Then, the recent advances in the entrapment of Gd-CAs within nanostructures will be analyzed in terms of relaxivity boosting obtained without the chemical modification of CAs as approved in the chemical practice. Finally, a critical evaluation of the use of manganese-based CAs will be illustrated as an alternative ion to Gd due to its excellent properties and endogenous elimination pathway.
Collapse
|
15
|
Krishnan V, Xu J, Mendoza AG, Koretsky A, Anderson SA, Pelled G. High-resolution MEMRI characterizes laminar specific ascending and descending spinal cord pathways in rats. J Neurosci Methods 2020; 340:108748. [PMID: 32335077 PMCID: PMC7281828 DOI: 10.1016/j.jneumeth.2020.108748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Revised: 04/19/2020] [Accepted: 04/19/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND The spinal cord is composed of nine distinct cellular laminae that currently can only be visualized by histological methods. Developing imaging methods that can visualize laminar architecture in-vivo is of significant interest. Manganese enhanced magnetic resonance imaging (MEMRI) yields valuable architectural and functional information about the brain and has great potential in characterizing neural pathways in the spinal cord. Here we apply MEMRI to visualize laminae architecture in the thoracic region of the spinal cord with ultra-high resolution. NEW METHOD Manganese chloride (MnCl2) was delivered systemically and imaging of the lumbar and thoracic spinal cord levels was acquired in high field, 11.7 T MRI scanner, 48 h following MnCl2 administration. RESULTS Here we demonstrate laminar specific signal enhancement in the spinal cord of rats administered with MnCl2 with 69 μm in-plane resolution. We also report reduced T1 values over time in MnCl2 groups across laminae IIX. COMPARISONS WITH EXISTING METHODS This is the first study to demonstrate that MEMRI is capable of identifying spinal laminae at a high resolution of 69 μm in a living animal. This would enable the visualization of architecture and function of distinct regions with improved resolution, in healthy and diseased animal models. CONCLUSIONS The regions with the largest T1 enhancements were observed to correspond to laminae that contain either high cell density or large motor neurons, making MEMRI an excellent tool for studying spinal cord architecture, physiology and function in different animal models.
Collapse
Affiliation(s)
- Vijai Krishnan
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States
| | - Jiadi Xu
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Albert German Mendoza
- Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States
| | - Alan Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Stasia A Anderson
- National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD, United States
| | - Galit Pelled
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States; The Institute for Quantitative Health Science and Engineering, Michigan State University, East Lansing, MI, United States; Department of Radiology, Michigan State University, East Lansing, MI, United States; Johns Hopkins Medicine Department of Radiology and Radiological Science, Baltimore, MD, United States.
| |
Collapse
|
16
|
Rallapalli H, Darwin BC, Toro-Montoya E, Lerch JP, Turnbull DH. Longitudinal MEMRI analysis of brain phenotypes in a mouse model of Niemann-Pick Type C disease. Neuroimage 2020; 217:116894. [PMID: 32417449 PMCID: PMC7443857 DOI: 10.1016/j.neuroimage.2020.116894] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 04/23/2020] [Accepted: 04/28/2020] [Indexed: 11/15/2022] Open
Abstract
Niemann-Pick Type C (NPC) is a rare genetic disorder characterized by progressive cell death in various tissues, particularly in the cerebellar Purkinje cells, with no known cure. Mouse models for human NPC have been generated and characterized histologically, behaviorally, and using longitudinal magnetic resonance imaging (MRI). Previous imaging studies revealed significant brain volume differences between mutant and wild-type animals, but stopped short of making volumetric comparisons of the cerebellar sub-regions. In this study, we present longitudinal manganese-enhanced MRI (MEMRI) data from cohorts of wild-type, heterozygote carrier, and homozygote mutant NPC mice, as well as deformation-based morphometry (DBM) driven brain volume comparisons across genotypes, including the cerebellar cortex, white matter, and nuclei. We also present the first comparisons of MEMRI signal intensities, reflecting brain and cerebellum sub-regional Mn2+-uptake over time and across genotypes.
Collapse
Affiliation(s)
- Harikrishna Rallapalli
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA
| | - Benjamin C Darwin
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada
| | - Estefania Toro-Montoya
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA
| | - Jason P Lerch
- Mouse Imaging Centre, The Hospital for Sick Children, Toronto, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Daniel H Turnbull
- Skirball Institute of Biomolecular Medicine and Department of Radiology, New York University School of Medicine, New York, NY, USA; Biomedical Imaging & Technology Graduate Program, New York University School of Medicine, USA.
| |
Collapse
|
17
|
Tavazzi E, Zivadinov R, Dwyer MG, Jakimovski D, Singhal T, Weinstock-Guttman B, Bergsland N. MRI biomarkers of disease progression and conversion to secondary-progressive multiple sclerosis. Expert Rev Neurother 2020; 20:821-834. [PMID: 32306772 DOI: 10.1080/14737175.2020.1757435] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
INTRODUCTION Conventional imaging measures remain a key clinical tool for the diagnosis multiple sclerosis (MS) and monitoring of patients. However, most measures used in the clinic show unsatisfactory performance in predicting disease progression and conversion to secondary progressive MS. AREAS COVERED Sophisticated imaging techniques have facilitated the identification of imaging biomarkers associated with disease progression, such as global and regional brain volume measures, and with conversion to secondary progressive MS, such as leptomeningeal contrast enhancement and chronic inflammation. The relevance of emerging imaging approaches partially overcoming intrinsic limitations of traditional techniques is also discussed. EXPERT OPINION Imaging biomarkers capable of detecting tissue damage early on in the disease, with the potential to be applied in multicenter trials and at an individual level in clinical settings, are strongly needed. Several measures have been proposed, which exploit advanced imaging acquisitions and/or incorporate sophisticated post-processing, can quantify irreversible tissue damage. The progressively wider use of high-strength field MRI and the development of more advanced imaging techniques will help capture the missing pieces of the MS puzzle. The ability to more reliably identify those at risk for disability progression will allow for earlier intervention with the aim to favorably alter the disease course.
Collapse
Affiliation(s)
- Eleonora Tavazzi
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Robert Zivadinov
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,Translational Imaging Center, Clinical and Translational Science Institute, University at Buffalo, The State University of New York , Buffalo, NY, USA
| | - Michael G Dwyer
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Dejan Jakimovski
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Tarun Singhal
- PET Imaging Program in Neurologic Diseases and Partners Multiple Sclerosis Center, Ann Romney Center for Neurologic Disease, Department of Neurology, Brigham and Women's Hospital, Harvard Medical School , Boston, MA, USA
| | - Bianca Weinstock-Guttman
- Jacobs Comprehensive MS Treatment and Research Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA
| | - Niels Bergsland
- Buffalo Neuroimaging Analysis Center, Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, University at Buffalo, State University of New York , Buffalo, NY, USA.,IRCCS, Fondazione Don Carlo Gnocchi , Milan, Italy
| |
Collapse
|
18
|
Bachstetter AD, Morganti JM, Bodnar CN, Webster SJ, Higgins EK, Roberts KN, Snider H, Meier SE, Nation GK, Goulding DS, Hamm M, Powell DK, Vandsburger M, Van Eldik LJ, Abisambra JF. The effects of mild closed head injuries on tauopathy and cognitive deficits in rodents: Primary results in wild type and rTg4510 mice, and a systematic review. Exp Neurol 2020; 326:113180. [PMID: 31930992 PMCID: PMC7373372 DOI: 10.1016/j.expneurol.2020.113180] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/02/2019] [Accepted: 01/09/2020] [Indexed: 12/17/2022]
Abstract
In humans, the majority of sustained traumatic brain injuries (TBIs) are classified as 'mild' and most often a result of a closed head injury (CHI). The effects of a non-penetrating CHI are not benign and may lead to chronic pathology and behavioral dysfunction, which could be worsened by repeated head injury. Clinical-neuropathological correlation studies provide evidence that conversion of tau into abnormally phosphorylated proteotoxic intermediates (p-tau) could be part of the pathophysiology triggered by a single TBI and enhanced by repeated TBIs. However, the link between p-tau and CHI in rodents remains controversial. To address this question experimentally, we induced a single CHI or two CHIs to WT or rTg4510 mice. We found that 2× CHI increased tau phosphorylation in WT mice and rTg4510 mice. Behavioral characterization in WT mice found chronic deficits in the radial arm water maze in 2× CHI mice that had partially resolved in the 1× CHI mice. Moreover, using Manganese-Enhanced Magnetic Resonance Imaging with R1 mapping - a novel functional neuroimaging technique - we found greater deficits in the rTg4510 mice following 2× CHI compared to 1× CHI. To integrate our findings with prior work in the field, we conducted a systematic review of rodent mild repetitive CHI studies. Following Prisma guidelines, we identified 25 original peer-reviewed papers. Results from our experiments, as well as our systematic review, provide compelling evidence that tau phosphorylation is modified by experimental mild TBI studies; however, changes in p-tau levels are not universally reported. Together, our results provide evidence that repetitive TBIs can result in worse and more persistent neurological deficits compared to a single TBI, but the direct link between the worsened outcome and elevated p-tau could not be established.
Collapse
Affiliation(s)
- Adam D Bachstetter
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America.
| | - Josh M Morganti
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America
| | - Colleen N Bodnar
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Scott J Webster
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America
| | - Emma K Higgins
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Kelly N Roberts
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Henry Snider
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America
| | - Shelby E Meier
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Grant K Nation
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Department of Physiology, University of Kentucky, Lexington, KY, United States of America
| | - Danielle S Goulding
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America
| | - Matthew Hamm
- Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States of America
| | - David K Powell
- Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Department of Biomedical Engineering, University of Kentucky, Lexington, KY, United States of America
| | - Moriel Vandsburger
- Department of Bioengineering, University of California Berkeley, Berkeley, CA, United States of America
| | - Linda J Van Eldik
- Spinal Cord & Brain Injury Research Center, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, University of Kentucky, Lexington, KY, United States of America; Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, United States of America
| | - Jose F Abisambra
- Department of Physiology, University of Kentucky, Lexington, KY, United States of America; Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, United States of America.
| |
Collapse
|
19
|
Yang J, Li Q. Manganese-Enhanced Magnetic Resonance Imaging: Application in Central Nervous System Diseases. Front Neurol 2020; 11:143. [PMID: 32161572 PMCID: PMC7052353 DOI: 10.3389/fneur.2020.00143] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 02/07/2020] [Indexed: 12/12/2022] Open
Abstract
Manganese-enhanced magnetic resonance imaging (MEMRI) relies on the strong paramagnetism of Mn2+. Mn2+ is a calcium ion analog and can enter excitable cells through voltage-gated calcium channels. Mn2+ can be transported along the axons of neurons via microtubule-based fast axonal transport. Based on these properties, MEMRI is used to describe neuroanatomical structures, monitor neural activity, and evaluate axonal transport rates. The application of MEMRI in preclinical animal models of central nervous system (CNS) diseases can provide more information for the study of disease mechanisms. In this article, we provide a brief review of MEMRI use in CNS diseases ranging from neurodegenerative diseases to brain injury and spinal cord injury.
Collapse
Affiliation(s)
- Jun Yang
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| | - Qinqing Li
- Department of Radiology, The Third Affiliated Hospital of Kunming Medical University, Yunnan Cancer Hospital & Cancer Center, Kunming, China
| |
Collapse
|