1
|
Schmitt O. Relationships and representations of brain structures, connectivity, dynamics and functions. Prog Neuropsychopharmacol Biol Psychiatry 2025; 138:111332. [PMID: 40147809 DOI: 10.1016/j.pnpbp.2025.111332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/20/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
The review explores the complex interplay between brain structures and their associated functions, presenting a diversity of hierarchical models that enhances our understanding of these relationships. Central to this approach are structure-function flow diagrams, which offer a visual representation of how specific neuroanatomical structures are linked to their functional roles. These diagrams are instrumental in mapping the intricate connections between different brain regions, providing a clearer understanding of how functions emerge from the underlying neural architecture. The study details innovative attempts to develop new functional hierarchies that integrate structural and functional data. These efforts leverage recent advancements in neuroimaging techniques such as fMRI, EEG, MEG, and PET, as well as computational models that simulate neural dynamics. By combining these approaches, the study seeks to create a more refined and dynamic hierarchy that can accommodate the brain's complexity, including its capacity for plasticity and adaptation. A significant focus is placed on the overlap of structures and functions within the brain. The manuscript acknowledges that many brain regions are multifunctional, contributing to different cognitive and behavioral processes depending on the context. This overlap highlights the need for a flexible, non-linear hierarchy that can capture the brain's intricate functional landscape. Moreover, the study examines the interdependence of these functions, emphasizing how the loss or impairment of one function can impact others. Another crucial aspect discussed is the brain's ability to compensate for functional deficits following neurological diseases or injuries. The investigation explores how the brain reorganizes itself, often through the recruitment of alternative neural pathways or the enhancement of existing ones, to maintain functionality despite structural damage. This compensatory mechanism underscores the brain's remarkable plasticity, demonstrating its ability to adapt and reconfigure itself in response to injury, thereby ensuring the continuation of essential functions. In conclusion, the study presents a system of brain functions that integrates structural, functional, and dynamic perspectives. It offers a robust framework for understanding how the brain's complex network of structures supports a wide range of cognitive and behavioral functions, with significant implications for both basic neuroscience and clinical applications.
Collapse
Affiliation(s)
- Oliver Schmitt
- Medical School Hamburg - University of Applied Sciences and Medical University - Institute for Systems Medicine, Am Kaiserkai 1, Hamburg 20457, Germany; University of Rostock, Department of Anatomy, Gertrudenstr. 9, Rostock, 18055 Rostock, Germany.
| |
Collapse
|
2
|
Antal BB, Chesebro AG, Strey HH, Mujica-Parodi LR, Weistuch C. Achieving Occam's razor: Deep learning for optimal model reduction. PLoS Comput Biol 2024; 20:e1012283. [PMID: 39024398 PMCID: PMC11288447 DOI: 10.1371/journal.pcbi.1012283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 07/30/2024] [Accepted: 06/27/2024] [Indexed: 07/20/2024] Open
Abstract
All fields of science depend on mathematical models. Occam's razor refers to the principle that good models should exclude parameters beyond those minimally required to describe the systems they represent. This is because redundancy can lead to incorrect estimates of model parameters from data, and thus inaccurate or ambiguous conclusions. Here, we show how deep learning can be powerfully leveraged to apply Occam's razor to model parameters. Our method, FixFit, uses a feedforward deep neural network with a bottleneck layer to characterize and predict the behavior of a given model from its input parameters. FixFit has three major benefits. First, it provides a metric to quantify the original model's degree of complexity. Second, it allows for the unique fitting of data. Third, it provides an unbiased way to discriminate between experimental hypotheses that add value versus those that do not. In three use cases, we demonstrate the broad applicability of this method across scientific domains. To validate the method using a known system, we apply FixFit to recover known composite parameters for the Kepler orbit model and a dynamic model of blood glucose regulation. In the latter, we demonstrate the ability to fit the latent parameters to real data. To illustrate how the method can be applied to less well-established fields, we use it to identify parameters for a multi-scale brain model and reduce the search space for viable candidate mechanisms.
Collapse
Affiliation(s)
- Botond B. Antal
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Anthony G. Chesebro
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
| | - Helmut H. Strey
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lilianne R. Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, New York, United States of America
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, New York, United States of America
- Santa Fe Institute, Santa Fe, New Mexico, United States of America
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York, United States of America
| |
Collapse
|
3
|
van Nieuwenhuizen H, Chesebro AG, Polizu C, Clarke K, Strey HH, Weistuch C, Mujica-Parodi LR. Ketosis regulates K + ion channels, strengthening brain-wide signaling disrupted by age. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:10.1162/imag_a_00163. [PMID: 39664914 PMCID: PMC11633768 DOI: 10.1162/imag_a_00163] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Aging is associated with impaired signaling between brain regions when measured using resting-state fMRI. This age-related destabilization and desynchronization of brain networks reverses itself when the brain switches from metabolizing glucose to ketones. Here, we probe the mechanistic basis for these effects. First, we confirmed their robustness across measurement modalities using two datasets acquired from resting-state EEG (Lifespan: standard diet, 20-80 years, N = 201; Metabolic: individually weight-dosed and calorically-matched glucose and ketone ester challenge,μ a g e = 26.9 ± 11.2 years , N = 36). Then, using a multiscale conductance-based neural mass model, we identified the unique set of mechanistic parameters consistent with our clinical data. Together, our results implicate potassium (K+) gradient dysregulation as a mechanism for age-related neural desynchronization and its reversal with ketosis, the latter finding of which is consistent with direct measurement of ion channels. As such, the approach facilitates the connection between macroscopic brain activity and cellular-level mechanisms.
Collapse
Affiliation(s)
- Helena van Nieuwenhuizen
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
| | - Anthony G. Chesebro
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Claire Polizu
- Renaissance School of Medicine, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Kieran Clarke
- Department of Physiology, Oxford University, Oxford OX1 3PT, UK
| | - Helmut H. Strey
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY, 10065, USA
| | - Lilianne R. Mujica-Parodi
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY, 11790, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, 02129, USA
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11790, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, NY, 11790, USA
| |
Collapse
|
4
|
Zhou Y, Gong L, Yang Y, Tan L, Ruan L, Chen X, Luo H, Ruan J. Spatio-temporal dynamics of resting-state brain networks are associated with migraine disability. J Headache Pain 2023; 24:13. [PMID: 36800935 PMCID: PMC9940435 DOI: 10.1186/s10194-023-01551-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Accepted: 02/13/2023] [Indexed: 02/21/2023] Open
Abstract
OBJECTIVE The changes in resting-state functional networks and their correlations with clinical traits remain to be clarified in migraine. Here we aim to investigate the brain spatio-temporal dynamics of resting-state networks and their possible correlations with the clinical traits in migraine. METHODS Twenty Four migraine patients without aura and 26 healthy controls (HC) were enrolled. Each included subject underwent a resting-state EEG and echo planar imaging examination. The disability of migraine patients was evaluated by Migraine Disability Assessment (MIDAS). After data acquisition, EEG microstates (Ms) combining functional connectivity (FC) analysis based on Schafer 400-seven network atlas were performed. Then, the correlation between obtained parameters and clinical traits was investigated. RESULTS Compared with HC group, the brain temporal dynamics depicted by microstates showed significantly increased activity in functional networks involving MsB and decreased activity in functional networks involving MsD; The spatial dynamics were featured by decreased intra-network FC within the executive control network( ECN) and inter-network FC between dorsal attention network (DAN) and ECN (P < 0.05); Moreover, correlation analysis showed that the MIDAS score was positively correlated with the coverage and duration of MsC, and negatively correlated with the occurrence of MsA; The FC within default mode network (DMN), and the inter-FC of ECN- visual network (VN), ECN- limbic network, VN-limbic network was negatively correlated with MIDAS. However, the FC of DMN-ECN was positively correlated with MIDAS; Furthermore, significant interactions between the temporal and spatial dynamics were also obtained. CONCLUSIONS Our study confirmed the notion that altered spatio-temporal dynamics exist in migraine patients during resting-state. And the temporal dynamics, the spatial changes and the clinical traits such as migraine disability interact with each other. The spatio-temporal dynamics obtained from EEG microstate and fMRI FC analyses may be potential biomarkers for migraine and with a huge potential to change future clinical practice in migraine.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Liusheng Gong
- Department of Neurology, Jianyang People's Hospital, Jianyang, 641400, China
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
| | - Yushu Yang
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Linjie Tan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Lili Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Xiu Chen
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Hua Luo
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China
| | - Jianghai Ruan
- Department of Neurology, The Affiliated Hospital of Southwest Medical University, Luzhou, 646000, China.
- Laboratory of Neurological Diseases and Brain Function, Luzhou, 646000, China.
| |
Collapse
|
5
|
Chesebro AG, Mujica-Parodi LR, Weistuch C. Ion gradient-driven bifurcations of a multi-scale neuronal model. CHAOS, SOLITONS, AND FRACTALS 2023; 167:113120. [PMID: 37662556 PMCID: PMC10470863 DOI: 10.1016/j.chaos.2023.113120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Metabolic limitations within the brain frequently arise in the context of aging and disease. As the largest consumers of energy within the brain, ion pumps that maintain the neuronal membrane potential are the most affected when energy supply becomes limited. To characterize the effects of such limitations, we analyze the ion gradients present in a conductance-based (Morris-Lecar) neural mass model. We show the existence and locations of Neimark-Sacker and period-doubling bifurcations in the sodium, calcium, and potassium reversal potentials and demonstrate that these bifurcations form physiologically relevant bounds of ion gradient variability. Within these bounds, we show how depolarization of the gradients causes decreased neural activity. We also show that the depolarization of ion gradients decreases inter-regional coherence, causing a shift in the critical point at which the coupling occurs and thereby inducing loss of synchrony between regions. In this way, we show that the Larter-Breakspear model captures ion gradient variability present at the microscale level and propagates these changes to the macroscale effects such as those observed in human neuroimaging studies.
Collapse
Affiliation(s)
- Anthony G. Chesebro
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Lilianne R. Mujica-Parodi
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, 11794, NY, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, 02129, MA, USA
- Laufer Center for Physical and Quantitative Biology, Stony Brook University, Stony Brook, 11794, NY, USA
- Department of Physics and Astronomy, Stony Brook University, Stony Brook, 11794, NY, USA
| | - Corey Weistuch
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, 10065, NY, USA
| |
Collapse
|
6
|
Combining the neural mass model and Hodgkin–Huxley formalism: Neuronal dynamics modelling. Biomed Signal Process Control 2023. [DOI: 10.1016/j.bspc.2022.104026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
7
|
Wischnewski KJ, Eickhoff SB, Jirsa VK, Popovych OV. Towards an efficient validation of dynamical whole-brain models. Sci Rep 2022; 12:4331. [PMID: 35288595 PMCID: PMC8921267 DOI: 10.1038/s41598-022-07860-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 02/22/2022] [Indexed: 12/12/2022] Open
Abstract
Simulating the resting-state brain dynamics via mathematical whole-brain models requires an optimal selection of parameters, which determine the model’s capability to replicate empirical data. Since the parameter optimization via a grid search (GS) becomes unfeasible for high-dimensional models, we evaluate several alternative approaches to maximize the correspondence between simulated and empirical functional connectivity. A dense GS serves as a benchmark to assess the performance of four optimization schemes: Nelder-Mead Algorithm (NMA), Particle Swarm Optimization (PSO), Covariance Matrix Adaptation Evolution Strategy (CMAES) and Bayesian Optimization (BO). To compare them, we employ an ensemble of coupled phase oscillators built upon individual empirical structural connectivity of 105 healthy subjects. We determine optimal model parameters from two- and three-dimensional parameter spaces and show that the overall fitting quality of the tested methods can compete with the GS. There are, however, marked differences in the required computational resources and stability properties, which we also investigate before proposing CMAES and BO as efficient alternatives to a high-dimensional GS. For the three-dimensional case, these methods generated similar results as the GS, but within less than 6% of the computation time. Our results contribute to an efficient validation of models for personalized simulations of brain dynamics.
Collapse
|
8
|
Cakan C, Dimulescu C, Khakimova L, Obst D, Flöel A, Obermayer K. Spatiotemporal Patterns of Adaptation-Induced Slow Oscillations in a Whole-Brain Model of Slow-Wave Sleep. Front Comput Neurosci 2022; 15:800101. [PMID: 35095451 PMCID: PMC8790481 DOI: 10.3389/fncom.2021.800101] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
During slow-wave sleep, the brain is in a self-organized regime in which slow oscillations (SOs) between up- and down-states travel across the cortex. While an isolated piece of cortex can produce SOs, the brain-wide propagation of these oscillations are thought to be mediated by the long-range axonal connections. We address the mechanism of how SOs emerge and recruit large parts of the brain using a whole-brain model constructed from empirical connectivity data in which SOs are induced independently in each brain area by a local adaptation mechanism. Using an evolutionary optimization approach, good fits to human resting-state fMRI data and sleep EEG data are found at values of the adaptation strength close to a bifurcation where the model produces a balance between local and global SOs with realistic spatiotemporal statistics. Local oscillations are more frequent, last shorter, and have a lower amplitude. Global oscillations spread as waves of silence across the undirected brain graph, traveling from anterior to posterior regions. These traveling waves are caused by heterogeneities in the brain network in which the connection strengths between brain areas determine which areas transition to a down-state first, and thus initiate traveling waves across the cortex. Our results demonstrate the utility of whole-brain models for explaining the origin of large-scale cortical oscillations and how they are shaped by the connectome.
Collapse
Affiliation(s)
- Caglar Cakan
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Cristiana Dimulescu
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| | - Liliia Khakimova
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Daniela Obst
- Department of Neurology, University Medicine, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, University Medicine, Greifswald, Germany
- German Center for Neurodegenerative Diseases, Greifswald, Germany
| | - Klaus Obermayer
- Department of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany
| |
Collapse
|
9
|
Cortical traveling waves reflect state-dependent hierarchical sequencing of local regions in the human connectome network. Sci Rep 2022; 12:334. [PMID: 35013416 PMCID: PMC8748796 DOI: 10.1038/s41598-021-04169-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 12/14/2021] [Indexed: 11/08/2022] Open
Abstract
Recent human studies using electrocorticography have demonstrated that alpha and theta band oscillations form traveling waves on the cortical surface. According to neural synchronization theories, the cortical traveling waves may group local cortical regions and sequence them by phase synchronization; however these contributions have not yet been assessed. This study aimed to evaluate the functional contributions of traveling waves using connectome-based network modeling. In the simulation, we observed stable traveling waves on the entire cortical surface wherein the topographical pattern of these phases was substantially correlated with the empirically obtained resting-state networks, and local radial waves also appeared within the size of the empirical networks (< 50 mm). Importantly, individual regions in the entire network were instantaneously sequenced by their internal frequencies, and regions with higher intrinsic frequency were seen in the earlier phases of the traveling waves. Based on the communication-through-coherence theory, this phase configuration produced a hierarchical organization of each region by unidirectional communication between the arbitrarily paired regions. In conclusion, cortical traveling waves reflect the intrinsic frequency-dependent hierarchical sequencing of local regions, global traveling waves sequence the set of large-scale cortical networks, and local traveling waves sequence local regions within individual cortical networks.
Collapse
|
10
|
Das S, Zomorrodi R, Enticott PG, Kirkovski M, Blumberger DM, Rajji TK, Desarkar P. Resting state electroencephalography microstates in autism spectrum disorder: A mini-review. Front Psychiatry 2022; 13:988939. [PMID: 36532178 PMCID: PMC9752812 DOI: 10.3389/fpsyt.2022.988939] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 11/09/2022] [Indexed: 12/04/2022] Open
Abstract
Atypical spatial organization and temporal characteristics, found via resting state electroencephalography (EEG) microstate analysis, have been associated with psychiatric disorders but these temporal and spatial parameters are less known in autism spectrum disorder (ASD). EEG microstates reflect a short time period of stable scalp potential topography. These canonical microstates (i.e., A, B, C, and D) and more are identified by their unique topographic map, mean duration, fraction of time covered, frequency of occurrence and global explained variance percentage; a measure of how well topographical maps represent EEG data. We reviewed the current literature for resting state microstate analysis in ASD and identified eight publications. This current review indicates there is significant alterations in microstate parameters in ASD populations as compared to typically developing (TD) populations. Microstate parameters were also found to change in relation to specific cognitive processes. However, as microstate parameters are found to be changed by cognitive states, the differently acquired data (e.g., eyes closed or open) resting state EEG are likely to produce disparate results. We also review the current understanding of EEG sources of microstates and the underlying brain networks.
Collapse
Affiliation(s)
- Sushmit Das
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Reza Zomorrodi
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - Peter G Enticott
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia
| | - Melissa Kirkovski
- Cognitive Neuroscience Unit, School of Psychology, Deakin University, Geelong, VIC, Australia.,Institute for Health and Sport, Victoria University, Melbourne, VIC, Australia
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Tarek K Rajji
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Pushpal Desarkar
- Centre for Addiction and Mental Health, Toronto, ON, Canada.,Azrieli Adult Neurodevelopmental Centre, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Temerty Centre for Therapeutic Brain Intervention, Centre for Addiction and Mental Health, Toronto, ON, Canada.,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Cakan C, Jajcay N, Obermayer K. neurolib: A Simulation Framework for Whole-Brain Neural Mass Modeling. Cognit Comput 2021. [DOI: 10.1007/s12559-021-09931-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Abstractneurolib is a computational framework for whole-brain modeling written in Python. It provides a set of neural mass models that represent the average activity of a brain region on a mesoscopic scale. In a whole-brain network model, brain regions are connected with each other based on biologically informed structural connectivity, i.e., the connectome of the brain. neurolib can load structural and functional datasets, set up a whole-brain model, manage its parameters, simulate it, and organize its outputs for later analysis. The activity of each brain region can be converted into a simulated BOLD signal in order to calibrate the model against empirical data from functional magnetic resonance imaging (fMRI). Extensive model analysis is made possible using a parameter exploration module, which allows one to characterize a model’s behavior as a function of changing parameters. An optimization module is provided for fitting models to multimodal empirical data using evolutionary algorithms. neurolib is designed to be extendable and allows for easy implementation of custom neural mass models, offering a versatile platform for computational neuroscientists for prototyping models, managing large numerical experiments, studying the structure–function relationship of brain networks, and for performing in-silico optimization of whole-brain models.
Collapse
|
12
|
Jung K, Eickhoff SB, Popovych OV. Tractography density affects whole-brain structural architecture and resting-state dynamical modeling. Neuroimage 2021; 237:118176. [PMID: 34000399 DOI: 10.1016/j.neuroimage.2021.118176] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 05/09/2021] [Accepted: 05/13/2021] [Indexed: 11/24/2022] Open
Abstract
Dynamical modeling of the resting-state brain dynamics essentially relies on the empirical neuroimaging data utilized for the model derivation and validation. There is however still no standardized data processing for magnetic resonance imaging pipelines and the structural and functional connectomes involved in the models. In this study, we thus address how the parameters of diffusion-weighted data processing for structural connectivity (SC) can influence the validation results of the whole-brain mathematical models informed by SC. For this, we introduce a set of simulation conditions including the varying number of total streamlines of the whole-brain tractography (WBT) used for extraction of SC, cortical parcellations based on functional and anatomical brain properties and distinct model fitting modalities. The main objective of this study is to explore how the quality of the model validation can vary across the considered simulation conditions. We observed that the graph-theoretical network properties of structural connectome can be affected by varying tractography density and strongly relate to the model performance. We also found that the optimal number of the total streamlines of WBT can vary for different brain atlases. Consequently, we suggest a way how to improve the model performance based on the network properties and the optimal parameter configurations from multiple WBT conditions. Furthermore, the population of subjects can be stratified into subgroups with divergent behaviors induced by the varying WBT density such that different recommendations can be made with respect to the data processing for individual subjects and brain parcellations.
Collapse
Affiliation(s)
- Kyesam Jung
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Simon B Eickhoff
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| | - Oleksandr V Popovych
- Institute of Neuroscience and Medicine, Brain and Behavior (INM-7), Research Center Jülich, Germany; Institute for Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf, Germany.
| |
Collapse
|
13
|
Suzuki K, Yamashita O. MEG current source reconstruction using a meta-analysis fMRI prior. Neuroimage 2021; 236:118034. [PMID: 33839265 DOI: 10.1016/j.neuroimage.2021.118034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 02/16/2021] [Accepted: 03/26/2021] [Indexed: 12/01/2022] Open
Abstract
Magnetoencephalography (MEG) offers a unique way to noninvasively investigate millisecond-order cortical activities by mapping sensor signals (magnetic fields outside the head) to cortical current sources using current source reconstruction methods. Current source reconstruction is defined as an ill-posed inverse problem, since the number of sensors is less than the number of current sources. One powerful approach to solving this problem is to use functional MRI (fMRI) data as a spatial constraint, although it boosts the cost of measurement and the burden on subjects. Here, we show how to use the meta-analysis fMRI data synthesized from thousands of papers instead of the individually recorded fMRI data. To mitigate the differences between the meta-analysis and individual data, the former are imported as prior information of the hierarchical Bayesian estimation. Using realistic simulations, we found out the performance of current source reconstruction using meta-analysis fMRI data to be better than that using low-quality individual fMRI data and conventional methods. By applying experimental data of a face recognition task, we qualitatively confirmed that group analysis results using the meta-analysis fMRI data showed a tendency similar to the results using the individual fMRI data. Our results indicate that the use of meta-analysis fMRI data improves current source reconstruction without additional measurement costs. We assume the proposed method would have greater effect for modalities with lower measurement costs, such as optically pumped magnetometers.
Collapse
Affiliation(s)
- Keita Suzuki
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan.
| | - Okito Yamashita
- Department of Computational Brain Imaging, ATR Neural Information Analysis Laboratories, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan; Computational Brain Dynamics Team, RIKEN Center for Advanced Intelligence Project, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
| |
Collapse
|