1
|
Nobukawa S, Wagatsuma N, Ikeda T, Hasegawa C, Kikuchi M, Takahashi T. Effect of steady-state response versus excitatory/inhibitory balance on spiking synchronization in neural networks with log-normal synaptic weight distribution. Cogn Neurodyn 2021; 16:871-885. [PMID: 35847535 PMCID: PMC9279535 DOI: 10.1007/s11571-021-09757-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 10/22/2021] [Accepted: 11/14/2021] [Indexed: 01/18/2023] Open
Abstract
AbstractSynchronization of neural activity, especially at the gamma band, contributes to perceptual functions. In several psychiatric disorders, deficits of perceptual functions are reflected in synchronization abnormalities. Plausible cause of this impairment is an alteration in the balance between excitation and inhibition (E/I balance); a disruption in the E/I balance leads to abnormal neural interactions reminiscent of pathological states. Moreover, the local lateral excitatory-excitatory synaptic connections in the cortex exhibit excitatory postsynaptic potentials (EPSPs) that follow a log-normal amplitude distribution. This long-tailed distribution is considered an important factor for the emergence of spatiotemporal neural activity. In this context, we hypothesized that manipulating the EPSP distribution under abnormal E/I balance conditions would provide insights into psychiatric disorders characterized by deficits in perceptual functions, potentially revealing the mechanisms underlying pathological neural behaviors. In this study, we evaluated the synchronization of neural activity with external periodic stimuli in spiking neural networks in cases of both E/I balance and imbalance with or without a long-tailed EPSP amplitude distribution. The results showed that external stimuli of a high frequency lead to a decrease in the degree of synchronization with an increasing ratio of excitatory to inhibitory neurons in the presence, but not in the absence, of high-amplitude EPSPs. This monotonic reduction can be interpreted as an autonomous, strong-EPSP-dependent spiking activity selectively interfering with the responses to external stimuli. This observation is consistent with pathological findings. Thus, our modeling approach has potential to improve the understanding of the steady-state response in both healthy and pathological states.
Collapse
Affiliation(s)
- Sou Nobukawa
- Department of Computer Science, Chiba Institute of Technology, 2–17–1 Tsudanuma, Narashino, Chiba 275–0016 Japan
- Department of Preventive Intervention for Psychiatric Disorders, National Institute of Mental Health, National Center of Neurology and Psychiatry, 4-1-1 Ogawa-Higashi, Kodaira, Tokyo 187-8551 Japan
| | - Nobuhiko Wagatsuma
- Faculty of Science, Department of Information Science, Toho University, Chiba, Japan
| | - Takashi Ikeda
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
| | - Chiaki Hasegawa
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
| | - Mitsuru Kikuchi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, Hamamatsu University School of Medicine, Chiba University and University of Fukui, Osaka, Japan
- Department of Psychiatry and Behavioral Science, Kanazawa University, Kanazawa, Japan
| | - Tetsuya Takahashi
- Research Center for Child Mental Development, Kanazawa University, Kanazawa, Japan
- Department of Neuropsychiatry, University of Fukui, Yoshida, Japan
- Uozu Shinkei Sanatorium, Toyama, Japan
| |
Collapse
|
2
|
Nobukawa S, Nishimura H, Wagatsuma N, Ando S, Yamanishi T. Long-Tailed Characteristic of Spiking Pattern Alternation Induced by Log-Normal Excitatory Synaptic Distribution. IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS 2021; 32:3525-3537. [PMID: 32822305 DOI: 10.1109/tnnls.2020.3015208] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Studies of structural connectivity at the synaptic level show that in synaptic connections of the cerebral cortex, the excitatory postsynaptic potential (EPSP) in most synapses exhibits sub-mV values, while a small number of synapses exhibit large EPSPs ( >~1.0 [mV]). This means that the distribution of EPSP fits a log-normal distribution. While not restricting structural connectivity, skewed and long-tailed distributions have been widely observed in neural activities, such as the occurrences of spiking rates and the size of a synchronously spiking population. Many studies have been modeled this long-tailed EPSP neural activity distribution; however, its causal factors remain controversial. This study focused on the long-tailed EPSP distributions and interlateral synaptic connections primarily observed in the cortical network structures, thereby having constructed a spiking neural network consistent with these features. Especially, we constructed two coupled modules of spiking neural networks with excitatory and inhibitory neural populations with a log-normal EPSP distribution. We evaluated the spiking activities for different input frequencies and with/without strong synaptic connections. These coupled modules exhibited intermittent intermodule-alternative behavior, given moderate input frequency and the existence of strong synaptic and intermodule connections. Moreover, the power analysis, multiscale entropy analysis, and surrogate data analysis revealed that the long-tailed EPSP distribution and intermodule connections enhanced the complexity of spiking activity at large temporal scales and induced nonlinear dynamics and neural activity that followed the long-tailed distribution.
Collapse
|