1
|
Saha DK, Bohsali A, Saha R, Hajjar I, Calhoun VD. A Multivariate Method for Estimating and comparing whole brain functional connectomes from fMRI and PET data. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2023; 2023:1-4. [PMID: 38083351 DOI: 10.1109/embc40787.2023.10340631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
Positron emission tomography (PET) and magnetic resonance imaging (MRI) are two commonly used imaging techniques to visualize brain function. The use of inter-network covariation (a functional connectome) is a widely used approach to infer links among different brain networks. While whole brain resting fMRI connectomes are widely used, PET data has mostly been analyzed using a few regions of interest. There has been much less work estimating PET spatial networks and almost no work on their connectivity (covariation) in the context of a whole brain data-driven connectome, nor have there been direct comparisons between whole brain PET and fMRI connectomes. Here we present an approach to leverage spatially constrained ICA to compute an estimate of the PET connectome. Results reveal highly modularized connectome patterns that are complementary to that identified from resting fMRI. Similarly, we were able to identify comparable resting networks from a PiB PET scan that can be directly compared to networks in rest fMRI data and results reveal similar, but not identical, network spatial patterns, with the PET networks being slightly smoother and, in some cases, showing variations in subnodes. The resulting networks, decomposed into spatial maps and subject expressions (loading parameters) linked to resting fMRI provide a new way to evaluate the complementary information in PET and fMRI and open up new possibilities for biomarker development.Clinical Relevance-This study analyzes the whole-brain PET and fMRI connectomes, capturing the complementary information from both imaging modalities, thereby introducing a new scope for biomarker development.
Collapse
|
2
|
Ghanbari M, Zhou Z, Hsu LM, Han Y, Sun Y, Yap PT, Zhang H, Shen D. Altered Connectedness of the Brain Chronnectome During the Progression to Alzheimer's Disease. Neuroinformatics 2021; 20:391-403. [PMID: 34837154 DOI: 10.1007/s12021-021-09554-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2021] [Indexed: 11/24/2022]
Abstract
Graph theory has been extensively used to investigate brain network topology and its changes in disease cohorts. However, many graph theoretic analysis-based brain network studies focused on the shortest paths or, more generally, cost-efficiency. In this work, we use two new concepts, connectedness and 2-connectedness, to measure different global properties compared to the previously widely adopted ones. We apply them to unravel interesting characteristics in the brain, such as redundancy design and further conduct a time-varying brain functional network analysis for characterizing the progression of Alzheimer's disease (AD). Specifically, we define different connectedness and 2-connectedness states and evaluate their dynamics in AD and its preclinical stage, mild cognitive impairment (MCI), compared to the normal controls (NC). Results indicate that, compared to MCI and NC, brain networks of AD tend to be more frequently connected at a sparse level. For MCI, we found that their brains are more likely to be 2-connected in the minimal connected state as well indicating increasing redundancy in brain connectivity. Such a redundant design could ensure maintained connectedness of the MCI's brain network in the case that pathological damages break down any link or silenced any node, making it possible to preserve cognitive abilities. Our study suggests that the redundancy in the brain functional chronnectome could be altered in the preclinical stage of AD. The findings can be successfully replicated in a retest study and with an independent MCI dataset. Characterizing redundancy design in the brain chronnectome using connectedness and 2-connectedness analysis provides a unique viewpoint for understanding disease affected brain networks.
Collapse
Affiliation(s)
- Maryam Ghanbari
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Zhen Zhou
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Li-Ming Hsu
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ying Han
- Department of National Clinical Research Center for Geriatric Disorders, Beijing, 100053, China
- Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, 100053, China
- Beijing Institute of Geriatrics, Beijing, 100053, China
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Yu Sun
- Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing, 100053, China
| | - Pew-Thian Yap
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Han Zhang
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
| | - Dinggang Shen
- Department of Radiology and BRIC, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- School of Biomedical Engineering, ShanghaiTech University, Shanghai, China.
- Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China.
| |
Collapse
|
3
|
Zippo AG, Castiglioni I, Lin J, Borsa VM, Valente M, Biella GEM. Short-Term Classification Learning Promotes Rapid Global Improvements of Information Processing in Human Brain Functional Connectome. Front Hum Neurosci 2020; 13:462. [PMID: 32009918 PMCID: PMC6971211 DOI: 10.3389/fnhum.2019.00462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 12/17/2019] [Indexed: 01/21/2023] Open
Abstract
Classification learning is a preeminent human ability within the animal kingdom but the key mechanisms of brain networks regulating learning remain mostly elusive. Recent neuroimaging advancements have depicted human brain as a complex graph machinery where brain regions are nodes and coherent activities among them represent the functional connections. While long-term motor memories have been found to alter functional connectivity in the resting human brain, a graph topological investigation of the short-time effects of learning are still not widely investigated. For instance, classification learning is known to orchestrate rapid modulation of diverse memory systems like short-term and visual working memories but how the brain functional connectome accommodates such modulations is unclear. We used publicly available repositories (openfmri.org) selecting three experiments, two focused on short-term classification learning along two consecutive runs where learning was promoted by trial-by-trial feedback errors, while a further experiment was used as supplementary control. We analyzed the functional connectivity extracted from BOLD fMRI signals, and estimated the graph information processing in the cerebral networks. The information processing capability, characterized by complex network statistics, significantly improved over runs, together with the subject classification accuracy. Instead, null-learning experiments, where feedbacks came with poor consistency, did not provoke any significant change in the functional connectivity over runs. We propose that learning induces fast modifications in the overall brain network dynamics, definitely ameliorating the short-term potential of the brain to process and integrate information, a dynamic consistently orchestrated by modulations of the functional connections among specific brain regions.
Collapse
Affiliation(s)
- Antonio G Zippo
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Isabella Castiglioni
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Jianyi Lin
- Department of Mathematics, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Virginia M Borsa
- Department of Human and Social Sciences, University of Bergamo, Bergamo, Italy
| | - Maurizio Valente
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| | - Gabriele E M Biella
- Institute of Molecular Bioimaging and Physiology, Consiglio Nazionale delle Ricerche, Milan, Italy
| |
Collapse
|
4
|
Yao Z, Hu B, Chen X, Xie Y, Gutknecht J, Majoe D. Learning Metabolic Brain Networks in MCI and AD by Robustness and Leave-One-Out Analysis: An FDG-PET Study. Am J Alzheimers Dis Other Demen 2018; 33:42-54. [PMID: 28931302 PMCID: PMC10852436 DOI: 10.1177/1533317517731535] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2024]
Abstract
This study attempted to better understand the properties associated with the metabolic brain network in mild cognitive impairment (MCI) and Alzheimer's disease (AD). Graph theory was employed to investigate the topological organization of metabolic brain network among 86 patients with MCI, 89 patients with AD, and 97 normal controls (NCs) using 18F fluoro-deoxy-glucose positron emission tomography (FDG-PET) data. The whole brain was divided into 82 areas by Brodmann atlas to construct networks. We found that MCI and AD showed a loss of small-world properties and topological aberrations, and MCI showed an intermediate measurement between NC and AD. The networks of MCI and AD were vulnerable to attacks resulting from the altered topological pattern. Furthermore, individual contributions were correlated with Mini-Mental State Examination and Clinical Dementia Rating. The present study indicated that the topological patterns of the metabolic networks were aberrant in patients with MCI and AD, which may be particularly helpful in uncovering the pathophysiology underlying the cognitive dysfunction in MCI and AD.
Collapse
Affiliation(s)
- Zhijun Yao
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Bin Hu
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Xuejiao Chen
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Yuanwei Xie
- School of Information Science and Engineering, Lanzhou University, Lanzhou, Gansu, People’s Republic of China
| | - Jürg Gutknecht
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| | - Dennis Majoe
- Computer Systems Institute, ETH Zürich, Zürich, Switzerland
| |
Collapse
|
5
|
Kang H, Ombao H, Fonnesbeck C, Ding Z, Morgan VL. A Bayesian Double Fusion Model for Resting-State Brain Connectivity Using Joint Functional and Structural Data. Brain Connect 2017; 7:219-227. [PMID: 28316255 DOI: 10.1089/brain.2016.0447] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Current approaches separately analyze concurrently acquired diffusion tensor imaging (DTI) and functional magnetic resonance imaging (fMRI) data. The primary limitation of these approaches is that they do not take advantage of the information from DTI that could potentially enhance estimation of resting-state functional connectivity (FC) between brain regions. To overcome this limitation, we develop a Bayesian hierarchical spatiotemporal model that incorporates structural connectivity (SC) into estimating FC. In our proposed approach, SC based on DTI data is used to construct an informative prior for FC based on resting-state fMRI data through the Cholesky decomposition. Simulation studies showed that incorporating the two data produced significantly reduced mean squared errors compared to the standard approach of separately analyzing the two data from different modalities. We applied our model to analyze the resting state DTI and fMRI data collected to estimate FC between the brain regions that were hypothetically important in the origination and spread of temporal lobe epilepsy seizures. Our analysis concludes that the proposed model achieves smaller false positive rates and is much robust to data decimation compared to the conventional approach.
Collapse
Affiliation(s)
- Hakmook Kang
- 1 Department of Biostatistics, Vanderbilt University , Nashville, Tennessee.,2 Center for Quantitative Sciences, Vanderbilt University , Nashville, Tennessee
| | - Hernando Ombao
- 3 Applied Mathematics and Computational Science, King Abdullah University of Science and Technology , Thuwal, Saudi Arabia .,4 Department of Statistics, University of California , Irvine, California
| | - Christopher Fonnesbeck
- 1 Department of Biostatistics, Vanderbilt University , Nashville, Tennessee.,2 Center for Quantitative Sciences, Vanderbilt University , Nashville, Tennessee
| | - Zhaohua Ding
- 5 Institute of Imaging Science, Vanderbilt University , Nashville, Tennessee.,6 Department of Radiology and Radiological Science, Vanderbilt University , Nashville, Tennessee
| | - Victoria L Morgan
- 5 Institute of Imaging Science, Vanderbilt University , Nashville, Tennessee.,6 Department of Radiology and Radiological Science, Vanderbilt University , Nashville, Tennessee
| |
Collapse
|
6
|
Abstract
This article presents a review of recent advances in neuroscience research in the specific area of brain connectivity as a potential biomarker of Alzheimer's disease with a focus on the application of graph theory. The review will begin with a brief overview of connectivity and graph theory. Then resent advances in connectivity as a biomarker for Alzheimer's disease will be presented and analyzed.
Collapse
Affiliation(s)
- Jon delEtoile
- 1 Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Hojjat Adeli
- 2 Departments of Biomedical Engineering, Biomedical Informatics, Neurological Surgery, and Neuroscience, and Biophysics Graduate Program, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
7
|
Weiner MW, Veitch DP, Aisen PS, Beckett LA, Cairns NJ, Green RC, Harvey D, Jack CR, Jagust W, Morris JC, Petersen RC, Saykin AJ, Shaw LM, Toga AW, Trojanowski JQ. Recent publications from the Alzheimer's Disease Neuroimaging Initiative: Reviewing progress toward improved AD clinical trials. Alzheimers Dement 2017; 13:e1-e85. [PMID: 28342697 PMCID: PMC6818723 DOI: 10.1016/j.jalz.2016.11.007] [Citation(s) in RCA: 179] [Impact Index Per Article: 22.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Revised: 11/21/2016] [Accepted: 11/28/2016] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The Alzheimer's Disease Neuroimaging Initiative (ADNI) has continued development and standardization of methodologies for biomarkers and has provided an increased depth and breadth of data available to qualified researchers. This review summarizes the over 400 publications using ADNI data during 2014 and 2015. METHODS We used standard searches to find publications using ADNI data. RESULTS (1) Structural and functional changes, including subtle changes to hippocampal shape and texture, atrophy in areas outside of hippocampus, and disruption to functional networks, are detectable in presymptomatic subjects before hippocampal atrophy; (2) In subjects with abnormal β-amyloid deposition (Aβ+), biomarkers become abnormal in the order predicted by the amyloid cascade hypothesis; (3) Cognitive decline is more closely linked to tau than Aβ deposition; (4) Cerebrovascular risk factors may interact with Aβ to increase white-matter (WM) abnormalities which may accelerate Alzheimer's disease (AD) progression in conjunction with tau abnormalities; (5) Different patterns of atrophy are associated with impairment of memory and executive function and may underlie psychiatric symptoms; (6) Structural, functional, and metabolic network connectivities are disrupted as AD progresses. Models of prion-like spreading of Aβ pathology along WM tracts predict known patterns of cortical Aβ deposition and declines in glucose metabolism; (7) New AD risk and protective gene loci have been identified using biologically informed approaches; (8) Cognitively normal and mild cognitive impairment (MCI) subjects are heterogeneous and include groups typified not only by "classic" AD pathology but also by normal biomarkers, accelerated decline, and suspected non-Alzheimer's pathology; (9) Selection of subjects at risk of imminent decline on the basis of one or more pathologies improves the power of clinical trials; (10) Sensitivity of cognitive outcome measures to early changes in cognition has been improved and surrogate outcome measures using longitudinal structural magnetic resonance imaging may further reduce clinical trial cost and duration; (11) Advances in machine learning techniques such as neural networks have improved diagnostic and prognostic accuracy especially in challenges involving MCI subjects; and (12) Network connectivity measures and genetic variants show promise in multimodal classification and some classifiers using single modalities are rivaling multimodal classifiers. DISCUSSION Taken together, these studies fundamentally deepen our understanding of AD progression and its underlying genetic basis, which in turn informs and improves clinical trial design.
Collapse
Affiliation(s)
- Michael W Weiner
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA; Department of Radiology, University of California, San Francisco, CA, USA; Department of Medicine, University of California, San Francisco, CA, USA; Department of Psychiatry, University of California, San Francisco, CA, USA; Department of Neurology, University of California, San Francisco, CA, USA.
| | - Dallas P Veitch
- Department of Veterans Affairs Medical Center, Center for Imaging of Neurodegenerative Diseases, San Francisco, CA, USA
| | - Paul S Aisen
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | - Laurel A Beckett
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | - Nigel J Cairns
- Knight Alzheimer's Disease Research Center, Washington University School of Medicine, Saint Louis, MO, USA; Department of Neurology, Washington University School of Medicine, Saint Louis, MO, USA
| | - Robert C Green
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA
| | - Danielle Harvey
- Division of Biostatistics, Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - William Jagust
- Helen Wills Neuroscience Institute, University of California Berkeley, Berkeley, CA, USA
| | - John C Morris
- Alzheimer's Therapeutic Research Institute, University of Southern California, San Diego, CA, USA
| | | | - Andrew J Saykin
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Leslie M Shaw
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arthur W Toga
- Laboratory of Neuroimaging, Institute of Neuroimaging and Informatics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| | - John Q Trojanowski
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Institute on Aging, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Alzheimer's Disease Core Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Udall Parkinson's Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Neuroimaging in Alzheimer's disease: preclinical challenges toward clinical efficacy. Transl Res 2016; 175:37-53. [PMID: 27033146 DOI: 10.1016/j.trsl.2016.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 03/05/2016] [Accepted: 03/06/2016] [Indexed: 12/21/2022]
Abstract
The scope of this review focuses on recent applications in preclinical and clinical magnetic resonance imaging (MRI) toward accomplishing the goals of early detection and responses to therapy in animal models of Alzheimer's disease (AD). Driven by the outstanding efforts of the Alzheimer's Disease Neuroimaging Initiative (ADNI), a truly invaluable resource, the initial use of MRI in AD imaging has been to assess changes in brain anatomy, specifically assessing brain shrinkage and regional changes in white matter tractography using diffusion tensor imaging. However, advances in MRI have led to multiple efforts toward imaging amyloid beta plaques first without and then with the use of MRI contrast agents. These technological advancements have met with limited success and are not yet appropriate for the clinic. Recent developments in molecular imaging inclusive of high-power liposomal-based MRI contrast agents as well as fluorine 19 ((19)F) MRI and manganese enhanced MRI have begun to propel promising advances toward not only plaque imaging but also using MRI to detect perturbations in subcellular processes occurring within the neuron. This review concludes with a discussion about the necessity for the development of novel preclinical models of AD that better recapitulate human AD for the imaging to truly be meaningful and for substantive progress to be made toward understanding and effectively treating AD. Furthermore, the continued support of outstanding programs such as ADNI as well as the development of novel molecular imaging agents and MRI fast scanning sequences will also be requisite to effectively translate preclinical findings to the clinic.
Collapse
|