1
|
Xiao G, Cai Y, Zhang Y, Xie J, Wu L, Xie H, Wu J, Dai Q. Mesoscale neuronal granular trial variability in vivo illustrated by nonlinear recurrent network in silico. Nat Commun 2024; 15:9894. [PMID: 39548098 PMCID: PMC11567969 DOI: 10.1038/s41467-024-54346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 11/06/2024] [Indexed: 11/17/2024] Open
Abstract
Large-scale neural recording with single-neuron resolution has revealed the functional complexity of the neural systems. However, even under well-designed task conditions, the cortex-wide network exhibits highly dynamic trial variability, posing challenges to the conventional trial-averaged analysis. To study mesoscale trial variability, we conducted a comparative study between fluorescence imaging of layer-2/3 neurons in vivo and network simulation in silico. We imaged up to 40,000 cortical neurons' triggered responses by deep brain stimulus (DBS). And we build an in silico network to reproduce the biological phenomena we observed in vivo. We proved the existence of ineluctable trial variability and found it influenced by input amplitude and range. Moreover, we demonstrated that a spatially heterogeneous coding community accounts for more reliable inter-trial coding despite single-unit trial variability. A deeper understanding of trial variability from the perspective of a dynamical system may lead to uncovering intellectual abilities such as parallel coding and creativity.
Collapse
Affiliation(s)
- Guihua Xiao
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yeyi Cai
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Yuanlong Zhang
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Jingyu Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Lifan Wu
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Hao Xie
- Department of Automation, Tsinghua University, Beijing, China
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China
| | - Jiamin Wu
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| | - Qionghai Dai
- Beijing National Research Center for Information Science and Technology, Tsinghua University, Beijing, China.
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Palmer T. Human Creativity and Consciousness: Unintended Consequences of the Brain's Extraordinary Energy Efficiency? ENTROPY (BASEL, SWITZERLAND) 2020; 22:E281. [PMID: 33286055 PMCID: PMC7516737 DOI: 10.3390/e22030281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/14/2020] [Accepted: 02/25/2020] [Indexed: 11/16/2022]
Abstract
It is proposed that both human creativity and human consciousness are (unintended) consequences of the human brain's extraordinary energy efficiency. The topics of creativity and consciousness are treated separately, though have a common sub-structure. It is argued that creativity arises from a synergy between two cognitive modes of the human brain (which broadly coincide with Kahneman's Systems 1 and 2). In the first, available energy is spread across a relatively large network of neurons, many of which are small enough to be susceptible to thermal (ultimately quantum decoherent) noise. In the second, available energy is focussed on a smaller subset of larger neurons whose action is deterministic. Possible implications for creative computing in silicon are discussed. Starting with a discussion of the concept of free will, the notion of consciousness is defined in terms of an awareness of what are perceived to be nearby counterfactual worlds in state space. It is argued that such awareness arises from an interplay between memories on the one hand, and quantum physical mechanisms (where, unlike in classical physics, nearby counterfactual worlds play an indispensable dynamical role) in the ion channels of neural networks, on the other. As with the brain's susceptibility to noise, it is argued that in situations where quantum physics plays a role in the brain, it does so for reasons of energy efficiency. As an illustration of this definition of consciousness, a novel proposal is outlined as to why quantum entanglement appears to be so counter-intuitive.
Collapse
Affiliation(s)
- Tim Palmer
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|