1
|
Williams JC, Tubiolo PN, Gil RB, Zheng ZJ, Silver-Frankel EB, Haubold NK, Abeykoon SK, Pham DT, Ojeil N, Bobchin K, Slifstein M, Weinstein JJ, Perlman G, Horga G, Abi-Dargham A, Van Snellenberg JX. Auditory and Visual Thalamocortical Connectivity Alterations in Unmedicated People with Schizophrenia: An Individualized Sensory Thalamic Localization and Resting-State Functional Connectivity Study. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025:S2451-9022(25)00175-2. [PMID: 40484356 DOI: 10.1016/j.bpsc.2025.05.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 05/14/2025] [Accepted: 05/28/2025] [Indexed: 06/11/2025]
Abstract
BACKGROUND Converging evidence from clinical neuroimaging and animal models has strongly implicated dysfunction of thalamocortical circuits in the pathophysiology of schizophrenia. Preclinical models of genetic risk for schizophrenia have shown reduced synaptic transmission from auditory thalamus to primary auditory cortex, which may represent a correlate of auditory disturbances such as hallucinations. Human neuroimaging studies, however, have found a generalized increase in resting state functional connectivity (RSFC) between whole thalamus and sensorimotor cortex in people with schizophrenia (PSZ). We aimed to more directly translate preclinical findings by specifically localizing auditory and visual thalamic nuclei in unmedicated PSZ and measuring RSFC to primary sensory cortices. METHODS In this case-control study, 82 unmedicated PSZ and 55 matched healthy controls (HC) completed RSFC functional magnetic resonance imaging (fMRI). Auditory and visual thalamic nuclei were localized for 55 unmedicated PSZ and 46 HC who additionally completed a sensory thalamic nuclei localizer fMRI task (N = 101). Using localized nuclei as RSFC seeds we assessed group differences in auditory and visual thalamocortical connectivity and associations with positive symptom severity. RESULTS Auditory thalamocortical connectivity was not significantly different between PSZ and HC, but hyperconnectivity was associated with greater positive symptom severity in bilateral superior temporal gyrus. Visual thalamocortical connectivity was significantly greater in PSZ relative to HC in secondary and higher-order visual cortex, but not predictive of positive symptom severity. CONCLUSION These results indicate that visual thalamocortical hyperconnectivity is a generalized marker of schizophrenia, while hyperconnectivity in auditory thalamocortical circuits relates more specifically to positive symptom severity.
Collapse
Affiliation(s)
- John C Williams
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794; Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Philip N Tubiolo
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794; Scholars in BioMedical Sciences Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Roberto B Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; College of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203
| | - Eilon B Silver-Frankel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Natalka K Haubold
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Sameera K Abeykoon
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Dathy T Pham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Najate Ojeil
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032
| | - Kelly Bobchin
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032
| | - Jodi J Weinstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032; Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jared X Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794; Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794; Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032; New York State Psychiatric Institute, New York, NY 10032; Department of Psychology, Stony Brook University, Stony Brook, NY 11794.
| |
Collapse
|
2
|
Markovic A, Veen D, Hamann C, Adorjan K, Kaess M, Tuura O'Gorman R, Tarokh L. Joint Heritability of Sleep EEG Spindle Activity and Thalamic Volume in Early Adolescence. J Neurosci 2025; 45:e1138242025. [PMID: 40216547 PMCID: PMC12096044 DOI: 10.1523/jneurosci.1138-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 01/29/2025] [Accepted: 02/04/2025] [Indexed: 05/23/2025] Open
Abstract
Sleep spindles, transient bursts of rhythmic activity during non-rapid eye movement sleep, are generated by the thalamocortical network through an intricate interplay between the thalamus and the cortex. Emerging research has shed light on the role of sleep spindles in cognitive function, memory consolidation, and overall brain health. Using a behavioral genetics approach in female and male adolescent humans, this study examined the degree to which sleep spindles (measured via high-density sleep electroencephalography) and thalamic volume (measured via magnetic resonance imaging) are driven by common genetic and environmental factors. Here we show a strong correlation between thalamic volume and sleep spindle amplitude and density. Bayesian structural equation modeling estimated that over posterior regions, genetic factors accounted for approximately half of the covariance between sleep spindle activity and thalamic volume. Our findings demonstrate that genetic factors play a role in shaping the structural and functional integrity of the thalamocortical network, with implications for understanding how these processes contribute to neurodevelopmental outcomes.
Collapse
Affiliation(s)
- Andjela Markovic
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
- Department of Psychology, University of Fribourg, Fribourg 1700, Switzerland
- Department of Pulmonology, University Hospital Zurich, Zurich 8091, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| | - Duco Veen
- Department of Methodology & Statistics, Utrecht University, Utrecht 3584, The Netherlands
- Optentia Research Programme, North-West University, Potchefstroom 2531, South Africa
| | - Christoph Hamann
- Division of Child and Adolescent Psychiatry and Psychosomatic Medicine, Department of Pediatrics, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Kristina Adorjan
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| | - Michael Kaess
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
- Department of Child and Adolescent Psychiatry, Center for Psychosocial Medicine, University Hospital Heidelberg, Heidelberg 69115, Germany
| | - Ruth Tuura O'Gorman
- MR-Research Centre, University Children's Hospital Zurich, Zurich 8008, Switzerland
- University of Zurich, Zurich 8006, Switzerland
- Children's Research Centre, University Children's Hospital Zurich, Zurich 8008, Switzerland
| | - Leila Tarokh
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern 3000, Switzerland
| |
Collapse
|
3
|
Dureux A, Zanini A, Jafari A, Everling S. Ultra-high Field fMRI Reveals Effect of Ketamine on Vocal Processing in Common Marmosets. J Neurosci 2025; 45:e0651242025. [PMID: 39984201 PMCID: PMC11984087 DOI: 10.1523/jneurosci.0651-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 01/31/2025] [Accepted: 02/15/2025] [Indexed: 02/23/2025] Open
Abstract
Auditory deficits are a well-known symptom in neuropsychiatric disorders such as schizophrenia. The noncompetitive N-methyl-d-aspartate receptor antagonist ketamine has been used to model sensory and cognitive deficits in nonhuman primates, but its whole-brain effects remain largely unknown. Here we employed ultra-high field functional magnetic resonance imaging at 9.4 T in awake male and female marmoset monkeys (Callithrix jacchus) to compare brain activations to conspecific vocalizations, scrambled vocalizations, and nonvocal sounds following the administration of a subanesthetic dose of ketamine. Our findings reveal a broad suppression of activations across auditory regions following ketamine compared with saline. Additionally, we observed differential effects depending on the type of sound, with notable changes in the mediodorsal thalamus and anterior cingulate cortex, particularly during the processing of vocalizations. These findings suggest a potential overlap between the effects of ketamine and neural disruptions observed in schizophrenia, particularly affecting vocalization processing.
Collapse
Affiliation(s)
- Audrey Dureux
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada,
| | - Alessandro Zanini
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Azadeh Jafari
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
| | - Stefan Everling
- Centre for Functional and Metabolic Mapping, Robarts Research Institute, University of Western Ontario, London, Ontario N6A 5K8, Canada
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario N6A 5K8, Canada
| |
Collapse
|
4
|
Akkouh IA, Osete JR, Szabo A, Andreassen OA, Djurovic S. Neurobiological Perturbations in Bipolar Disorder Compared With Schizophrenia: Evidence From Cell Cultures and Brain Organoids. Biol Psychiatry 2025:S0006-3223(25)00110-6. [PMID: 39983953 DOI: 10.1016/j.biopsych.2025.02.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/06/2025] [Accepted: 02/13/2025] [Indexed: 02/23/2025]
Abstract
Bipolar disorder (BD) and schizophrenia (SCZ) are uniquely human disorders with a complex pathophysiology that involves adverse neuropathological events in brain development. High disease polygenicity and limited access to live human brain tissue make these disorders exceedingly challenging to study mechanistically. Cellular cultures and brain organoids generated from human-derived pluripotent stem cells preserve the genetic background of the donor cells and recapitulate some of the defining characteristics of human brain architecture and early spatiotemporal development. These model systems have already proven successful in deciphering some of the neuropathological perturbations in BD and SCZ, and methodological advancements, such as the functional integration of 2 or more region-specific organoids and organoid transplantation in animals, promise to deliver increasingly refined insights. Here, we review a selection of recent discoveries achieved by stem cell-based models, with a particular focus on patterns of cellular and molecular convergence and divergence between BD and SCZ. First, we provide a brief overview of the evidence from glial and neuronal cell cultures and brain organoids, centering our discussion on several key functional domains, including neuroinflammation, neuronal excitability, and mitochondrial function. Then, we review recent findings demonstrating the power of integrating stem cell-based systems with gene editing technologies to elucidate the functional consequences of risk variants identified through genetic association studies. We end with a discussion of current challenges and some promising avenues for future research.
Collapse
Affiliation(s)
- Ibrahim A Akkouh
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Jordi Requena Osete
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Attila Szabo
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Ole A Andreassen
- Centre for Precision Psychiatry, Institute of Clinical Medicine, University of Oslo, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Srdjan Djurovic
- Department of Medical Genetics, Oslo University Hospital, Oslo, Norway; K.G. Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway; Department of Clinical Science, University of Bergen, Bergen, Norway.
| |
Collapse
|
5
|
Williams JC, Tubiolo PN, Gil RB, Zheng ZJ, Silver-Frankel EB, Haubold NK, Abeykoon SK, Pham DT, Ojeil N, Bobchin K, Slifstein M, Weinstein JJ, Perlman G, Horga G, Abi-Dargham A, Van Snellenberg JX. Auditory and Visual Thalamocortical Connectivity Alterations in Unmedicated People with Schizophrenia: An Individualized Sensory Thalamic Localization and Resting-State Functional Connectivity Study. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.18.24319241. [PMID: 39763546 PMCID: PMC11702713 DOI: 10.1101/2024.12.18.24319241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
Background Converging evidence from clinical neuroimaging and animal models has strongly implicated dysfunction of thalamocortical circuits in the pathophysiology of schizophrenia. Preclinical models of genetic risk for schizophrenia have shown reduced synaptic transmission from auditory thalamus to primary auditory cortex, which may represent a correlate of auditory disturbances such as hallucinations. Human neuroimaging studies, however, have found a generalized increase in resting state functional connectivity (RSFC) between whole thalamus and sensorimotor cortex in people with schizophrenia (PSZ). We aimed to more directly translate preclinical findings by specifically localizing auditory and visual thalamic nuclei in unmedicated PSZ and measuring RSFC to primary sensory cortices. Methods In this case-control study, 82 unmedicated PSZ and 55 matched healthy controls (HC) completed RSFC functional magnetic resonance imaging (fMRI). Auditory and visual thalamic nuclei were localized for 55 unmedicated PSZ and 46 HC who additionally completed a sensory thalamic nuclei localizer fMRI task (N = 101). Using localized nuclei as RSFC seeds we assessed group differences in auditory and visual thalamocortical connectivity and associations with positive symptom severity. Results Auditory thalamocortical connectivity was not significantly different between PSZ and HC, but hyperconnectivity was associated with greater positive symptom severity in bilateral superior temporal gyrus. Visual thalamocortical connectivity was significantly greater in PSZ relative to HC in secondary and higher-order visual cortex, but not predictive of positive symptom severity. Conclusion These results indicate that visual thalamocortical hyperconnectivity is a generalized marker of schizophrenia, while hyperconnectivity in auditory thalamocortical circuits relates more specifically to positive symptom severity.
Collapse
Affiliation(s)
- John C. Williams
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Medical Scientist Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Philip N. Tubiolo
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Scholars in BioMedical Sciences Training Program, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Roberto B. Gil
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Zu Jie Zheng
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- College of Medicine, State University of New York Downstate Health Sciences University, Brooklyn, NY 11203
| | - Eilon B. Silver-Frankel
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Natalka K. Haubold
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Sameera K. Abeykoon
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Dathy T. Pham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Najate Ojeil
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Kelly Bobchin
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Mark Slifstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Jodi J. Weinstein
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Greg Perlman
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
| | - Guillermo Horga
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
| | - Anissa Abi-Dargham
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853
| | - Jared X. Van Snellenberg
- Department of Psychiatry and Behavioral Health, Renaissance School of Medicine at Stony Brook University, Stony Brook, NY 11794
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY 11794
- Department of Psychiatry, Columbia University Vagelos College of Physicians and Surgeons, New York-Presbyterian / Columbia University Irving Medical Center, New York, NY 10032
- New York State Psychiatric Institute, New York, NY 10032
- Department of Psychology, Stony Brook University, Stony Brook, NY 11794
| |
Collapse
|
6
|
Kristensen TD, Ambrosen KS, Raghava JM, Syeda WT, Dhollander T, Lemvigh CK, Bojesen KB, Barber AD, Nielsen MØ, Rostrup E, Pantelis C, Fagerlund B, Glenthøj BY, Ebdrup BH. Structural and functional connectivity in relation to executive functions in antipsychotic-naïve patients with first episode schizophrenia and levels of glutamatergic metabolites. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2024; 10:72. [PMID: 39217180 PMCID: PMC11366027 DOI: 10.1038/s41537-024-00487-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Patients with schizophrenia exhibit structural and functional dysconnectivity but the relationship to the well-documented cognitive impairments is less clear. This study investigates associations between structural and functional connectivity and executive functions in antipsychotic-naïve patients experiencing schizophrenia. Sixty-four patients with schizophrenia and 95 matched controls underwent cognitive testing, diffusion weighted imaging and resting state functional magnetic resonance imaging. In the primary analyses, groupwise interactions between structural connectivity as measured by fixel-based analyses and executive functions were investigated using multivariate linear regression analyses. For significant structural connections, secondary analyses examined whether functional connectivity and associations with executive functions also differed for the two groups. In group comparisons, patients exhibited cognitive impairments across all executive functions compared to controls (p < 0.001), but no group difference were observed in the fixel-based measures. Primary analyses revealed a groupwise interaction between planning abilities and fixel-based measures in the left anterior thalamic radiation (p = 0.004), as well as interactions between cognitive flexibility and fixel-based measures in the isthmus of corpus callosum and cingulum (p = 0.049). Secondary analyses revealed increased functional connectivity between grey matter regions connected by the left anterior thalamic radiation (left thalamus with pars opercularis p = 0.018, and pars orbitalis p = 0.003) in patients compared to controls. Moreover, a groupwise interaction was observed between cognitive flexibility and functional connectivity between contralateral regions connected by the isthmus (precuneus p = 0.028, postcentral p = 0.012), all p-values corrected for multiple comparisons. We conclude that structural and functional connectivity appear to associate with executive functions differently in antipsychotic-naïve patients with schizophrenia compared to controls.
Collapse
Affiliation(s)
- Tina D Kristensen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark.
| | - Karen S Ambrosen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Jayachandra M Raghava
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Functional Imaging Unit, Department of Clinical Physiology, Nuclear Medicine and PET, Rigshospitalet, Glostrup, Denmark
| | - Warda T Syeda
- Melbourne Brain Center Imaging Unit, Department of Radiology, University of Melbourne, Parkville, VIC, Australia
| | - Thijs Dhollander
- Developmental Imaging, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - Cecilie K Lemvigh
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Kirsten B Bojesen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Anita D Barber
- Department of Psychiatry, Zucker Hillside Hospital and Zucker School of Medicine at Hofstra/Northwell, Northwell, NY, USA
- Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, Manhasset, NY, USA
| | - Mette Ø Nielsen
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Egill Rostrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
| | - Christos Pantelis
- Department of Psychiatry, University of Melbourne and Melbourne Health, Parkville, VIC, Australia
| | - Birgitte Fagerlund
- Child and Adolescent Psychiatry, Mental Health Centre, Copenhagen University Hospital, Hellerup, Copenhagen, Denmark
- Department of Psychology, University of Copenhagen, Copenhagen, Denmark
| | - Birte Y Glenthøj
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bjørn H Ebdrup
- Center for Neuropsychiatric Schizophrenia Research, Mental Health Centre Glostrup, Copenhagen University Hospital, Glostrup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
7
|
Thalhammer M, Schulz J, Scheulen F, Oubaggi MEM, Kirschner M, Kaiser S, Schmidt A, Borgwardt S, Avram M, Brandl F, Sorg C. Distinct Volume Alterations of Thalamic Nuclei Across the Schizophrenia Spectrum. Schizophr Bull 2024; 50:1208-1222. [PMID: 38577901 PMCID: PMC11349018 DOI: 10.1093/schbul/sbae037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
BACKGROUND AND HYPOTHESIS Abnormal thalamic nuclei volumes and their link to cognitive impairments have been observed in schizophrenia. However, whether and how this finding extends to the schizophrenia spectrum is unknown. We hypothesized a distinct pattern of aberrant thalamic nuclei volume across the spectrum and examined its potential associations with cognitive symptoms. STUDY DESIGN We performed a FreeSurfer-based volumetry of T1-weighted brain MRIs from 137 healthy controls, 66 at-risk mental state (ARMS) subjects, 89 first-episode psychosis (FEP) individuals, and 126 patients with schizophrenia to estimate thalamic nuclei volumes of six nuclei groups (anterior, lateral, ventral, intralaminar, medial, and pulvinar). We used linear regression models, controlling for sex, age, and estimated total intracranial volume, both to compare thalamic nuclei volumes across groups and to investigate their associations with positive, negative, and cognitive symptoms. STUDY RESULTS We observed significant volume alterations in medial and lateral thalamic nuclei. Medial nuclei displayed consistently reduced volumes across the spectrum compared to controls, while lower lateral nuclei volumes were only observed in schizophrenia. Whereas positive and negative symptoms were not associated with reduced nuclei volumes across all groups, higher cognitive scores were linked to lower volumes of medial nuclei in ARMS. In FEP, cognition was not linked to nuclei volumes. In schizophrenia, lower cognitive performance was associated with lower medial volumes. CONCLUSIONS Results demonstrate distinct thalamic nuclei volume reductions across the schizophrenia spectrum, with lower medial nuclei volumes linked to cognitive deficits in ARMS and schizophrenia. Data suggest a distinctive trajectory of thalamic nuclei abnormalities along the course of schizophrenia.
Collapse
Affiliation(s)
- Melissa Thalhammer
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Julia Schulz
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Felicitas Scheulen
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Mohamed El Mehdi Oubaggi
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
| | - Matthias Kirschner
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
- Department of Psychiatry, Psychotherapy and Psychosomatics, Psychiatric Hospital, University of Zurich, Zurich, Switzerland
| | - Stefan Kaiser
- Department of Psychiatry, University Hospital of Geneva, Geneva, Switzerland
| | - André Schmidt
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Stefan Borgwardt
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Mihai Avram
- Translational Psychiatry, Department of Psychiatry and Psychotherapy, University of Lübeck, Lübeck, Germany
| | - Felix Brandl
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| | - Christian Sorg
- Department of Diagnostic and Interventional Neuroradiology, School of Medicine, Technical University of Munich, Munich, Germany
- TUM-NIC Neuroimaging Center, School of Medicine, Technical University of Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, School of Medicine, Technical University of Munich, Munich, Germany
| |
Collapse
|
8
|
Lu Y, Hatzipantelis CJ, Langmead CJ, Stewart GD. Molecular insights into orphan G protein-coupled receptors relevant to schizophrenia. Br J Pharmacol 2024; 181:2095-2113. [PMID: 37605621 DOI: 10.1111/bph.16221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 06/25/2023] [Accepted: 07/23/2023] [Indexed: 08/23/2023] Open
Abstract
Schizophrenia remains a sizable socio-economic burden that continues to be treated with therapeutics based on 70-year old science. All currently approved therapeutics primarily target the dopamine D2 receptor to achieve their efficacy. Whilst dopaminergic dysregulation is a key feature in this disorder, the targeting of dopaminergic machinery has yielded limited efficacy and an appreciable side effect burden. Over the recent decades, numerous drugs that engage non-dopaminergic G protein-coupled receptors (GPCRs) have yielded a promise of efficacy without the deleterious side effect profile, yet none have successfully completed clinical studies and progressed to the market. More recently, there has been increased attention around non-dopaminergic GPCR-targeting drugs, which demonstrated efficacy in some schizophrenia symptom domains. This provides renewed hope that effective schizophrenia treatment may lie outside of the dopaminergic space. Despite the potential for muscarinic receptor- (and other well-characterised GPCR families) targeting drugs to treat schizophrenia, they are often plagued with complications such as lack of receptor subtype selectivity and peripheral on-target side effects. Orphan GPCR studies have opened a new avenue of exploration with many demonstrating schizophrenia-relevant mechanisms and a favourable expression profile, thus offering potential for novel drug development. This review discusses centrally expressed orphan GPCRs: GPR3, GPR6, GPR12, GPR52, GPR85, GPR88 and GPR139 and their relationship to schizophrenia. We review their expression, signalling mechanisms and cellular function, in conjunction with small molecule development and structural insights. We seek to provide a snapshot of the growing evidence and development potential of new classes of schizophrenia therapeutics. LINKED ARTICLES: This article is part of a themed issue Therapeutic Targeting of G Protein-Coupled Receptors: hot topics from the Australasian Society of Clinical and Experimental Pharmacologists and Toxicologists 2021 Virtual Annual Scientific Meeting. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v181.14/issuetoc.
Collapse
Affiliation(s)
- Yao Lu
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
| | | | - Christopher J Langmead
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| | - Gregory D Stewart
- Drug Discovery Biology and Neuroscience & Mental Health Therapeutic Program Area, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- ARC Centre for Cryo-electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Australia
- Neuromedicines Discovery Centre, Monash University, Parkville, Australia
- Phrenix Therapeutics, Parkville, Australia
| |
Collapse
|
9
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
10
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578421. [PMID: 38352415 PMCID: PMC10862901 DOI: 10.1101/2024.02.01.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Ildar T. Bayazitov
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kyle D. Newman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Nathaniel B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Cody A. Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Samuel T. Peters
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Andrew B. Schild
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| |
Collapse
|
11
|
Alahmadi A, Al-Ghamdi J, Tayeb HO. The hidden link: Investigating functional connectivity of rarely explored sub-regions of thalamus and superior temporal gyrus in Schizophrenia. Transl Neurosci 2024; 15:20220356. [PMID: 39669226 PMCID: PMC11635424 DOI: 10.1515/tnsci-2022-0356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 09/05/2024] [Accepted: 09/17/2024] [Indexed: 12/14/2024] Open
Abstract
Functional magnetic resonance imaging (fMRI) stands as a pivotal tool in advancing our comprehension of Schizophrenia, offering insights into functional segregations and integrations. Previous investigations employing either task-based or resting-state fMRI primarily focused on large main regions of interest (ROI), revealing the thalamus and superior temporal gyrus (STG) as prominently affected areas. Recent studies, however, unveiled the cytoarchitectural intricacies within these regions, prompting a more nuanced exploration. In this study, resting-state fMRI was conducted on 72 schizophrenic patients and 74 healthy controls to discern whether distinct thalamic nuclei and STG sub-regions exhibit varied functional integrational connectivity to main networks and to identify the most affected sub-regions in Schizophrenia. Employing seed-based analysis, six sub-ROIs - four in the thalamus and two in the STG - were selected. Our findings unveiled heightened positive functional connectivity in Schizophrenic patients, particularly toward the anterior STG (aSTG) and posterior STG (pSTG). Notably, positive connectivity emerged between the medial division of mediodorsal thalamic nuclei (MDm) and the visual network, while increased functional connectivity linked the ventral lateral nucleus of the thalamus with aSTG. This accentuated functional connectivity potentially influences these sub-regions, contributing to dysfunctions and manifesting symptoms such as language and learning difficulties alongside hallucinations. This study underscores the importance of delineating sub-regional dynamics to enhance our understanding of the nuanced neural alterations in Schizophrenia, paving the way for more targeted interventions and therapeutic approaches.
Collapse
Affiliation(s)
- Adnan Alahmadi
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jamaan Al-Ghamdi
- Radiologic Sciences Department, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Haythum O. Tayeb
- Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Faculty of Medicine in Rabigh, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
12
|
Alhesain M, Ronan H, LeBeau FEN, Clowry GJ. Expression of the schizophrenia associated gene FEZ1 in the early developing fetal human forebrain. Front Neurosci 2023; 17:1249973. [PMID: 37746155 PMCID: PMC10514365 DOI: 10.3389/fnins.2023.1249973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 08/15/2023] [Indexed: 09/26/2023] Open
Abstract
Introduction The protein fasciculation and elongation zeta-1 (FEZ1) is involved in axon outgrowth but potentially interacts with various proteins with roles ranging from intracellular transport to transcription regulation. Gene association and other studies have identified FEZ1 as being directly, or indirectly, implicated in schizophrenia susceptibility. To explore potential roles in normal early human forebrain neurodevelopment, we mapped FEZ1 expression by region and cell type. Methods All tissues were provided with maternal consent and ethical approval by the Human Developmental Biology Resource. RNAseq data were obtained from previously published sources. Thin paraffin sections from 8 to 21 post-conceptional weeks (PCW) samples were used for RNAScope in situ hybridization and immunohistochemistry against FEZ1 mRNA and protein, and other marker proteins. Results Tissue RNAseq revealed that FEZ1 is highly expressed in the human cerebral cortex between 7.5-17 PCW and single cell RNAseq at 17-18 PCW confirmed its expression in all neuroectoderm derived cells. The highest levels were found in more mature glutamatergic neurons, the lowest in GABAergic neurons and dividing progenitors. In the thalamus, single cell RNAseq similarly confirmed expression in multiple cell types. In cerebral cortex sections at 8-10 PCW, strong expression of mRNA and protein appeared confined to post-mitotic neurons, with low expression seen in progenitor zones. Protein expression was observed in some axon tracts by 16-19 PCW. However, in sub-cortical regions, FEZ1 was highly expressed in progenitor zones at early developmental stages, showing lower expression in post-mitotic cells. Discussion FEZ1 has different expression patterns and potentially diverse functions in discrete forebrain regions during prenatal human development.
Collapse
Affiliation(s)
| | | | | | - Gavin J. Clowry
- Centre for Transformative Research in Neuroscience, Newcastle University Biosciences Institute, Newcastle upon Tyne, United Kingdom
| |
Collapse
|
13
|
Sinclair-Wilson A, Lawrence A, Ferezou I, Cartonnet H, Mailhes C, Garel S, Lokmane L. Plasticity of thalamocortical axons is regulated by serotonin levels modulated by preterm birth. Proc Natl Acad Sci U S A 2023; 120:e2301644120. [PMID: 37549297 PMCID: PMC10438379 DOI: 10.1073/pnas.2301644120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/09/2023] [Indexed: 08/09/2023] Open
Abstract
Sensory inputs are conveyed to distinct primary areas of the neocortex through specific thalamocortical axons (TCA). While TCA have the ability to reorient postnatally to rescue embryonic mistargeting and target proper modality-specific areas, how this remarkable adaptive process is regulated remains largely unknown. Here, using a mutant mouse model with a shifted TCA trajectory during embryogenesis, we demonstrated that TCA rewiring occurs during a short postnatal time window, preceded by a prenatal apoptosis of thalamic neurons-two processes that together lead to the formation of properly innervated albeit reduced primary sensory areas. We furthermore showed that preterm birth, through serotonin modulation, impairs early postnatal TCA plasticity, as well as the subsequent delineation of cortical area boundary. Our study defines a birth and serotonin-sensitive period that enables concerted adaptations of TCA to primary cortical areas with major implications for our understanding of brain wiring in physiological and preterm conditions.
Collapse
Affiliation(s)
- Alexander Sinclair-Wilson
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Akindé Lawrence
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Isabelle Ferezou
- Université Paris-Saclay, CNRS, Institut des Neurosciences Paris-Saclay, 91400Saclay, France
| | - Hugues Cartonnet
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Caroline Mailhes
- Acute Transgenesis Facility, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| | - Sonia Garel
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
- Collège de France, PSL Research University, 75005Paris, France
| | - Ludmilla Lokmane
- Team Brain Development and Plasticity, Institut de Biologie de l’ENS, École Normale Supérieure, CNRS, INSERM, PSL Research University, 75005Paris, France
| |
Collapse
|
14
|
Brems BM, Sullivan EE, Connolly JG, Zhang J, Chang A, Ortiz R, Cantwell L, Kulkarni P, Thakur GA, Ferris CF. Dose-dependent effects of GAT107, a novel allosteric agonist-positive allosteric modulator (ago-PAM) for the α7 nicotinic cholinergic receptor: a BOLD phMRI and connectivity study on awake rats. Front Neurosci 2023; 17:1196786. [PMID: 37424993 PMCID: PMC10326388 DOI: 10.3389/fnins.2023.1196786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 06/06/2023] [Indexed: 07/11/2023] Open
Abstract
Background Alpha 7 nicotinic acetylcholine receptor (α7nAChR) agonists have been developed to treat schizophrenia but failed in clinical trials due to rapid desensitization. GAT107, a type 2 allosteric agonist-positive allosteric modulator (ago-PAM) to the α7 nAChR was designed to activate the α7 nAChR while reducing desensitization. We hypothesized GAT107 would alter the activity of thalamocortical neural circuitry associated with cognition, emotion, and sensory perception. Methods The present study used pharmacological magnetic resonance imaging (phMRI) to evaluate the dose-dependent effect of GAT107 on brain activity in awake male rats. Rats were given a vehicle or one of three different doses of GAT107 (1, 3, and 10 mg/kg) during a 35 min scanning session. Changes in BOLD signal and resting state functional connectivity were evaluated and analyzed using a rat 3D MRI atlas with 173 brain areas. Results GAT107 presented with an inverted-U dose response curve with the 3 mg/kg dose having the greatest effect on the positive BOLD volume of activation. The primary somatosensory cortex, prefrontal cortex, thalamus, and basal ganglia, particularly areas with efferent connections from the midbrain dopaminergic system were activated as compared to vehicle. The hippocampus, hypothalamus, amygdala, brainstem, and cerebellum showed little activation. Forty-five min post treatment with GAT107, data for resting state functional connectivity were acquired and showed a global decrease in connectivity as compared to vehicle. Discussion GAT107 activated specific brain regions involved in cognitive control, motivation, and sensory perception using a BOLD provocation imaging protocol. However, when analyzed for resting state functional connectivity there was an inexplicable, general decrease in connectivity across all brain areas.
Collapse
Affiliation(s)
- Brittany M. Brems
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Erin E. Sullivan
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jenna G. Connolly
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Jingchun Zhang
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Arnold Chang
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Richard Ortiz
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, NM, United States
| | - Lucas Cantwell
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Praveen Kulkarni
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
| | - Ganesh A. Thakur
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
| | - Craig F. Ferris
- Department of Pharmaceutical Sciences, Northeastern University, Boston, MA, United States
- Center for Translational Neuroimaging, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| |
Collapse
|
15
|
Tuovinen N, Hofer A. Resting-state functional MRI in treatment-resistant schizophrenia. FRONTIERS IN NEUROIMAGING 2023; 2:1127508. [PMID: 37554635 PMCID: PMC10406237 DOI: 10.3389/fnimg.2023.1127508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 03/17/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Abnormalities in brain regions involved in the pathophysiology of schizophrenia (SCZ) may present insight into individual clinical symptoms. Specifically, functional connectivity irregularities may provide potential biomarkers for treatment response or treatment resistance, as such changes can occur before any structural changes are visible. We reviewed resting-state functional magnetic resonance imaging (rs-fMRI) findings from the last decade to provide an overview of the current knowledge on brain functional connectivity abnormalities and their associations to symptoms in treatment-resistant schizophrenia (TRS) and ultra-treatment-resistant schizophrenia (UTRS) and to look for support for the dysconnection hypothesis. METHODS PubMed database was searched for articles published in the last 10 years applying rs-fMRI in TRS patients, i.e., who had not responded to at least two adequate treatment trials with different antipsychotic drugs. RESULTS Eighteen articles were selected for this review involving 648 participants (TRS and control cohorts). The studies showed frontal hypoconnectivity before the initiation of treatment with CLZ or riluzole, an increase in frontal connectivity after riluzole treatment, fronto-temporal hypoconnectivity that may be specific for non-responders, widespread abnormal connectivity during mixed treatments, and ECT-induced effects on the limbic system. CONCLUSION Probably due to the heterogeneity in the patient cohorts concerning antipsychotic treatment and other clinical variables (e.g., treatment response, lifetime antipsychotic drug exposure, duration of illness, treatment adherence), widespread abnormalities in connectivity were noted. However, irregularities in frontal brain regions, especially in the prefrontal cortex, were noted which are consistent with previous SCZ literature and the dysconnectivity hypothesis. There were major limitations, as most studies did not differentiate between TRS and UTRS (i.e., CLZ-resistant schizophrenia) and investigated heterogeneous cohorts treated with mixed treatments (with or without CLZ). This is critical as in different subtypes of the disorder an interplay between dopaminergic and glutamatergic pathways involving frontal, striatal, and hippocampal brain regions in separate ways is likely. Better definitions of TRS and UTRS are necessary in future longitudinal studies to correctly differentiate brain regions underlying the pathophysiology of SCZ, which could serve as potential functional biomarkers for treatment resistance.
Collapse
Affiliation(s)
- Noora Tuovinen
- Division of Psychiatry I, Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, Medical University of Innsbruck, Innsbruck, Austria
| | | |
Collapse
|
16
|
Casquero-Veiga M, Lamanna-Rama N, Romero-Miguel D, Rojas-Marquez H, Alcaide J, Beltran M, Nacher J, Desco M, Soto-Montenegro ML. The Poly I:C maternal immune stimulation model shows unique patterns of brain metabolism, morphometry, and plasticity in female rats. Front Behav Neurosci 2023; 16:1022622. [PMID: 36733452 PMCID: PMC9888250 DOI: 10.3389/fnbeh.2022.1022622] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/05/2022] [Indexed: 01/07/2023] Open
Abstract
Introduction: Prenatal infections are associated with an increased risk of the onset of schizophrenia. Rodent models of maternal immune stimulation (MIS) have been extensively used in preclinical studies. However, many of these studies only include males, omitting pathophysiological features unique to females. The aim of this study is to characterize the MIS model in female rats using positron emission tomography (PET), structural magnetic resonance imaging (MR), and neuroplasticiy studies. Methods: In gestational day 15, Poly I:C (or Saline) was injected into pregnant Wistar rats to induce the MIS model. Imaging studies: [18F]-fluoro-2-deoxy-D-glucose-PET scans of female-offspring were acquired at post-natal day (PND) 35 and PND100. Furthermore, T2-MR brain images were acquired in adulthood. Differences in FDG uptake and morphometry between groups were assessed with SPM12 and Regions of Interest (ROI) analyses. Ex vivo study: The density of parvalbumin expressing interneurons (PV), perineuronal nets (PNN), and parvalbumin expressing interneurons surrounded by perineuronal nets (PV-PNN) were evaluated in the prelimbic cortex and basolateral amygdala using confocal microscopy. ROIs and neuroplasticity data were analyzed by 2-sample T-test and 2-way-ANOVA analyses, respectively. Results: A significant increase in brain metabolism was found in all animals at adulthood compared to adolescence. MIS hardly modified brain glucose metabolism in females, highlighting a significant hypometabolism in the thalamus at adulthood. In addition, MIS induced gray matter (GM) enlargements in the pituitary, hippocampus, substantia nigra, and cingulate cortex, and GM shrinkages in some thalamic nuclei, cerebelar areas, and brainstem. Moreover, MIS induced white matter shrinkages in the cerebellum, brainstem and corpus callosum, along with cerebrospinal fluid enlargements in the lateral and 4th ventricles. Finally, MIS reduced the density of PV, PNN, and PV-PNN in the basolateral amygdala. Conclusion: Our work showed in vivo the differential pattern of functional and morphometric affectation in the MIS model in females, as well as the deficits caused at the synaptic level according to sex. The differences obtained highlight the relevance of including both sexes in psychiatric research in order to consider their pathophysiological particularities and successfully extend the benefits obtained to the entire patient population.
Collapse
Affiliation(s)
- Marta Casquero-Veiga
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Cardiovascular Imaging and Population Studies, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain
| | - Nicolás Lamanna-Rama
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Escuela Técnica Superior de Ingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Diego Romero-Miguel
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Escuela Técnica Superior de Ingeniería, Universidad Carlos III de Madrid, Madrid, Spain
| | - Henar Rojas-Marquez
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,Department of Genetics, Physical Anthropology and Animal Physiology, University of the Basque Country (UPV/EHU), Leioa, Spain,Biocruces Bizkaia Health Research Institute, Barakaldo, Spain
| | - Julia Alcaide
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Marc Beltran
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain
| | - Juan Nacher
- Neurobiology Unit, Cell Biology Departament, BIOTECMED Institute, Universitat de València, Burjassot, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Fundación Investigación Hospital Clínico de Valencia, INCLIVA, Valencia, Spain
| | - Manuel Desco
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,Advanced Imaging Unit, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Madrid, Spain,Departamento de Bioingeniería e Ingeniería Aeroespacial, Universidad Carlos III de Madrid, Campus de Getafe, Madrid, Spain,*Correspondence: Manuel Desco Maria Luisa Soto-Montenegro
| | - Maria Luisa Soto-Montenegro
- Laboratorio de Imagen Médica, Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain,CIBER de Salud Mental (CIBERSAM), Madrid, Spain,High Performance Research Group in Physiopathology and Pharmacology of the Digestive System (NeuGut), University Rey Juan Carlos (URJC), Alcorcón, Spain,*Correspondence: Manuel Desco Maria Luisa Soto-Montenegro
| |
Collapse
|
17
|
Angulo Salavarria MM, Dell’Amico C, D’Agostino A, Conti L, Onorati M. Cortico-thalamic development and disease: From cells, to circuits, to schizophrenia. Front Neuroanat 2023; 17:1130797. [PMID: 36935652 PMCID: PMC10019505 DOI: 10.3389/fnana.2023.1130797] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
The human brain is the most complex structure generated during development. Unveiling the ontogenesis and the intrinsic organization of specific neural networks may represent a key to understanding the physio-pathological aspects of different brain areas. The cortico-thalamic and thalamo-cortical (CT-TC) circuits process and modulate essential tasks such as wakefulness, sleep and memory, and their alterations may result in neurodevelopmental and psychiatric disorders. These pathologies are reported to affect specific neural populations but may also broadly alter physiological connections and thus dysregulate brain network generation, communication, and function. More specifically, the CT-TC system is reported to be severely affected in disorders impacting superior brain functions, such as schizophrenia (SCZ), bipolar disorder, autism spectrum disorders or epilepsy. In this review, the focus will be on CT development, and the models exploited to uncover and comprehend its molecular and cellular mechanisms. In parallel to animal models, still fundamental to unveil human neural network establishment, advanced in vitro platforms, such as brain organoids derived from human pluripotent stem cells, will be discussed. Indeed, organoids and assembloids represent unique tools to study and accelerate fundamental research in CT development and its dysfunctions. We will then discuss recent cutting-edge contributions, including in silico approaches, concerning ontogenesis, specification, and function of the CT-TC circuitry that generates connectivity maps in physiological and pathological conditions.
Collapse
Affiliation(s)
| | - Claudia Dell’Amico
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
| | - Armando D’Agostino
- Department of Health Sciences, University of Milan, Milan, Italy
- Department of Mental Health and Addictions, ASST Santi Paolo e Carlo, Milan, Italy
| | - Luciano Conti
- Department of Cellular, Computational, and Integrative Biology, University of Trento, Trento, Italy
| | - Marco Onorati
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, Pisa, Italy
- *Correspondence: Marco Onorati,
| |
Collapse
|
18
|
Białoń M, Wąsik A. Advantages and Limitations of Animal Schizophrenia Models. Int J Mol Sci 2022; 23:5968. [PMID: 35682647 PMCID: PMC9181262 DOI: 10.3390/ijms23115968] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/17/2022] [Accepted: 05/23/2022] [Indexed: 12/16/2022] Open
Abstract
Mental illness modeling is still a major challenge for scientists. Animal models of schizophrenia are essential to gain a better understanding of the disease etiopathology and mechanism of action of currently used antipsychotic drugs and help in the search for new and more effective therapies. We can distinguish among pharmacological, genetic, and neurodevelopmental models offering various neuroanatomical disorders and a different spectrum of symptoms of schizophrenia. Modeling schizophrenia is based on inducing damage or changes in the activity of relevant regions in the rodent brain (mainly the prefrontal cortex and hippocampus). Such artificially induced dysfunctions approximately correspond to the lesions found in patients with schizophrenia. However, notably, animal models of mental illness have numerous limitations and never fully reflect the disease state observed in humans.
Collapse
Affiliation(s)
| | - Agnieszka Wąsik
- Department of Neurochemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 31-343 Cracow, Poland;
| |
Collapse
|
19
|
Karpov D, Golimbet V. Cellular and supracellular models in the study of molecular mechanisms associated with schizophrenia. Zh Nevrol Psikhiatr Im S S Korsakova 2022; 122:46-50. [DOI: 10.17116/jnevro202212211146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
20
|
Stȩpień-Wyrobiec O, Nowak M, Wyrobiec G, Morawiec E, Wierzbik-Strońska M, Staszkiewicz R, Grabarek BO. Crossroad between current knowledge and new perspective of diagnostic and therapy of late-onset schizophrenia and very late-onset schizophrenia-like psychosis: An update. Front Psychiatry 2022; 13:1025414. [PMID: 36387009 PMCID: PMC9643586 DOI: 10.3389/fpsyt.2022.1025414] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/11/2022] [Indexed: 11/23/2022] Open
Abstract
Schizophrenia is a chronic, highly individualized disease with many symptoms that can occur with varying severity in different patients. Schizophrenia affects 1% of the population, but occurs in almost 20% of patients after 40 years of age. It should be noted that the next peak in the incidence of schizophrenia occurs at the age of 60 years, affects mostly females, and is closely associated with a high risk of developing memory disorders. Therefore, postadolescent schizophrenia includes two distinct groups of patients: those whose symptoms onset at the age of 45 or 60. The purposes of this literature review were as follows: (1) synthetically characterize the clinical manifestations of schizophrenia; (2) discuss difficulties in the diagnosis of schizophrenia, especially in patients over 40 years of age; (3) discuss the clinical utility of different classes of marker in diagnostic and differentiating schizophrenia from neurodegenerative diseases in elderly people; (4) discuss therapeutic options for schizophrenia, pharmacotherapy, and psychotherapy, emphasizing the role of caregivers of people with psychosis in therapy, in preadolescence and postadolescence schizophrenia. We have tried to primarily discuss the findings of original articles from the last 10 years with an indication of their clinical implications with the issues discussed in the various subsections. Moreover, despite many years of research, no specific, precise algorithm has been developed that can be used in clinical practice during the diagnosis of schizophrenia. For this reason, the diagnosis of schizophrenia is primarily based on an interview with the patient and his family, as well as on the experience of a psychiatrist. It also seems that schizophrenia treatment should be carried out holistically, including pharmacotherapy, psychotherapy, and the support of caregivers of patients who have this psychosis, which increases the achievement of therapeutic success. Finally, we must be aware of the difficulties in diagnosing schizophrenia in the elderly and the need to modify pharmacological treatment. Currently, no guidelines have been developed for the differentiation of negative symptoms in elderly patients with schizophrenia from amotivation/avolition/apathy symptoms in elderly patients with neurodegenerative disorders.
Collapse
Affiliation(s)
- Olga Stȩpień-Wyrobiec
- Department of Geriatrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.,EMC Hospitals, John Paul II Geriatric Hospital in Katowice, Katowice, Poland
| | - Marta Nowak
- Department of Histology and Cell Pathology, Faculty of Medicine in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Grzegorz Wyrobiec
- Department of Histology and Cell Pathology, Faculty of Medicine in Zabrze, Medical University of Silesia in Katowice, Zabrze, Poland
| | - Emilia Morawiec
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,Department of Microbiology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland
| | | | - Rafał Staszkiewicz
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,5th Military Clinical Hospital with Polyclinic - Independent Public Health Care Facility in Krakow, Kraków, Poland
| | - Beniamin Oskar Grabarek
- Department of Histology, Cytophysiology and Embryology, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, University of Technology, Zabrze, Poland.,Gyncentrum, Laboratory of Molecular Biology and Virology, Katowice, Poland.,Department of Gynecology and Obstetrics, Faculty of Medicine in Zabrze, Academy of Silesia in Katowice, Zabrze, Poland
| |
Collapse
|