1
|
Yordanova J, Nicolardi V, Malinowski P, Simione L, Aglioti SM, Raffone A, Kolev V. EEG oscillations reveal neuroplastic changes in pain processing associated with long-term meditation. Sci Rep 2025; 15:10604. [PMID: 40148498 PMCID: PMC11950376 DOI: 10.1038/s41598-025-94223-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/12/2025] [Indexed: 03/29/2025] Open
Abstract
The experience of pain is a combined product of bottom-up and top-down influences mediated by attentional and emotional factors. Meditation states and traits are characterized by enhanced attention/emotion regulation and expanded self-awareness that can be expected to modify pain processing. The main objective of the present study was to explore the effects of long-term meditation on neural mechanisms of pain processing. EEG pain-related oscillations (PROs) were analysed in highly experienced practitioners and novices during a non-meditative resting state with respect to (a) local frequency-specific and temporal synchronizing characteristics to reflect mainly bottom-up mechanisms, (b) spatial synchronizing patterns to reflect the neural communication of noxious information, (c) pre-stimulus oscillations to reflect top-down mechanisms during pain expectancy, and (d) the P3b component of the pain-related potential to compare the emotional/cognitive reappraisal of pain events by expert and novice meditators. Main results demonstrated that in experienced (long-term) meditators as compared to non-experienced (short-term) meditators (1) the temporal and spatial synchronizations of multispectral (from theta-alpha to gamma) PROs were substantially suppressed at primary and secondary somatosensory regions contra-lateral to pain stimulation within 200 ms after noxious stimulus; (2) pre-stimulus alpha activity was significantly increased at the same regions, which predicted the suppressed synchronization of PROs in long-term meditators; (3) the decrease of the P3b component was non-significant. These novel observations provide evidence that even when subjected to pain outside of meditation, experienced meditators exhibit a pro-active top-down inhibition of somatosensory areas resulting in suppressed processing and communication of sensory information at early stages of painful input. The emotional/cognitive appraisal of pain is reduced but remains preserved revealing a capacity of experienced meditators to dissociate pro-active and reactive top-down processes during pain control.
Collapse
Affiliation(s)
- Juliana Yordanova
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria.
| | | | - Peter Malinowski
- School of Psychology, Research Centre for Brain and Behaviour, Liverpool John Moores University (LJMU), Liverpool, UK
| | - Luca Simione
- Institute of Cognitive Sciences and Technologies, CNR, Rome, Italy
| | - Salvatore M Aglioti
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- Neuroscience and Society Lab, Istituto Italiano Di Tecnologia, Rome, Italy
| | - Antonino Raffone
- Department of Psychology, Sapienza University of Rome, Rome, Italy
- School of Buddhist Studies, Philosophy and Comparative Religions, Nalanda University, Rajgir, India
| | - Vasil Kolev
- Institute of Neurobiology, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 23, 1113, Sofia, Bulgaria
| |
Collapse
|
2
|
Li X, Meng F, Huang W, Cui Y, Meng F, Wu S, Xu H. The Alterations in the Brain Corresponding to Low Back Pain: Recent Insights and Advances. Neural Plast 2024; 2024:5599046. [PMID: 38529366 PMCID: PMC10963108 DOI: 10.1155/2024/5599046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 01/11/2024] [Accepted: 01/19/2024] [Indexed: 03/27/2024] Open
Abstract
Low back pain (LBP) is a leading cause of global disabilities. Numerous molecular, cellular, and anatomical factors are implicated in LBP. Current issues regarding neurologic alterations in LBP have focused on the reorganization of peripheral nerve and spinal cord, but neural mechanisms of exactly what LBP impacts on the brain required further researches. Based on existing clinical studies that chronic pain problems were accompanying alterations in brain structures and functions, researchers proposed logical conjectures that similar alterations occur in LBP patients as well. With recent extensive studies carried out using noninvasive neuroimaging technique, increasing number of abnormalities and alterations has been identified. Here, we reviewed brain alterations including white matters, grey matters, and neural circuits between brain areas, which are involved in chronic LBP. Moreover, brain structural and functional connectivity abnormalities are correlated to the happening and transition of LBP. The negative emotions related to back pain indicate possible alterations in emotional brain regions. Thus, the aim of this review is to summarize current findings on the alterations corresponding to LBP in the brain. It will not only further our understanding of etiology of LBP and understanding of negative emotions accompanying with back pain but also provide ideas and basis for new accesses to the diagnosis, treatment, and rehabilitation afterward based on integral medicine.
Collapse
Affiliation(s)
- Xuyang Li
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fancheng Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Wenye Huang
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
- College of Life Sciences, Northwest University, Xi'an, China
| | - Yue Cui
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Fanbo Meng
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Shengxi Wu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| | - Hui Xu
- Department of Neurobiology and Collaborative Innovation Center for Brain Science, School of Basic Medicine, The Fourth Military Medical University, Xi'an, China
| |
Collapse
|
3
|
Kenefati G, Rockholt MM, Ok D, McCartin M, Zhang Q, Sun G, Maslinski J, Wang A, Chen B, Voigt EP, Chen ZS, Wang J, Doan LV. Changes in alpha, theta, and gamma oscillations in distinct cortical areas are associated with altered acute pain responses in chronic low back pain patients. Front Neurosci 2023; 17:1278183. [PMID: 37901433 PMCID: PMC10611481 DOI: 10.3389/fnins.2023.1278183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/25/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Chronic pain negatively impacts a range of sensory and affective behaviors. Previous studies have shown that the presence of chronic pain not only causes hypersensitivity at the site of injury but may also be associated with pain-aversive experiences at anatomically unrelated sites. While animal studies have indicated that the cingulate and prefrontal cortices are involved in this generalized hyperalgesia, the mechanisms distinguishing increased sensitivity at the site of injury from a generalized site-nonspecific enhancement in the aversive response to nociceptive inputs are not well known. Methods We compared measured pain responses to peripheral mechanical stimuli applied to a site of chronic pain and at a pain-free site in participants suffering from chronic lower back pain (n = 15) versus pain-free control participants (n = 15) by analyzing behavioral and electroencephalographic (EEG) data. Results As expected, participants with chronic pain endorsed enhanced pain with mechanical stimuli in both back and hand. We further analyzed electroencephalographic (EEG) recordings during these evoked pain episodes. Brain oscillations in theta and alpha bands in the medial orbitofrontal cortex (mOFC) were associated with localized hypersensitivity, while increased gamma oscillations in the anterior cingulate cortex (ACC) and increased theta oscillations in the dorsolateral prefrontal cortex (dlPFC) were associated with generalized hyperalgesia. Discussion These findings indicate that chronic pain may disrupt multiple cortical circuits to impact nociceptive processing.
Collapse
Affiliation(s)
- George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Deborah Ok
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Julia Maslinski
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Aaron Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Baldwin Chen
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| | - Erich P. Voigt
- Department of Otolaryngology-Head and Neck Surgery, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Interdisciplinary Pain Research Program, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
4
|
Rockholt MM, Kenefati G, Doan LV, Chen ZS, Wang J. In search of a composite biomarker for chronic pain by way of EEG and machine learning: where do we currently stand? Front Neurosci 2023; 17:1186418. [PMID: 37389362 PMCID: PMC10301750 DOI: 10.3389/fnins.2023.1186418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 05/12/2023] [Indexed: 07/01/2023] Open
Abstract
Machine learning is becoming an increasingly common component of routine data analyses in clinical research. The past decade in pain research has witnessed great advances in human neuroimaging and machine learning. With each finding, the pain research community takes one step closer to uncovering fundamental mechanisms underlying chronic pain and at the same time proposing neurophysiological biomarkers. However, it remains challenging to fully understand chronic pain due to its multidimensional representations within the brain. By utilizing cost-effective and non-invasive imaging techniques such as electroencephalography (EEG) and analyzing the resulting data with advanced analytic methods, we have the opportunity to better understand and identify specific neural mechanisms associated with the processing and perception of chronic pain. This narrative literature review summarizes studies from the last decade describing the utility of EEG as a potential biomarker for chronic pain by synergizing clinical and computational perspectives.
Collapse
Affiliation(s)
- Mika M. Rockholt
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Lisa V. Doan
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Management, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience & Physiology, Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Biomedical Engineering, New York University Tandon School of Engineering, Brooklyn, NY, United States
| |
Collapse
|
5
|
Zhuo S, Zhang Y, Lin C, Peng W. Testosterone administration enhances the expectation and perception of painful and non-painful somatosensory stimuli. Psychoneuroendocrinology 2023; 152:106081. [PMID: 36947967 DOI: 10.1016/j.psyneuen.2023.106081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/22/2022] [Accepted: 03/07/2023] [Indexed: 03/24/2023]
Abstract
The influence of testosterone on pain perception remains inconsistent in the literature. This randomized, placebo-controlled, double-blind, crossover study investigated the effect of testosterone administration on perception and expectation of electrocutaneous stimulus. Thirty healthy male participants received a single dose of testosterone in one session and a placebo in the other session. For each session, they completed a pain-rating task in which a predictability cue was inserted before a painful or non-painful electocutaneous stimulus delivery, while neural activity was simultaneously recorded by a 64-channel electroencephalographic (EEG) system. Expected and perceived pain ratings, as well as event-related potentials (ERPs) to electocutaneous stimuli and prestimulus EEG oscillatory activities while expecting upcoming electocutaneous stimuli were comprehensively compared between testosterone and placebo sessions. Compared with the placebo session, participants in the testosterone session reported greater pain rating and exhibited greater amplitude of N1 component on ERPs when perceiving both painful and non-painful electrocutaneous stimuli. Mediation analysis revealed that testosterone enhanced the pain-intensity ratings via the N1 response to the electrocutaneous stimulus. Upon viewing the predictability cues after testosterone administration, expected pain intensity increased and spontaneous low-frequency α-oscillation power in the frontal region decreased. These results provide evidence that testosterone enhanced perception and expectation of somatosensory events, and that this was a general effect rather than pain-specific. A plausible explanation for these findings is that testosterone acts to increase vigilance and sustained attention levels, as evidenced by the decreased α-oscillation power. Thus, our findings support a causal role for testosterone in heightening the biological salience of incoming somatosensory information.
Collapse
Affiliation(s)
- Shiwei Zhuo
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Yinhua Zhang
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Chennan Lin
- School of Psychology, Shenzhen University, Shenzhen, China
| | - Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, China.
| |
Collapse
|
6
|
Alam MJ, Chen JDZ. Electrophysiology as a Tool to Decipher the Network Mechanism of Visceral Pain in Functional Gastrointestinal Disorders. Diagnostics (Basel) 2023; 13:627. [PMID: 36832115 PMCID: PMC9955347 DOI: 10.3390/diagnostics13040627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/11/2023] Open
Abstract
Abdominal pain, including visceral pain, is prevalent in functional gastrointestinal (GI) disorders (FGIDs), affecting the overall quality of a patient's life. Neural circuits in the brain encode, store, and transfer pain information across brain regions. Ascending pain signals actively shape brain dynamics; in turn, the descending system responds to the pain through neuronal inhibition. Pain processing mechanisms in patients are currently mainly studied with neuroimaging techniques; however, these techniques have a relatively poor temporal resolution. A high temporal resolution method is warranted to decode the dynamics of the pain processing mechanisms. Here, we reviewed crucial brain regions that exhibited pain-modulatory effects in an ascending and descending manner. Moreover, we discussed a uniquely well-suited method, namely extracellular electrophysiology, that captures natural language from the brain with high spatiotemporal resolution. This approach allows parallel recording of large populations of neurons in interconnected brain areas and permits the monitoring of neuronal firing patterns and comparative characterization of the brain oscillations. In addition, we discussed the contribution of these oscillations to pain states. In summary, using innovative, state-of-the-art methods, the large-scale recordings of multiple neurons will guide us to better understanding of pain mechanisms in FGIDs.
Collapse
Affiliation(s)
- Md Jahangir Alam
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| | - Jiande D. Z. Chen
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI 48109, USA
| |
Collapse
|
7
|
Sun G, McCartin M, Liu W, Zhang Q, Kenefati G, Chen ZS, Wang J. Temporal pain processing in the primary somatosensory cortex and anterior cingulate cortex. Mol Brain 2023; 16:3. [PMID: 36604739 PMCID: PMC9817351 DOI: 10.1186/s13041-022-00991-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 12/27/2022] [Indexed: 01/07/2023] Open
Abstract
Pain is known to have sensory and affective components. The sensory pain component is encoded by neurons in the primary somatosensory cortex (S1), whereas the emotional or affective pain experience is in large part processed by neural activities in the anterior cingulate cortex (ACC). The timing of how a mechanical or thermal noxious stimulus triggers activation of peripheral pain fibers is well-known. However, the temporal processing of nociceptive inputs in the cortex remains little studied. Here, we took two approaches to examine how nociceptive inputs are processed by the S1 and ACC. We simultaneously recorded local field potentials in both regions, during the application of a brain-computer interface (BCI). First, we compared event related potentials in the S1 and ACC. Next, we used an algorithmic pain decoder enabled by machine-learning to detect the onset of pain which was used during the implementation of the BCI to automatically treat pain. We found that whereas mechanical pain triggered neural activity changes first in the S1, the S1 and ACC processed thermal pain with a reasonably similar time course. These results indicate that the temporal processing of nociceptive information in different regions of the cortex is likely important for the overall pain experience.
Collapse
Affiliation(s)
- Guanghao Sun
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Michael McCartin
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Weizhuo Liu
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Qiaosheng Zhang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - George Kenefati
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
| | - Zhe Sage Chen
- Department of Psychiatry, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA
| | - Jing Wang
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Interdisciplinary Pain Research Program, New York University Langone Health, New York, NY, 10016, USA.
- Department of Neuroscience & Physiology, New York University Grossman School of Medicine, New York, NY, 10016, USA.
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, 10016, USA.
| |
Collapse
|
8
|
Chen T, Li Q, Peng M, Li X. Moral transgression modulates empathy for pain: Evidence from ERP and EEG data. Biol Psychol 2023; 176:108467. [PMID: 36455804 DOI: 10.1016/j.biopsycho.2022.108467] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
Empathy for others' pain plays a critical role in human social interactions; however, the influence of moral transgression remains unclear. We examined the effect of moral transgression on the behavioral and underlying neural processes of empathy for others' pain. Participants performed a pain-empathy task separately in a moral transgression condition and a neutral behavior condition, while an electroencephalogram was recorded. Event-related potential (ERP) results showed that empathic response, as reflected in the late positive component, was smaller when participants performed the task in the moral transgression condition than in the neutral behavior condition. Time-frequency results also showed decreased empathic effect on the beta event-related desynchronization response in the moral transgression as compared to the neutral behavior condition. However, empathic response as reflected in the N2 component was comparable between the moral conditions. These findings demonstrate a moral transgression effect on both cognitive evaluations and sensorimotor processes of empathy for others' pain. Furthermore, spontaneous alpha-oscillation power recorded prior to the onset of empathy-inducing stimuli was significantly higher in the moral transgression condition than in the neutral behavior condition. Consequently, differences in sustained attention may be the physiological foundation of the impact of moral transgression of the observed person on the cognitive and sensorimotor processes of empathy for pain.
Collapse
Affiliation(s)
- Tianlong Chen
- School of Psychology, Central China Normal University, Wuhan, China
| | - Qianqian Li
- School of Psychology, Central China Normal University, Wuhan, China
| | - Ming Peng
- School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Adolescent Cyberpsychology and Behavior of the Ministry of Education and School of Psychology, Central China Normal University, Wuhan, China.
| | - Xu Li
- School of Psychology, Central China Normal University, Wuhan, China; Key Laboratory of Adolescent Cyberpsychology and Behavior of the Ministry of Education and School of Psychology, Central China Normal University, Wuhan, China
| |
Collapse
|
9
|
Chang P, Fabrizi L, Fitzgerald M. Early Life Pain Experience Changes Adult Functional Pain Connectivity in the Rat Somatosensory and the Medial Prefrontal Cortex. J Neurosci 2022; 42:8284-8296. [PMID: 36192150 PMCID: PMC9653276 DOI: 10.1523/jneurosci.0416-22.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 08/19/2022] [Accepted: 08/24/2022] [Indexed: 11/21/2022] Open
Abstract
Early life pain (ELP) experience alters adult pain behavior and increases injury-induced pain hypersensitivity, but the effect of ELP on adult functional brain connectivity is not known. We have performed continuous local field potential (LFP) recording in the awake adult male rats to test the effect of ELP on functional cortical connectivity related to pain behavior. Primary somatosensory cortex (S1) and medial prefrontal cortex (mPFC) LFPs evoked by mechanical hindpaw stimulation were recorded simultaneously with pain reflex behavior for 10 d after adult incision injury. We show that, after adult injury, sensory evoked S1 LFP δ and γ energy and S1 LFP δ/γ frequency coupling are significantly increased in ELP rats compared with controls. Adult injury also induces increases in S1-mPFC functional connectivity, but this is significantly prolonged in ELP rats, lasting 4 d compared with 1 d in controls. Importantly, the increases in LFP energy and connectivity in ELP rats were directly correlated with increased behavioral pain hypersensitivity. Thus, ELP alters adult brain functional connectivity, both within and between cortical areas involved in sensory and affective dimensions of pain. The results reveal altered brain connectivity as a mechanism underlying the effects of ELP on adult pain perception.SIGNIFICANCE STATEMENT Pain and stress in early life has a lasting impact on pain behavior and may increase vulnerability to chronic pain in adults. Here, we record pain-related cortical activity and simultaneous pain behavior in awake adult male rats previously exposed to pain in early life. We show that functional connectivity within and between the somatosensory cortex and the medial prefrontal cortex (mPFC) is increased in these rats and that these increases are correlated with their behavioral pain hypersensitivity. The results reveal that early life pain (ELP) alters adult brain connectivity, which may explain the impact of childhood pain on adult chronic pain vulnerability.
Collapse
Affiliation(s)
- Pishan Chang
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Lorenzo Fabrizi
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| | - Maria Fitzgerald
- Department of Neuroscience, Physiology and Pharmacology, Medawar Pain and Somatosensory Labs, University College London, London WC1E 6BT, United Kingdom
| |
Collapse
|
10
|
Higinio-Rodríguez F, Rivera-Villaseñor A, Calero-Vargas I, López-Hidalgo M. From nociception to pain perception, possible implications of astrocytes. Front Cell Neurosci 2022; 16:972827. [PMID: 36159392 PMCID: PMC9492445 DOI: 10.3389/fncel.2022.972827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 08/15/2022] [Indexed: 11/15/2022] Open
Abstract
Astrocytes are determinants for the functioning of the CNS. They respond to neuronal activity with calcium increases and can in turn modulate synaptic transmission, brain plasticity as well as cognitive processes. Astrocytes display sensory-evoked calcium responses in different brain structures related to the discriminative system of most sensory modalities. In particular, noxious stimulation evoked calcium responses in astrocytes in the spinal cord, the hippocampus, and the somatosensory cortex. However, it is not clear if astrocytes are involved in pain. Pain is a private, personal, and complex experience that warns us about potential tissue damage. It is a perception that is not linearly associated with the amount of tissue damage or nociception; instead, it is constructed with sensory, cognitive, and affective components and depends on our previous experiences. However, it is not fully understood how pain is created from nociception. In this perspective article, we provide an overview of the mechanisms and neuronal networks that underlie the perception of pain. Then we proposed that coherent activity of astrocytes in the spinal cord and pain-related brain areas could be important in binding sensory, affective, and cognitive information on a slower time scale.
Collapse
Affiliation(s)
- Frida Higinio-Rodríguez
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Angélica Rivera-Villaseñor
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Isnarhazni Calero-Vargas
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Mexico
| | - Mónica López-Hidalgo
- Escuela Nacional de Estudios Superiores, Universidad Nacional Autónoma de México, Querétaro, Mexico
- *Correspondence: Mónica López-Hidalgo,
| |
Collapse
|
11
|
Foglia SD, Rehsi RS, Turco CV, Shanthanna H, Nelson AJ. Case report: The feasibility of rTMS with intrathecal baclofen pump for the treatment of unresolved neuropathic pain following spinal cord injury. FRONTIERS IN REHABILITATION SCIENCES 2022; 3:893014. [PMID: 36188893 PMCID: PMC9397973 DOI: 10.3389/fresc.2022.893014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 07/01/2022] [Indexed: 11/21/2022]
Abstract
The main objective of this study was to assess the efficacy and safety of 10 Hz repetitive transcranial magnetic stimulation (rTMS) for the treatment of unresolved neuropathic pain in an individual with spinal cord injury and an intrathecal baclofen pump. A 62-year-old male presented with drug resistant neuropathic pain as a result of a complete spinal cord lesion at T8 level. Pain was classified into four types: pressure pain in the left foot, burning pain in buttocks, burning pain in sternum, and electrical attacks in the trunk. The treatment period involved 6 weeks of rTMS stimulation performed 5 days per week, a 6-week follow up period with no stimulation, and an 8-week top up session period which began 5-weeks after the end of the follow up period. 2004 pulses were delivered at 10Hz over the right-hand representation of the left primary motor cortex at 80% resting motor threshold during each session. Assessments were based on the numerical rating scale (NRS), neuropathic pain scale (NPS), Hamilton Depression and Anxiety rating scales. Following the treatment period there was a 30, 13, and 29% reduction in sternum, buttocks, and left foot pain respectively, as reported by the NRS. During this time, electrical attacks were abolished following the third week of treatment. These changes corresponded to a 38% decrease in NPS scores and a 65 and 25% reduction in anxiety and depressions scores respectively. The changes in sternum, buttocks, and left foot pain reported on the NRS persisted for 1 week following treatment. Top up sessions delivered 11 weeks after the end of the treatment period were unsuccessful in reducing pain to the level achieved during the treatment period. A 13% reduction in NPS was seen during these 8-weeks. Anxiety and depression scores decreased 78 and 67% respectively. The frequency of electrical attacks was zero during this time. rTMS stimulation delivered throughout this study did not cause any interference with the functioning of the intrathecal baclofen pump. This case study illustrates that rTMS may be effective at reducing drug resistant neuropathic pain with certain pain types exhibiting greater propensity for change.
Collapse
Affiliation(s)
- Stevie D. Foglia
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Ravjot S. Rehsi
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
| | - Claudia V. Turco
- Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada
| | - Harsha Shanthanna
- Faculty of Health Sciences, McMaster University, Hamilton, ON, Canada
| | - Aimee J. Nelson
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
- Department of Kinesiology, McMaster University, Hamilton, ON, Canada
- *Correspondence: Aimee J. Nelson
| |
Collapse
|
12
|
Yam M, Glatt S, Nosatzki S, Mirelman A, Hausdorff JM, Goldstein L, Giladi N, Fahoum F, Maidan I. Limited Ability to Adjust N2 Amplitude During Dual Task Walking in People With Drug-Resistant Juvenile Myoclonic Epilepsy. Front Neurol 2022; 13:793212. [PMID: 35237227 PMCID: PMC8884027 DOI: 10.3389/fneur.2022.793212] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/04/2022] [Indexed: 11/23/2022] Open
Abstract
Juvenile myoclonic epilepsy (JME) is one of the most common epileptic syndromes; it is estimated to affect 1 in 1,000 people worldwide. Most people with JME respond well to medication, but up to 30% of them are drug-resistant. To date, there are no biomarkers for drug resistance in JME, and the poor response to medications is identified in retrospect. People with JME have frontal dysfunction manifested as impaired attention and difficulties in inhibiting habitual responses and these dysfunctions are more pronounced in drug-resistant individuals. Frontal networks play an important role in walking and therefore, gait can be used to overload the neural system and expose subtle changes between people with drug-responsive and drug-resistant JME. Electroencephalogram (EEG) is a promising tool to explore neural changes during real-time functions that combine a cognitive task while walking (dual tasking, DT). This exploratory study aimed to examine the alteration in electrical brain activity during DT in people with drug-responsive and drug-resistant JME. A total of 32 subjects (14 males and 18 females) participated: 11 drug-responsive (ages: 31.50 ± 1.50) and 8 drug-resistant (27.27 ± 2.30) people with JME, and 13 healthy controls (29.46 ± 0.69). The participants underwent EEG examination during the performance of the visual Go/NoGo (vGNG) task while sitting and while walking on a treadmill. We measured latencies and amplitudes of N2 and P3 event-related potentials, and the cognitive performance was assessed by accuracy rate and response time of Go/NoGo events. The results demonstrated that healthy controls had earlier N2 and P3 latencies than both JME groups (N2: p = 0.034 and P3: p = 0.011), however, a limited ability to adjust the N2 amplitude during walking was noticeable in the drug-resistant compared to drug-responsive. The two JME groups had lower success rates (drug-responsive p < 0.001, drug-resistant p = 0.004) than healthy controls, but the drug-resistant showed longer reaction times compared to both healthy controls (p = 0.033) and drug-responsive (p = 0.013). This study provides the first evidence that people with drug-resistant JME have changes in brain activity during highly demanding tasks that combine cognitive and motor functions compared to people with drug-responsive JME. Further research is needed to determine whether these alterations can be used as biomarkers to drug response in JME.
Collapse
Affiliation(s)
- Mor Yam
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Sigal Glatt
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Shai Nosatzki
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
| | - Anat Mirelman
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Jeffrey M. Hausdorff
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Physical Therapy, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Rush Alzheimer's Disease Center and Department of Orthopaedic Surgery, Rush University Medical Center, Chicago, IL, United States
| | - Lilach Goldstein
- Epilepsy Unit, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
| | - Nir Giladi
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Firas Fahoum
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Epilepsy Unit, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
| | - Inbal Maidan
- Laboratory of Early Markers of Neurodegeneration, Centre for the Study of Movement, Cognition, and Mobility, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Department of Neurology and Neurosurgery, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel
- Epilepsy Unit, Tel Aviv Sourasky Medical Centre, Neurological Institute, Tel Aviv, Israel
- *Correspondence: Inbal Maidan
| |
Collapse
|
13
|
Tabernig CB, Carrere LC, Manresa JB, Spaich EG. Does feedback based on FES-evoked nociceptive withdrawal reflex condition event-related desynchronization? An exploratory study with brain-computer interfaces. Biomed Phys Eng Express 2021; 7. [PMID: 34431480 DOI: 10.1088/2057-1976/ac2077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 08/24/2021] [Indexed: 11/11/2022]
Abstract
Introduction.Event-related desynchronization (ERD) is used in brain-computer interfaces (BCI) to detect the user's motor intention (MI) and convert it into a command for an actuator to provide sensory feedback or mobility, for example by means of functional electrical stimulation (FES). Recent studies have proposed to evoke the nociceptive withdrawal reflex (NWR) using FES, in order to evoke synergistic movements of the lower limb and to facilitate the gait rehabilitation of stroke patients. The use of NWR to provide sensorimotor feedback in ERD-based BCI is novel; thererfore, the conditioning effect that nociceptive stimuli might have on MI is still unknown.Objetive.To assess the ERD produced during the MI after FES-evoked NWR, in order to evaluate if nociceptive stimuli condition subsequent ERDs.Methods. Data from 528 electroencephalography trials of 8 healthy volunteers were recorded and analyzed. Volunteers used an ERD-based BCI, which provided two types of feedback: intrisic by the FES-evoked NWR and extrinsic by virtual reality. The electromyogram of the tibialis anterior muscle was also recorded. The main outcome variables were the normalized root mean square of the evoked electromyogram (RMSnorm), the average electroencephalogram amplitude at the ERD frequency during MI (A¯MI) and the percentage decrease ofA¯MIrelative to rest (ERD%) at the first MI subsequent to the activation of the BCI.Results.No evidence of changes of theRMSnormon both theA¯MI(p = 0.663) and theERD%(p = 0.252) of the subsequent MI was detected. A main effect of the type of feedback was found in the subsequentA¯MI(p < 0.001), with intrinsic feedback resulting in a largerA¯MI.Conclusions.No evidence of ERD conditioning was observed using BCI feedback based on FES-evoked NWR .Significance.FES-evoked NWR could constitute a potential feedback modality in an ERD-based BCI to facilitate motor recovery of stroke people.
Collapse
Affiliation(s)
- Carolina B Tabernig
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - L Carolina Carrere
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina
| | - José Biurrun Manresa
- Laboratory of Rehabilitation Engineering and Neuromuscular and Sensory Research (LIRINS), Faculty of Engineering, National University of Entre Ríos, Oro Verde, Argentina.,Institute for Research and Development in Bioengineering and Bioinformatics (IBB), CONICET-UNER, Oro Verde, Argentina
| | - Erika G Spaich
- Neurorehabilitation Systems Group, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7D2, 9220 Aalborg, Denmark
| |
Collapse
|
14
|
Low Back Pain Assessment Based on Alpha Oscillation Changes in Spontaneous Electroencephalogram (EEG). Neural Plast 2021; 2021:8537437. [PMID: 34306064 PMCID: PMC8266462 DOI: 10.1155/2021/8537437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/12/2021] [Accepted: 06/21/2021] [Indexed: 12/13/2022] Open
Abstract
Objectively and accurately assessing pain in clinical settings is challenging. Previous studies showed that alpha oscillations of electroencephalogram data are correlated with subjective perceived pain. Based on this finding, this study is aimed at assessing chronic low back pain based on alpha oscillations. Multichannel electroencephalogram data were recorded from 27 subjects with chronic low back pain under the simple conditions of closing eyes or opening eyes. Spectral analyses were conducted to extract the alpha band responses, and the alpha powers were calculated for the two conditions, respectively. Normalized alpha power was calculated by subtracting the alpha power in the eyes-open condition from that in the eyes-closed condition. The correlation between the alpha power and the subjective pain intensity was evaluated in frontal, central, and posterior regions. The normalized alpha power in the central region was negatively correlated with the subjective pain intensity (R = -0.50, P = 0.01), with the strongest correlation occurring at the Cz electrode (R = -0.59, P = 0.04). The correlation analysis results demonstrated the possibility of using the differences of alpha spectral power between eyes-closed and eyes-open conditions as a measure for assessing chronic low back pain. The findings suggest that the normalized alpha power in the central region may be used as a measurable and quantitative indicator of chronic pain for clinical applications.
Collapse
|
15
|
Dynamics of neuronal oscillations underlying nociceptive response in the mouse primary somatosensory cortex. Sci Rep 2021; 11:1667. [PMID: 33462296 PMCID: PMC7813887 DOI: 10.1038/s41598-021-81067-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/04/2021] [Indexed: 11/08/2022] Open
Abstract
Pain is caused by tissue injury, inflammatory disease, pathogen invasion, or neuropathy. The perception of pain is attributed to the neuronal activity in the brain. However, the dynamics of neuronal activity underlying pain perception are not fully known. Herein, we examined theta-oscillation dynamics of local field potentials in the primary somatosensory cortex of a mouse model of formalin-induced pain, which usually shows a bimodal behavioral response interposed between pain-free periods. We found that formalin injection exerted a reversible shift in the theta-peak frequency toward a slower frequency. This shift was observed during nociceptive phases but not during the pain-free period and was inversely correlated with instantaneous pain intensity. Furthermore, instantaneous oscillatory analysis indicated that the probability of slow theta oscillations increased during nociceptive phases with an association of augmented slow theta power. Finally, cross-frequency coupling between theta and gamma oscillations indicated that the coupling peak frequency of theta oscillations was also shifted toward slower oscillations without affecting coupling strength or gamma power. Together, these results suggest that the dynamic changes in theta oscillations in the mouse primary somatosensory cortex represent the ongoing status of pain sensation.
Collapse
|
16
|
Distinct Age-Dependent C Fiber-Driven Oscillatory Activity in the Rat Somatosensory Cortex. eNeuro 2020; 7:ENEURO.0036-20.2020. [PMID: 32759177 PMCID: PMC7545434 DOI: 10.1523/eneuro.0036-20.2020] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/21/2022] Open
Abstract
When skin afferents are activated, the sensory signals are transmitted to the spinal cord and eventually reach the primary somatosensory cortex (S1), initiating the encoding of the sensory percept in the brain. While subsets of primary afferents mediate specific somatosensory information from an early age, the subcortical pathways that transmit this information undergo striking changes over the first weeks of life, reflected in the gradual emergence of specific sensory behaviors. We therefore hypothesized that this period is associated with differential changes in the encoding of incoming afferent volleys in S1. To test this, we compared S1 responses to A fiber skin afferent stimulation and A + C skin afferent fiber stimulation in lightly anaesthetized male rats at postnatal day (P)7, P14, P21, and P30. Differences in S1 activity following A and A + C fiber stimulation changed dramatically over this period. At P30, A + C fiber stimulation evoked significantly larger γ, β, and α energy increases compared with A fiber stimulation alone. At younger ages, the changes in S1 oscillatory activity evoked by the two afferent volleys were not significantly different. Silencing TRPV1+ C fibers with QX-314 significantly reduced the γ and β S1 oscillatory energy increases evoked by A + C fibers, at P30 and P21, but not at younger ages. Thus, C fibers differentially modulate S1 oscillatory activity only from the third postnatal week, well after the functional maturation of the somatosensory cortex. This age-related change in afferent evoked S1 oscillatory activity may underpin the maturation of sensory discrimination in the developing brain.
Collapse
|
17
|
Wang K, Cai G, Huang S, Li Y, Li R, Wu W. Performance of healthy persons under pain in different cognitive load tasks: An event-related potential study on experimental pain individuals. Brain Behav 2020; 10:e01713. [PMID: 32558280 PMCID: PMC7428486 DOI: 10.1002/brb3.1713] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 05/13/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVE This study aims to determine how brain activities underlying task with different cognitive load would be modulated by the painful state using electroencephalography. METHODS The pain state was established by spraying capsaicin on subjects' left inner forearm. A total of 20 experimental pain subjects and 20 matched nonpain controls underwent cognitive tasks with electroencephalogram recording. We collected and analyzed behavioral and event-related potential (ERP) data. RESULTS High cognitive tasks exhibited significantly longer response times and lower accuracies than low-load tasks. The experimental pain group displayed a significantly lower accuracy than the control group. In addition, the experimental pain group showed no significance between high and low cognitive tasks in early ERP components (amplitude of N1, P2, N2, and early part of late positive potential), whereas the control group exhibited significance between different load tasks. Furthermore, we observed a delay peak energy for delta and theta oscillation in Fz 500-800 ms after the onset for pain persons and high cognitive load tasks. CONCLUSIONS Inadequate early attention modulation, along with delayed peak energy for brain oscillation (delta and theta), could be accountable for a worse performance in cognitive tasks in the experimental pain group. Thus, cognitive load is a highly considerable factor. Overall, this study offers more insights into how healthy population works with cognitive tasks under pain neurologically.
Collapse
Affiliation(s)
- Kangling Wang
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Guiyuan Cai
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Shimin Huang
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Yuqi Li
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Rongdong Li
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| | - Wen Wu
- Department of Rehabilitation MedicineZhujiang HospitalSouthern Medical UniversityGuangzhouChina
| |
Collapse
|
18
|
Wu YJ, Liu Y, Yao M, Li X, Peng W. Language contexts modulate instant empathic responses to others’ pain. Psychophysiology 2020; 57:e13562. [DOI: 10.1111/psyp.13562] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 02/14/2020] [Accepted: 02/18/2020] [Indexed: 12/21/2022]
Affiliation(s)
- Yan Jing Wu
- School of Psychology Shenzhen University Shenzhen China
- Faculty of Foreign Languages Ningbo University Ningbo China
| | - Yang Liu
- School of Psychology Shenzhen University Shenzhen China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science Shenzhen University Shenzhen China
| | - Manlin Yao
- School of Psychology Shenzhen University Shenzhen China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science Shenzhen University Shenzhen China
| | - Xiaoyun Li
- School of Psychology Shenzhen University Shenzhen China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science Shenzhen University Shenzhen China
| | - Weiwei Peng
- School of Psychology Shenzhen University Shenzhen China
- Shenzhen Key Laboratory of Affective and Social Cognitive Science Shenzhen University Shenzhen China
| |
Collapse
|
19
|
Peng W, Huang X, Liu Y, Cui F. Predictability modulates the anticipation and perception of pain in both self and others. Soc Cogn Affect Neurosci 2020; 14:747-757. [PMID: 31236566 PMCID: PMC6778834 DOI: 10.1093/scan/nsz047] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 01/28/2023] Open
Abstract
Predictability has been suggested to modulate both the anticipation and perception of self-pain. Considering the overlapping neural circuits between self-pain and other-pain perceptions, the present study investigated how the predictability of forthcoming pain modulates the anticipation and perception of self-pain and other-pain. We used a balanced, within-participant experimental design in which a visual cue indicating the recipient, intensity and predictability of an upcoming painful electrical stimulation was presented before its delivery. Subjective ratings and electroencephalography activities to the anticipation and perception of self-pain and other-pain were recorded and compared between certain and uncertain conditions. Results showed that predictability affected the perception of self-pain and other-pain in a similar manner such that the differences in behavioral ratings and event-related potentials to high-intensity and low-intensity pain were significantly reduced when the intensity was uncertain. The strengths of predictability-induced modulation of self-pain and other-pain perceptions were positively correlated with each other. Furthermore, predictability also modulated the anticipation of both self-pain and other-pain such that pre-stimulus high-frequency α-oscillation power at sensorimotor electrodes contralateral to the stimulation side was maximally suppressed when anticipating certain high-intensity pain. These findings demonstrate that predictability-induced modulation on pain anticipation and perception was similarly applied to both self-pain and other-pain.
Collapse
Affiliation(s)
- Weiwei Peng
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Xiaoxuan Huang
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Yang Liu
- School of Psychology, Shenzhen University, Shenzhen, 518060, China
| | - Fang Cui
- School of Psychology, Shenzhen University, Shenzhen, 518060, China.,Center for Brain Disorders and Cognitive Neuroscience, Shenzhen, 518060, China.,Shenzhen Key Laboratory of Affective and Social Cognitive Science, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
20
|
Lu X, Thompson WF, Zhang L, Hu L. Music Reduces Pain Unpleasantness: Evidence from an EEG Study. J Pain Res 2019; 12:3331-3342. [PMID: 31853196 PMCID: PMC6916681 DOI: 10.2147/jpr.s212080] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/29/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Music is sometimes used as an adjunct to pain management. However, there is limited understanding of by what means music modulates pain perception and how the brain responds to nociceptive inputs while listening to music, because clinical practice typically involves the coexistence of multiple therapeutic interventions. To address this challenge, laboratory studies with experimental and control conditions are needed. METHODS In the present investigation, we delivered nociceptive laser stimuli on 30 participants under three conditions - participants were sitting in silence, listening to their preferred music, or listening to white noise. Differences among conditions were quantified by self-reports of pain intensity and unpleasantness, and brain activity sampled by electroencephalography (EEG). RESULTS Compared with the noise and silence conditions, participants in the music condition reported lower ratings on pain unpleasantness, as reflected by reduced brain oscillations immediately prior to the nociceptive laser stimulus at frequencies of 4-15 Hz in EEG. In addition, participants showed smaller P2 amplitudes in laser-evoked potentials (LEPs) when they were listening to music or white noise in comparison to sitting in silence. These findings suggest that a general modulation effect of sounds on pain, with a specific reduction of pain unpleasantness induced by the positive emotional impact. CONCLUSION Music may serve as a real-time regulator to modulate pain unpleasantness. Results are discussed in view of current understandings of music-induced analgesia.
Collapse
Affiliation(s)
- Xuejing Lu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - William Forde Thompson
- Department of Psychology, Macquarie University, Sydney, New South Wales, Australia
- ARC Centre of Excellence in Cognition and Its Disorders, Sydney, New South Wales, Australia
| | - Libo Zhang
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| | - Li Hu
- CAS Key Laboratory of Mental Health, Institute of Psychology, Beijing, People’s Republic of China
- Department of Psychology, University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
21
|
Liberati G, Algoet M, Santos SF, Ribeiro-Vaz JG, Raftopoulos C, Mouraux A. Tonic thermonociceptive stimulation selectively modulates ongoing neural oscillations in the human posterior insula: Evidence from intracerebral EEG. Neuroimage 2018; 188:70-83. [PMID: 30529399 DOI: 10.1016/j.neuroimage.2018.11.059] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/15/2018] [Accepted: 11/30/2018] [Indexed: 01/18/2023] Open
Abstract
The human insula is an important target for spinothalamic input, but there is still no consensus on its role in pain perception and nociception. In this study, we show that the human insula exhibits activity preferential for sustained thermonociception. Using intracerebral EEG recorded from the insula of 8 patients (2 females) undergoing a presurgical evaluation of focal epilepsy (53 contacts: 27 anterior, 26 posterior), we "frequency-tagged" the insular activity elicited by sustained thermonociceptive and vibrotactile stimuli, by periodically modulating stimulation intensity at a fixed frequency of 0.2 Hz during 75 s. Both types of stimuli elicited an insular response at the frequency of stimulation (0.2 Hz) and its harmonics, whose magnitude was significantly greater in the posterior insula compared to the anterior insula. Compared to vibrotactile stimulation, thermonociceptive stimulation exerted a markedly greater 0.2 Hz modulation of ongoing theta-band (4-8 Hz) and alpha-band (8-12 Hz) oscillations. These modulations were also more prominent in the posterior insula compared to the anterior insula. The identification of oscillatory activities preferential for thermonociception could lead to new insights into the physiological mechanisms of nociception and pain perception in humans.
Collapse
Affiliation(s)
- Giulia Liberati
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium.
| | - Maxime Algoet
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| | | | | | | | - André Mouraux
- Institute of Neuroscience, Université catholique de Louvain, 1200, Brussels, Belgium
| |
Collapse
|
22
|
Electroencephalography delta, theta, and alpha oscillations in valence-space metaphorical associations. Neuroreport 2018; 29:1017-1022. [PMID: 29847466 DOI: 10.1097/wnr.0000000000001066] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Conceptual metaphor theory holds that understanding abstract affective words relies on concrete spatial information, known as valence-space metaphorical associations. Previous studies show that these metaphorical associations are related to several event-related potentials. However, we know nothing about the neural oscillations underlying these associations. The present study adopted a priming paradigm and the electroencephalographic time-frequency analysis to reveal the brain oscillatory activities related to the processing of valence-space associations. In the experiment, participants first memorized a positive or a negative word. Then, a dot was presented at the higher or lower position of the screen and was horizontally centered. Participants detected the location of the cue and made behavioral responses while their brain electrical activities were recorded. Results found that (a) when participants memorized a negative word and judged the lower spatial cue, the power of the delta band was suppressed compared with memorizing a positive word; (b) when participants memorized a positive word and judged the higher spatial cue, the power of the theta band was suppressed compared with memorizing a negative word; (c) when participants memorized a negative word and judged the lower spatial cue, the power of the alpha band was suppressed compared with memorizing a positive word. These event-related desynchronization results suggest that the processing of valence-space associations is related to inhibition, attention, working memory, and semantic process. The present study provides the first evidence of cortical oscillations involved in conceptual metaphors.
Collapse
|
23
|
Local field potential decoding of the onset and intensity of acute pain in rats. Sci Rep 2018; 8:8299. [PMID: 29844576 PMCID: PMC5974270 DOI: 10.1038/s41598-018-26527-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 05/08/2018] [Indexed: 12/28/2022] Open
Abstract
Pain is a complex sensory and affective experience. The current definition for pain relies on verbal reports in clinical settings and behavioral assays in animal models. These definitions can be subjective and do not take into consideration signals in the neural system. Local field potentials (LFPs) represent summed electrical currents from multiple neurons in a defined brain area. Although single neuronal spike activity has been shown to modulate the acute pain, it is not yet clear how ensemble activities in the form of LFPs can be used to decode the precise timing and intensity of pain. The anterior cingulate cortex (ACC) is known to play a role in the affective-aversive component of pain in human and animal studies. Few studies, however, have examined how neural activities in the ACC can be used to interpret or predict acute noxious inputs. Here, we recorded in vivo extracellular activity in the ACC from freely behaving rats after stimulus with non-noxious, low-intensity noxious, and high-intensity noxious stimuli, both in the absence and chronic pain. Using a supervised machine learning classifier with selected LFP features, we predicted the intensity and the onset of acute nociceptive signals with high degree of precision. These results suggest the potential to use LFPs to decode acute pain.
Collapse
|
24
|
Low I, Wei SY, Lee PS, Li WC, Lee LC, Hsieh JC, Chen LF. Neuroimaging Studies of Primary Dysmenorrhea. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1099:179-199. [DOI: 10.1007/978-981-13-1756-9_16] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
25
|
Alonso-Valerdi LM, Ibarra-Zarate DI, Tavira-Sánchez FJ, Ramírez-Mendoza RA, Recuero M. Electroencephalographic evaluation of acoustic therapies for the treatment of chronic and refractory tinnitus. BMC EAR, NOSE, AND THROAT DISORDERS 2017; 17:9. [PMID: 29209149 PMCID: PMC5704517 DOI: 10.1186/s12901-017-0042-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022]
Abstract
Background To date, a large number of acoustic therapies have been applied to treat tinnitus. The effect that produces those auditory stimuli is, however, not well understood yet. Furthermore, the conventional clinical protocol is based on a trial-error procedure, and there is not a formal and adequate treatment follow-up. At present, the only way to evaluate acoustic therapies is by means of subjective methods such as analog visual scale and ad-hoc questionnaires. Methods This protocol seeks to establish an objective methodology to treat tinnitus with acoustic therapies based on electroencephalographic (EEG) activity evaluation. On the hypothesis that acoustic therapies should produce perceptual and cognitive changes at a cortical level, it is proposed to examine neural electrical activity of patients suffering from refractory and chronic tinnitus in four different stages: at the beginning of the experiment, at one week of treatment, at five weeks of treatment, and at eight weeks of treatment. Four of the most efficient acoustic therapies found at the moment are considered: retraining, auditory discrimination, enriched acoustic environment, and binaural. Discussion EEG has become a standard brain imaging tool to quantify and qualify neural oscillations, which are basically spatial, temporal, and spectral patterns associated with particular perceptual, cognitive, motor and emotional processes. Neural oscillations have been traditionally studied on the basis of event-related experiments, where time-locked and phase-locked responses (i.e., event-related potentials) along with time-locked but not necessary phase-locked responses (i.e., event-related (de) synchronization) have been essentially estimated. Both potentials and levels of synchronization related to auditory stimuli are herein proposed to assess the effect of acoustic therapies. Trial registration Registration Number: ISRCTN14553550. ISRCTN Registry: BioMed Central. Date of Registration: October 31st, 2017.
Collapse
Affiliation(s)
- Luz María Alonso-Valerdi
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - David I Ibarra-Zarate
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico.,Massachusetts Institute of Technology, Cambridge, MA USA
| | - Francisco J Tavira-Sánchez
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| | - Ricardo A Ramírez-Mendoza
- Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Eugenio Garza Sada 2501, 64849 Monterrey, NL Mexico
| | - Manuel Recuero
- Grupo de Investigación en Instrumentación y Acústica Aplicada (I2A2), Universidad Politécnica de Madrid, Carretera de Valencia km 7, 28031 Madrid, Spain
| |
Collapse
|
26
|
Monteiro C, Cardoso-Cruz H, Matos M, Dourado M, Lima D, Galhardo V. Increased fronto-hippocampal connectivity in the Prrxl1 knockout mouse model of congenital hypoalgesia. Pain 2017; 157:2045-2056. [PMID: 27168359 DOI: 10.1097/j.pain.0000000000000611] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Despite the large number of studies addressing how prolonged painful stimulation affects brain functioning, there are only a handful of studies aimed at uncovering if persistent conditions of reduced pain perception would also result in brain plasticity. Permanent hypoalgesia induced by neonatal injection of capsaicin or carrageenan has already been shown to affect learning and memory and to induce alterations in brain gene expression. In this study, we used the Prrxl1 model of congenital mild hypoalgesia to conduct a detailed study of the neurophysiological and behavioral consequences of reduced pain experience. Prrxl1 knockout animals are characterized by selective depletion of small diameter primary afferents and abnormal development of the superficial dorsal laminae of the spinal cord, resulting in diminished pain perception but normal tactile and motor behaviour. Behavioral testing of Prrxl1 mice revealed that these animals have reduced anxiety levels, enhanced memory performance, and improved fear extinction. Neurophysiological recordings from awake behaving Prrxl1 mice show enhanced altered fronto-hippocampal connectivity in the theta- and gamma-bands. Importantly, although inflammatory pain by Complete Freund Adjuvant injection caused a decrease in fronto-hippocampal connectivity in the wild-type animals, Prrxl1 mice maintained the baseline levels. The onset of inflammatory pain also reverted the differences in forebrain expression of stress- and monoamine-related genes in Prrxl1 mice. Altogether our results suggest that congenital hypoalgesia may have an effect on brain plasticity that is the inverse of what is usually observed in animal models of chronic pain.
Collapse
Affiliation(s)
- Clara Monteiro
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Helder Cardoso-Cruz
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Mariana Matos
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Margarida Dourado
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Deolinda Lima
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| | - Vasco Galhardo
- Departamento de Biologia Experimental, Faculdade de Medicina, Universidade do Porto, Porto, Portugal.,Instituto de Biologia Molecular e Celular-IBMC, Universidade do Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde-i3S, Universidade do Porto, Porto, Portugal
| |
Collapse
|
27
|
Pain perception in patients with chronic disorders of consciousness: What can limbic system tell us? Clin Neurophysiol 2016; 128:454-462. [PMID: 28160751 DOI: 10.1016/j.clinph.2016.12.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Revised: 10/28/2016] [Accepted: 12/10/2016] [Indexed: 01/18/2023]
Abstract
OBJECTIVE Although it is believed that patients with Unresponsive Wakefulness Syndrome (UWS) do not feel pain, recent neuroimaging and neurophysiologic studies have demonstrated some residual traces of nociceptive processing. METHODS To confirm this growing evidence, we evaluated 21 patients suffering from chronic disorders of consciousness (DOC) (both UWS, n=11, and Minimally Conscious State - MCS -, n=10), using an Event-Related Potential (ERP) Low-Resolution Brain Electromagnetic Tomography (LORETA) approach, based on nociceptive repeated laser stimulation (RLS). We delivered laser stimuli to the dorsum of both hands and analysed the γ-band LORETA activations and the ERP γ-power magnitude induced by laser stimulation, as well as the heart rate variability (HRV). RESULTS We found partially preserved cortical activations and ERP γ-power magnitude in all MCS and two UWS individuals. These effects were paralleled by a purposeful behaviour, and a reduced HRV concerning nociceptive stimulation, whereas the two UWS individuals showed no more than reflex behaviours, besides a strong limbic activation. CONCLUSIONS Some UWS patients may somehow perceive the affective components of nociceptive stimulation. SIGNIFICANCE The diagnosis of functional locked-in syndrome should be taken into account when dealing with DOC differential diagnosis.
Collapse
|
28
|
De Vidovich GZ, Muffatti R, Monaco J, Caramia N, Broglia D, Caverzasi E, Barale F, D'Angelo E. Repetitive TMS on Left Cerebellum Affects Impulsivity in Borderline Personality Disorder: A Pilot Study. Front Hum Neurosci 2016; 10:582. [PMID: 27994543 PMCID: PMC5136542 DOI: 10.3389/fnhum.2016.00582] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 11/02/2016] [Indexed: 12/13/2022] Open
Abstract
The borderline personality disorder (BPD) is characterized by a severe pattern of instability in emotional regulation, interpersonal relationships, identity and impulse control. These functions are related to the prefrontal cortex (PFC), and since PFC shows a rich anatomical connectivity with the cerebellum, the functionality of the cerebellar-PFC axis may impact on BPD. In this study, we investigated the potential involvement of cerebello-thalamo-cortical connections in impulsive reactions through a pre/post stimulation design. BPD patients (n = 8) and healthy controls (HC; n = 9) performed an Affective Go/No-Go task (AGN) assessing information processing biases for positive and negative stimuli before and after repetitive transcranial magnetic stimulation (rTMS; 1 Hz/10 min, 80% resting motor threshold (RMT) over the left lateral cerebellum. The AGN task consisted of four blocks requiring associative capacities of increasing complexity. BPD patients performed significantly worse than the HC, especially when cognitive demands were high (third and fourth block), but their performance approached that of HC after rTMS (rTMS was almost ineffective in HC). The more evident effect of rTMS in complex associative tasks might have occurred since the cerebellum is deeply involved in integration and coordination of different stimuli. We hypothesize that in BPD patients, cerebello-thalamo-cortical communication is altered, resulting in emotional dysregulation and disturbed impulse control. The rTMS over the left cerebellum might have interfered with existing functional connections exerting a facilitating effect on PFC control.
Collapse
Affiliation(s)
- Giulia Zelda De Vidovich
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Psychiatry Unit, Santi Paolo e Carlo Hospital of MilanMilan, Italy; Interdepartmental Center for Research on Personality Disorders, University of PaviaPavia, Italy
| | | | - Jessica Monaco
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Nicoletta Caramia
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| | - Davide Broglia
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Edgardo Caverzasi
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Francesco Barale
- Interdepartmental Center for Research on Personality Disorders, University of Pavia Pavia, Italy
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of PaviaPavia, Italy; Brain Connectivity Center, C. Mondino National Neurological InstitutePavia, Italy
| |
Collapse
|