1
|
Satchell M, Butel-Fry E, Noureddine Z, Simmons A, Ognjanovski NN, Aton SJ, Zochowski MR. Cholinergic modulation of neural networks supports sequential and complementary roles for NREM and REM states in memory consolidation. PLoS Comput Biol 2025; 21:e1013097. [PMID: 40526789 DOI: 10.1371/journal.pcbi.1013097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Accepted: 04/29/2025] [Indexed: 06/19/2025] Open
Abstract
Across vertebrate species, sleep consists of repeating cycles of NREM followed by REM. However, their respective functions, and their stereotypic cycling pattern are not well understood. Using a simplified biophysical network model, we investigate the potential role of cholinergic modulation, acting via the muscarinic receptors, on network dynamics and memory consolidation. We show that low and high cholinergic levels associated with NREM and REM sleep, respectively, may play critical, sequential roles in memory consolidation. The network dynamics that facilitate these roles arise through alteration of neural excitability and changes to network-wide excitatory/inhibitory balance. At low acetylcholine (ACh) levels, reduced activation of inhibitory neurons leads to network-wide disinhibition and bursts of synchronized activity led by engram neurons, driving recruitment of additional excitatory neurons into the engram. In contrast, at high ACh levels, increased network inhibition suppresses firing in all but the most strongly recruited excitatory neurons, pruning the expanded engram population. Together, these results provide a testable hypothesis regarding the role of sleep state-specific cholinergic modulation in the process of memory consolidation.
Collapse
Affiliation(s)
- Michael Satchell
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Edith Butel-Fry
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Zahraa Noureddine
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alexis Simmons
- Department of Physics, Baylor University, Waco, Texas, United States of America
| | - Nicolette N Ognjanovski
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Sara J Aton
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Michal R Zochowski
- Department of Physics, University of Michigan, Ann Arbor, Michigan, United States of America
- Biophysics Program, University of Michigan, Ann Arbor, Michigan, United States of America
| |
Collapse
|
2
|
Raven F, Vega Medina A, Schmidt K, He A, Vankampen AA, Balendran V, Aton SJ. Brief sleep disruption alters synaptic structures among hippocampal and neocortical somatostatin-expressing interneurons. Sleep 2025; 48:zsaf064. [PMID: 40096531 PMCID: PMC12163128 DOI: 10.1093/sleep/zsaf064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 02/04/2025] [Indexed: 03/19/2025] Open
Abstract
STUDY OBJECTIVES Brief sleep loss alters cognition and synaptic structures of principal neurons in the hippocampus and neocortex. However, while in vivo recording and bioinformatic data suggest that inhibitory interneurons are more strongly affected by sleep loss, it is unclear how sleep and sleep deprivation (SD) affect interneurons' synapses. Disruption of the somatostatin-expressing (SST+) interneuron population seems to be a critical early sign of neuropathology in Alzheimer's dementia, schizophrenia, and bipolar disorder-and the risk of developing all three is increased by habitual sleep loss. We aimed to test how the synaptic structures of SST+ interneurons in various brain regions are affected by brief sleep disruption. METHODS We used Brainbow 3.0 to label SST+ interneurons in the dorsal hippocampus, prefrontal cortex, and visual cortex of male SST-CRE transgenic mice, then compared synaptic structures in labeled neurons after a 6-hour period of ad lib sleep, or gentle handling SD starting at lights on. RESULTS Dendritic spine density among SST+ interneurons in both hippocampus and neocortex was altered in a subregion-specific manner, with increased overall and thin spine density in CA1, dramatic increases in spine volume and surface area in CA3, and small but significant changes (primarily decreases) in spine size in CA1, PFC, and V1. CONCLUSIONS We suggest that the synaptic connectivity of SST+ interneurons is significantly altered in a brain region-specific manner by a few hours of sleep loss. This suggests a cell type-specific mechanism by which sleep loss disrupts cognition and alters excitatory-inhibitory balance in brain networks.
Collapse
Affiliation(s)
- Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Alexis Vega Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Kailynn Schmidt
- University of New England College of Osteopathic Medicine, Biddeford, ME, USA
| | - Annie He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Anna A Vankampen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Vinodh Balendran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Sara J Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
3
|
Stucky B. We are the Sensors of Consciousness! A Review and Analysis on How Awakenings During Sleep Influence Dream Recall. Nat Sci Sleep 2025; 17:709-729. [PMID: 40330584 PMCID: PMC12053782 DOI: 10.2147/nss.s506461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 03/10/2025] [Indexed: 05/08/2025] Open
Abstract
Purpose Since the 1930s, researchers have awakened people from different stages of sleep to record what they have experienced. While some aspects, including asking whether participants had dreams or thoughts before awakening, largely remain the same, others, such as the method of awakening, vary greatly. In addition, it is often assumed that the influence of participant characteristics, such as personality traits, motivation, memory, and attention, is reduced by collecting experiences immediately after they occur, rather than through delayed morning recall. However, the extent to which these variables influence dream recall upon awakening has not yet been thoroughly investigated. Materials and Methods To explore possible contextual and individual influences, this review analyzed 69 awakening studies conducted between 2000 and 2024 and utilized the DREAM database. Differences between sleep stages were quantified and experiences analyzed using the categories "with recall", "without recall", and "no report". Results Similar levels of null reports were found in NREM stage 2 and stage 3. Significant factors affecting dream recall included the method of awakening (lower recall with an alarm compared to calling the participant's name), the number of study days (reduced recall for multiple days) and the sleep environment (higher recall at home compared to the laboratory), along with participant characteristics beyond age, sex and study design. Recall rates from NREM sleep are particularly sensitive to the method of awakening and interindividual differences. Conclusion Both the awakening procedure and participant characteristics influence the amount of reported sleep experiences, which can impact study outcomes, such as the identification of neural correlates of consciousness. Therefore, greater emphasis needs to be placed on how experiences are collected and on participant characteristics, such as openness to experience or familiarity with different states of consciousness.
Collapse
Affiliation(s)
- Benjamin Stucky
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
4
|
Hassan U, Okyere P, Masouleh MA, Zrenner C, Ziemann U, Bergmann TO. Pulsed inhibition of corticospinal excitability by the thalamocortical sleep spindle. Brain Stimul 2025; 18:265-275. [PMID: 39986374 DOI: 10.1016/j.brs.2025.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 01/30/2025] [Accepted: 02/18/2025] [Indexed: 02/24/2025] Open
Abstract
Thalamocortical sleep spindles, i.e., oscillatory bursts at ∼12-15 Hz of waxing and waning amplitude, are a hallmark feature of non-rapid eye movement (NREM) sleep and believed to play a key role in memory reactivation and consolidation. Generated in the thalamus and projecting to neocortex and hippocampus, they are phasically modulated by neocortical slow oscillations (<1 Hz) and in turn phasically modulate hippocampal sharp-wave ripples (>80 Hz). This hierarchical cross-frequency nesting, where slower oscillations group faster ones into certain excitability phases, may enable phase-dependent plasticity in the neocortex, and spindles have thus been considered windows of plasticity in the sleeping brain. However, the assumed phasic excitability modulation had not yet been demonstrated for spindles. Utilizing a recently developed real-time spindle detection algorithm, we applied spindle phase-triggered transcranial magnetic stimulation (TMS) to the primary motor cortex (M1) hand area to characterize the corticospinal excitability profile of spindles via motor evoked potentials (MEP). MEPs showed net suppression during spindles, driven by a "pulse of inhibition" during its falling flank with no inhibition or facilitation during its peak, rising flank, or trough. This unidirectional ("asymmetric") modulation occurred on top of the general sleep-related inhibition during spindle-free NREM sleep and did not extend into the refractory post-spindle periods. We conclude that spindles exert "asymmetric pulsed inhibition" on corticospinal excitability. These findings and the developed real-time spindle targeting methods enable future studies to investigate the causal role of spindles in phase-dependent synaptic plasticity and systems memory consolidation during sleep by repetitively targeting relevant spindle phases.
Collapse
Affiliation(s)
- Umair Hassan
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany; Department of Psychiatry and Behavioral Sciences, Stanford School of Medicine, Stanford University, USA; Wu-Tsai Neurosciences Institute, Stanford University, USA.
| | - Prince Okyere
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; School of Psychology, University of Surrey, Guildford, UK
| | - Milad Amini Masouleh
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors (IfADo), Ardeystraße 67, Dortmund, Germany; Psychology Department, Ruhr University Bochum, Bochum, Germany
| | - Christoph Zrenner
- Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, Canada; Department of Psychiatry, Faculty of Medicine, And Institute for Biomedical Engineering, And Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Ulf Ziemann
- Department of Neurology & Stroke, Eberhard Karls University of Tübingen, Tübingen, Germany; Hertie Institute for Clinical Brain Research, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Til Ole Bergmann
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), Johannes Gutenberg University Medical Center, Mainz, Germany; Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
5
|
Raven F, Medina AV, Schmidt K, He A, Vankampen AA, Balendran V, Aton SJ. Brief sleep disruption alters synaptic structures among hippocampal and neocortical somatostatin-expressing interneurons. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.22.604591. [PMID: 39211205 PMCID: PMC11360998 DOI: 10.1101/2024.07.22.604591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Study objectives Brief sleep loss alters cognition and synaptic structures of principal neurons in hippocampus and neocortex. However, while in vivo recording and bioinformatic data suggest that inhibitory interneurons are more strongly affected by sleep loss, it is unclear how sleep and sleep deprivation affect interneurons' synapses. Disruption of the SST+ interneuron population seems to be a critical early sign of neuropathology in Alzheimer's dementia, schizophrenia, and bipolar disorder - and the risk of developing all three is increased by habitual sleep loss. We aimed to test how the synaptic structures of SST+ interneurons in various brain regions are affected by brief sleep disruption. Methods We used Brainbow 3.0 to label SST+ interneurons in the dorsal hippocampus, prefrontal cortex, and visual cortex of male SST-CRE transgenic mice, then compared synaptic structures in labeled neurons after a 6-h period of ad lib sleep, or gentle handling sleep deprivation (SD) starting at lights on. Results Dendritic spine density among SST+ interneurons in both hippocampus and neocortex was altered in a subregion-specific manner, with increased overall and thin spine density in CA1, dramatic increases in spine volume and surface area in CA3, and small but significant changes (primarily decreases) in spine size in CA1, PFC and V1. Conclusions Our suggest that the synaptic connectivity of SST+ interneurons is significantly altered in a brain region-specific manner by a few hours of sleep loss. This suggests a cell type-specific mechanism by which sleep loss disrupts cognition and alters excitatory-inhibitory balance in brain networks.
Collapse
Affiliation(s)
- Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Alexis Vega Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Kailynn Schmidt
- University of New England College of Osteopathic Medicine, Biddeford, ME 04005
| | - Annie He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Anna A. Vankampen
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Vinodh Balendran
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48019
| |
Collapse
|
6
|
Abbaspoor S, Hoffman KL. Circuit dynamics of superficial and deep CA1 pyramidal cells and inhibitory cells in freely-moving macaques. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.06.570369. [PMID: 38106053 PMCID: PMC10723348 DOI: 10.1101/2023.12.06.570369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Diverse neuron classes in hippocampal CA1 have been identified through the heterogeneity of their cellular/molecular composition. How these classes relate to hippocampal function and the network dynamics that support cognition in primates remains unclear. Here we report inhibitory functional cell groups in CA1 of freely-moving macaques whose diverse response profiles to network states and each other suggest distinct and specific roles in the functional microcircuit of CA1. In addition, pyramidal cells that were segregated into superficial and deep layers differed in firing rate, burstiness, and sharp-wave ripple-associated firing. They also showed strata-specific spike-timing interactions with inhibitory cell groups, suggestive of segregated neural populations. Furthermore, ensemble recordings revealed that cell assemblies were preferentially organized according to these strata. These results suggest sublayer-specific circuit organization in hippocampal CA1 of the freely-moving macaques that may underlie its role in cognition.
Collapse
Affiliation(s)
- S Abbaspoor
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
| | - K L Hoffman
- Department of Psychology, Vanderbilt Vision Research Center, Vanderbilt Brain Institute, Vanderbilt University, Nashville, Tennessee
- Department of Biomedical Engineering, Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
7
|
Lazarov O, Gupta M, Kumar P, Morrissey Z, Phan T. Memory circuits in dementia: The engram, hippocampal neurogenesis and Alzheimer's disease. Prog Neurobiol 2024; 236:102601. [PMID: 38570083 PMCID: PMC11221328 DOI: 10.1016/j.pneurobio.2024.102601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/05/2024]
Abstract
Here, we provide an in-depth consideration of our current understanding of engrams, spanning from molecular to network levels, and hippocampal neurogenesis, in health and Alzheimer's disease (AD). This review highlights novel findings in these emerging research fields and future research directions for novel therapeutic avenues for memory failure in dementia. Engrams, memory in AD, and hippocampal neurogenesis have each been extensively studied. The integration of these topics, however, has been relatively less deliberated, and is the focus of this review. We primarily focus on the dentate gyrus (DG) of the hippocampus, which is a key area of episodic memory formation. Episodic memory is significantly impaired in AD, and is also the site of adult hippocampal neurogenesis. Advancements in technology, especially opto- and chemogenetics, have made sophisticated manipulations of engram cells possible. Furthermore, innovative methods have emerged for monitoring neurons, even specific neuronal populations, in vivo while animals engage in tasks, such as calcium imaging. In vivo calcium imaging contributes to a more comprehensive understanding of engram cells. Critically, studies of the engram in the DG using these technologies have shown the important contribution of hippocampal neurogenesis for memory in both health and AD. Together, the discussion of these topics provides a holistic perspective that motivates questions for future research.
Collapse
Affiliation(s)
- Orly Lazarov
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA.
| | - Muskan Gupta
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pavan Kumar
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zachery Morrissey
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Trongha Phan
- Department of Anatomy and Cell Biology, College of Medicine, The University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Wang L, Park L, Wu W, King D, Vega-Medina A, Raven F, Martinez J, Ensing A, McDonald K, Yang Z, Jiang S, Aton SJ. Sleep-dependent engram reactivation during hippocampal memory consolidation associated with subregion-specific biosynthetic changes. iScience 2024; 27:109408. [PMID: 38523798 PMCID: PMC10957462 DOI: 10.1016/j.isci.2024.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/14/2024] [Accepted: 02/29/2024] [Indexed: 03/26/2024] Open
Abstract
Post-learning sleep is essential for hippocampal memory processing, including contextual fear memory consolidation. We labeled context-encoding engram neurons in the hippocampal dentate gyrus (DG) and assessed reactivation of these neurons after fear learning. Post-learning sleep deprivation (SD) selectively disrupted reactivation of inferior blade DG engram neurons, linked to SD-induced suppression of neuronal activity in the inferior, but not superior DG blade. Subregion-specific spatial profiling of transcripts revealed that transcriptomic responses to SD differed greatly between hippocampal CA1, CA3, and DG inferior blade, superior blade, and hilus. Activity-driven transcripts, and those associated with cytoskeletal remodeling, were selectively suppressed in the inferior blade. Critically, learning-driven transcriptomic changes differed dramatically between the DG blades and were absent from all other regions. Together, these data suggest that the DG is critical for sleep-dependent memory consolidation, and that the effects of sleep loss on the hippocampus are highly subregion-specific.
Collapse
Affiliation(s)
- Lijing Wang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lauren Park
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Weisheng Wu
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Dana King
- Bioinformatics Core, Biomedical Research Core Facilities, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alexis Vega-Medina
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frank Raven
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jessy Martinez
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Amy Ensing
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine McDonald
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhongying Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sha Jiang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Sara J. Aton
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
9
|
Fan Z, Gong X, Xu H, Qu Y, Li B, Li L, Yan Y, Wu L, Yan C. Hippocampal parvalbumin and perineuronal nets: Possible involvement in anxiety-like behavior in rats. Hippocampus 2024; 34:156-165. [PMID: 38100162 DOI: 10.1002/hipo.23595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/26/2023] [Accepted: 12/03/2023] [Indexed: 02/20/2024]
Abstract
The excitatory-inhibitory imbalance has been considered an important mechanism underlying stress-related psychiatric disorders. In the present study, rats were exposed to 6 days of inescapable foot shock (IFS) to induce stress. The open field test and elevated plus maze test showed that IFS-exposed rats exhibited increased anxiety-like behavior. Immunofluorescence showed that IFS rats had a decreased density of GAD67-immunoreactive interneurons in the dorsal hippocampal CA1 region, while no significant change in the density of CaMKIIα-immunoreactive glutamatergic neurons was seen. We investigated the expression of different interneuron subtype markers, including parvalbumin (PV), somatostatin (SST), and calretinin (CR), and noted a marked decline in the density of PV-immunoreactive interneurons in the dorsal CA1 region of IFS rats. The perineuronal net (PNN) is a specialized extracellular matrix structure primarily around PV interneurons. We used Wisteria floribunda agglutinin lectin to label the PNNs and observed that IFS rats had an increased proportion of PNN-coated PV-positive interneurons in CA1. The number of PSD95-positive excitatory synaptic puncta on the soma of PNN-free PV-positive interneurons was significantly higher than that of PNN-coated PV-positive interneurons. Our findings suggest that the effect of IFS on the hippocampal GABAergic interneurons could be cell-type-specific. Loss of PV phenotype in the dorsal hippocampal CA1 region may contribute to anxiety in rats. The dysregulated PV-PNN relationship in CA1 after traumatic stress exposure might represent one of the neurobiological correlates of the observed anxiety-like behavior.
Collapse
Affiliation(s)
- Zhixin Fan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiayu Gong
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hanfang Xu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Qu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Bozhi Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lanxin Li
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yuqi Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Lili Wu
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Can Yan
- Research Center for Basic Integrative Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
10
|
Satchell M, Fry B, Noureddine Z, Simmons A, Ognjanovski NN, Aton SJ, Zochowski MR. Neuromodulation via muscarinic acetylcholine pathway can facilitate distinct, complementary, and sequential roles for NREM and REM states during sleep-dependent memory consolidation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.19.541465. [PMID: 38293183 PMCID: PMC10827095 DOI: 10.1101/2023.05.19.541465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Across vertebrate species, sleep consists of repeating cycles of NREM followed by REM. However, the respective functions of NREM, REM, and their stereotypic cycling pattern are not well understood. Using a simplified biophysical network model, we show that NREM and REM sleep can play differential and critical roles in memory consolidation primarily regulated, based on state-specific changes in cholinergic signaling. Within this network, decreasing and increasing muscarinic acetylcholine (ACh) signaling during bouts of NREM and REM, respectively, differentially alters neuronal excitability and excitatory/inhibitory balance. During NREM, deactivation of inhibitory neurons leads to network-wide disinhibition and bursts of synchronized activity led by firing in engram neurons. These features strengthen connections from the original engram neurons to less-active network neurons. In contrast, during REM, an increase in network inhibition suppresses firing in all but the most-active excitatory neurons, leading to competitive strengthening/pruning of the memory trace. We tested the predictions of the model against in vivo recordings from mouse hippocampus during active sleep-dependent memory storage. Consistent with modeling results, we find that functional connectivity between CA1 neurons changes differentially at transition from NREM to REM sleep during learning. Returning to the model, we find that an iterative sequence of state-specific activations during NREM/REM cycling is essential for memory storage in the network, serving a critical role during simultaneous consolidation of multiple memories. Together these results provide a testable mechanistic hypothesis for the respective roles of NREM and REM sleep, and their universal relative timing, in memory consolidation. Significance statement Using a simplified computational model and in vivo recordings from mouse hippocampus, we show that NREM and REM sleep can play differential roles in memory consolidation. The specific neurophysiological features of the two sleep states allow for expansion of memory traces (during NREM) and prevention of overlap between different memory traces (during REM). These features are likely essential in the context of storing more than one new memory simultaneously within a brain network.
Collapse
|
11
|
Hijazi S, Smit AB, van Kesteren RE. Fast-spiking parvalbumin-positive interneurons in brain physiology and Alzheimer's disease. Mol Psychiatry 2023; 28:4954-4967. [PMID: 37419975 PMCID: PMC11041664 DOI: 10.1038/s41380-023-02168-y] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/09/2023]
Abstract
Fast-spiking parvalbumin (PV) interneurons are inhibitory interneurons with unique morphological and functional properties that allow them to precisely control local circuitry, brain networks and memory processing. Since the discovery in 1987 that PV is expressed in a subset of fast-spiking GABAergic inhibitory neurons, our knowledge of the complex molecular and physiological properties of these cells has been expanding. In this review, we highlight the specific properties of PV neurons that allow them to fire at high frequency and with high reliability, enabling them to control network oscillations and shape the encoding, consolidation and retrieval of memories. We next discuss multiple studies reporting PV neuron impairment as a critical step in neuronal network dysfunction and cognitive decline in mouse models of Alzheimer's disease (AD). Finally, we propose potential mechanisms underlying PV neuron dysfunction in AD and we argue that early changes in PV neuron activity could be a causal step in AD-associated network and memory impairment and a significant contributor to disease pathogenesis.
Collapse
Affiliation(s)
- Sara Hijazi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - August B Smit
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands
| | - Ronald E van Kesteren
- Department of Molecular and Cellular Neurobiology, Center for Neurogenomics and Cognitive Research, Amsterdam Neuroscience, Vrije Universiteit Amsterdam, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
12
|
Zichó K, Sos KE, Papp P, Barth AM, Misák E, Orosz Á, Mayer MI, Sebestény RZ, Nyiri G. Fear memory recall involves hippocampal somatostatin interneurons. PLoS Biol 2023; 21:e3002154. [PMID: 37289847 DOI: 10.1371/journal.pbio.3002154] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 05/09/2023] [Indexed: 06/10/2023] Open
Abstract
Fear-related memory traces are encoded by sparse populations of hippocampal principal neurons that are recruited based on their inhibitory-excitatory balance during memory formation. Later, the reactivation of the same principal neurons can recall the memory. The details of this mechanism are still unclear. Here, we investigated whether disinhibition could play a major role in this process. Using optogenetic behavioral experiments, we found that when fear was associated with the inhibition of mouse hippocampal somatostatin positive interneurons, the re-inhibition of the same interneurons could recall fear memory. Pontine nucleus incertus neurons selectively inhibit hippocampal somatostatin cells. We also found that when fear was associated with the activity of these incertus neurons or fibers, the reactivation of the same incertus neurons or fibers could also recall fear memory. These incertus neurons showed correlated activity with hippocampal principal neurons during memory recall and were strongly innervated by memory-related neocortical centers, from which the inputs could also control hippocampal disinhibition in vivo. Nonselective inhibition of these mouse hippocampal somatostatin or incertus neurons impaired memory recall. Our data suggest a novel disinhibition-based memory mechanism in the hippocampus that is supported by local somatostatin interneurons and their pontine brainstem inputs.
Collapse
Affiliation(s)
- Krisztián Zichó
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Katalin E Sos
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Péter Papp
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Albert M Barth
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Erik Misák
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Áron Orosz
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Márton I Mayer
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
- János Szentágothai Doctoral School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Réka Z Sebestény
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| | - Gábor Nyiri
- Laboratory of Cerebral Cortex Research, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
13
|
Brzdąk P, Lebida K, Wyroślak M, Mozrzymas JW. GABAergic synapses onto SST and PV interneurons in the CA1 hippocampal region show cell-specific and integrin-dependent plasticity. Sci Rep 2023; 13:5079. [PMID: 36977728 PMCID: PMC10050003 DOI: 10.1038/s41598-023-31882-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
It is known that GABAergic transmission onto pyramidal neurons shows different forms of plasticity. However, GABAergic cells innervate also other inhibitory interneurons and plasticity phenomena at these projections remain largely unknown. Several mechanisms underlying plastic changes, both at inhibitory and excitatory synapses, show dependence on integrins, key proteins mediating interaction between intra- and extracellular environment. We thus used hippocampal slices to address the impact of integrins on long-term plasticity of GABAergic synapses on specific inhibitory interneurons (containing parvalbumin, PV + or somatostatin, SST +) known to innervate distinct parts of principal cells. Administration of RGD sequence-containing peptide induced inhibitory long-term potentiation (iLTP) at fast-spiking (FS) PV + as well as on SST + interneurons. Interestingly, treatment with a more specific peptide GA(C)RRETAWA(C)GA (RRETAWA), affecting α5β1 integrins, resulted in iLTP in SST + and iLTD in FS PV + interneurons. Brief exposure to NMDA is known to induce iLTP at GABAergic synapses on pyramidal cells. Intriguingly, application of this protocol for considered interneurons evoked iLTP in SST + and iLTD in PV + interneurons. Moreover, we showed that in SST + cells, NMDA-evoked iLTP depends on the incorporation of GABAA receptors containing α5 subunit to the synapses, and this iLTP is occluded by RRETAWA peptide, indicating a key role of α5β1 integrins. Altogether, our results revealed that plasticity of inhibitory synapses at GABAergic cells shows interneuron-specificity and show differences in the underlying integrin-dependent mechanisms. This is the first evidence that neuronal disinhibition may be a highly plastic process depending on interneuron type and integrins' activity.
Collapse
Affiliation(s)
- Patrycja Brzdąk
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Katarzyna Lebida
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland.
| | - Marcin Wyroślak
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| | - Jerzy W Mozrzymas
- Department of Biophysics and Neuroscience, Wroclaw Medical University, 50-367, Wroclaw, Poland
| |
Collapse
|
14
|
Hippocampal neurons' cytosolic and membrane-bound ribosomal transcript profiles are differentially regulated by learning and subsequent sleep. Proc Natl Acad Sci U S A 2021; 118:2108534118. [PMID: 34819370 PMCID: PMC8640746 DOI: 10.1073/pnas.2108534118] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/08/2021] [Indexed: 12/25/2022] Open
Abstract
Sleep loss disrupts consolidation of hippocampus-dependent memory. To understand the cellular basis for this effect, we quantified RNAs associated with translating ribosomes in cytosol and on cellular membranes of different hippocampal neuron populations. Our analysis suggests that while sleep loss (but not learning) alters numerous ribosomal transcripts in cytosol, learning has dramatic effects on transcript profiles for less–well-characterized membrane-bound ribosomes. We demonstrate that postlearning sleep deprivation occludes already minimal learning-driven changes on cytosolic ribosomes. It simultaneously alters transcripts associated with metabolic and biosynthetic processes in membrane-bound ribosomes in excitatory hippocampal neurons and highly active, putative “engram” neurons, respectively. Together, these findings provide insights into the cellular mechanisms altered by learning and their disruption by subsequent sleep loss. The hippocampus is essential for consolidating transient experiences into long-lasting memories. Memory consolidation is facilitated by postlearning sleep, although the underlying cellular mechanisms are largely unknown. We took an unbiased approach to this question by using a mouse model of hippocampally mediated, sleep-dependent memory consolidation (contextual fear memory). Because synaptic plasticity is associated with changes to both neuronal cell membranes (e.g., receptors) and cytosol (e.g., cytoskeletal elements), we characterized how these cell compartments are affected by learning and subsequent sleep or sleep deprivation (SD). Translating ribosome affinity purification was used to profile ribosome-associated RNAs in different subcellular compartments (cytosol and membrane) and in different cell populations (whole hippocampus, Camk2a+ neurons, or highly active neurons with phosphorylated ribosomal subunit S6 [pS6+]). We examined how transcript profiles change as a function of sleep versus SD and prior learning (contextual fear conditioning; CFC). While sleep loss altered many cytosolic ribosomal transcripts, CFC altered almost none, and CFC-driven changes were occluded by subsequent SD. In striking contrast, SD altered few transcripts on membrane-bound (MB) ribosomes, while learning altered many more (including long non-coding RNAs [lncRNAs]). The cellular pathways most affected by CFC were involved in structural remodeling. Comparisons of post-CFC MB transcript profiles between sleeping and SD mice implicated changes in cellular metabolism in Camk2a+ neurons and protein synthesis in highly active pS6+ (putative “engram”) neurons as biological processes disrupted by SD. These findings provide insights into how learning affects hippocampal neurons and suggest that the effects of SD on memory consolidation are cell type and subcellular compartment specific.
Collapse
|