1
|
Mehrnia SS, Safahi Z, Mousavi A, Panahandeh F, Farmani A, Yuan R, Rahmim A, Salmanpour MR. Landscape of 2D Deep Learning Segmentation Networks Applied to CT Scan from Lung Cancer Patients: A Systematic Review. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2025:10.1007/s10278-025-01458-x. [PMID: 40038137 DOI: 10.1007/s10278-025-01458-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/06/2025] [Accepted: 02/16/2025] [Indexed: 03/06/2025]
Abstract
BACKGROUND The increasing rates of lung cancer emphasize the need for early detection through computed tomography (CT) scans, enhanced by deep learning (DL) to improve diagnosis, treatment, and patient survival. This review examines current and prospective applications of 2D- DL networks in lung cancer CT segmentation, summarizing research, highlighting essential concepts and gaps; Methods: Following the Preferred Reporting Items for Systematic Reviews and Meta-Analysis guidelines, a systematic search of peer-reviewed studies from 01/2020 to 12/2024 on data-driven population segmentation using structured data was conducted across databases like Google Scholar, PubMed, Science Direct, IEEE (Institute of Electrical and Electronics Engineers) and ACM (Association for Computing Machinery) library. 124 studies met the inclusion criteria and were analyzed. RESULTS The LIDC-LIDR dataset was the most frequently used; The finding particularly relies on supervised learning with labeled data. The UNet model and its variants were the most frequently used models in medical image segmentation, achieving Dice Similarity Coefficients (DSC) of up to 0.9999. The reviewed studies primarily exhibit significant gaps in addressing class imbalances (67%), underuse of cross-validation (21%), and poor model stability evaluations (3%). Additionally, 88% failed to address the missing data, and generalizability concerns were only discussed in 34% of cases. CONCLUSIONS The review emphasizes the importance of Convolutional Neural Networks, particularly UNet, in lung CT analysis and advocates for a combined 2D/3D modeling approach. It also highlights the need for larger, diverse datasets and the exploration of semi-supervised and unsupervised learning to enhance automated lung cancer diagnosis and early detection.
Collapse
Affiliation(s)
- Somayeh Sadat Mehrnia
- Department of Integrative Oncology, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada
| | - Zhino Safahi
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada
- Department of Computer Engineering, University of Kurdistan, Sanandaj, Iran
| | - Amin Mousavi
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada
| | - Fatemeh Panahandeh
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada
| | - Arezoo Farmani
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada
| | - Ren Yuan
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver Center, Vancouver, BC, Canada
| | - Arman Rahmim
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada
- Department of Physics & Astronomy, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad R Salmanpour
- Technological Virtual Collaboration (TECVICO Corp.), Vancouver, BC, Canada.
- Department of Radiology, University of British Columbia, Vancouver, BC, Canada.
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, BC, V5Z 1L3, Canada.
| |
Collapse
|
2
|
Grudza M, Salinel B, Zeien S, Murphy M, Adkins J, Jensen CT, Bay C, Kodibagkar V, Koo P, Dragovich T, Choti MA, Kundranda M, Syeda-Mahmood T, Wang HZ, Chang J. Methods for improving colorectal cancer annotation efficiency for artificial intelligence-observer training. World J Radiol 2023; 15:359-369. [PMID: 38179201 PMCID: PMC10762523 DOI: 10.4329/wjr.v15.i12.359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/13/2023] [Accepted: 12/05/2023] [Indexed: 12/26/2023] Open
Abstract
BACKGROUND Missing occult cancer lesions accounts for the most diagnostic errors in retrospective radiology reviews as early cancer can be small or subtle, making the lesions difficult to detect. Second-observer is the most effective technique for reducing these events and can be economically implemented with the advent of artificial intelligence (AI). AIM To achieve appropriate AI model training, a large annotated dataset is necessary to train the AI models. Our goal in this research is to compare two methods for decreasing the annotation time to establish ground truth: Skip-slice annotation and AI-initiated annotation. METHODS We developed a 2D U-Net as an AI second observer for detecting colorectal cancer (CRC) and an ensemble of 5 differently initiated 2D U-Net for ensemble technique. Each model was trained with 51 cases of annotated CRC computed tomography of the abdomen and pelvis, tested with 7 cases, and validated with 20 cases from The Cancer Imaging Archive cases. The sensitivity, false positives per case, and estimated Dice coefficient were obtained for each method of training. We compared the two methods of annotations and the time reduction associated with the technique. The time differences were tested using Friedman's two-way analysis of variance. RESULTS Sparse annotation significantly reduces the time for annotation particularly skipping 2 slices at a time (P < 0.001). Reduction of up to 2/3 of the annotation does not reduce AI model sensitivity or false positives per case. Although initializing human annotation with AI reduces the annotation time, the reduction is minimal, even when using an ensemble AI to decrease false positives. CONCLUSION Our data support the sparse annotation technique as an efficient technique for reducing the time needed to establish the ground truth.
Collapse
Affiliation(s)
- Matthew Grudza
- School of Biological Health and Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Brandon Salinel
- Department of Radiology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| | - Sarah Zeien
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, United States
| | - Matthew Murphy
- School of Osteopathic Medicine, A.T. Still University, Mesa, AZ 85206, United States
| | - Jake Adkins
- Department of Abdominal Imaging, MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Corey T Jensen
- Department of Abdominal Imaging, University Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Curtis Bay
- Department of Interdisciplinary Sciences, A.T. Still University, Mesa, AZ 85206, United States
| | - Vikram Kodibagkar
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ 85287, United States
| | - Phillip Koo
- Department of Radiology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| | - Tomislav Dragovich
- Division of Cancer Medicine, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| | - Michael A Choti
- Department of Surgical Oncology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| | - Madappa Kundranda
- Division of Cancer Medicine, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| | | | - Hong-Zhi Wang
- IBM Almaden Research Center, IBM, San Jose, CA 95120, United States
| | - John Chang
- Department of Radiology, Banner MD Anderson Cancer Center, Gilbert, AZ 85234, United States
| |
Collapse
|
3
|
Goto M, Otsuka Y, Hagiwara A, Fujita S, Hori M, Kamagata K, Aoki S, Abe O, Sakamoto H, Sakano Y, Kyogoku S, Daida H. Accuracy of skull stripping in a single-contrast convolutional neural network model using eight-contrast magnetic resonance images. Radiol Phys Technol 2023; 16:373-383. [PMID: 37291372 DOI: 10.1007/s12194-023-00728-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023]
Abstract
In automated analyses of brain morphometry, skull stripping or brain extraction is a critical first step because it provides accurate spatial registration and signal-intensity normalization. Therefore, it is imperative to develop an ideal skull-stripping method in the field of brain image analysis. Previous reports have shown that convolutional neural network (CNN) method is better at skull stripping than non-CNN methods. We aimed to evaluate the accuracy of skull stripping in a single-contrast CNN model using eight-contrast magnetic resonance (MR) images. A total of 12 healthy participants and 12 patients with a clinical diagnosis of unilateral Sturge-Weber syndrome were included in our study. A 3-T MR imaging system and QRAPMASTER were used for data acquisition. We obtained eight-contrast images produced by post-processing T1, T2, and proton density (PD) maps. To evaluate the accuracy of skull stripping in our CNN method, gold-standard intracranial volume (ICVG) masks were used to train the CNN model. The ICVG masks were defined by experts using manual tracing. The accuracy of the intracranial volume obtained from the single-contrast CNN model (ICVE) was evaluated using the Dice similarity coefficient [= 2(ICVE ⋂ ICVG)/(ICVE + ICVG)]. Our study showed significantly higher accuracy in the PD-weighted image (WI), phase-sensitive inversion recovery (PSIR), and PD-short tau inversion recovery (STIR) compared to the other three contrast images (T1-WI, T2-fluid-attenuated inversion recovery [FLAIR], and T1-FLAIR). In conclusion, PD-WI, PSIR, and PD-STIR should be used instead of T1-WI for skull stripping in the CNN models.
Collapse
Affiliation(s)
- Masami Goto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan.
| | - Yujiro Otsuka
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Milliman Inc, Tokyo, Japan
- Plusman LLC, Tokyo, Japan
| | - Akifumi Hagiwara
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shohei Fujita
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Masaaki Hori
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
- Department of Radiology, Toho University Omori Medical Center, Tokyo, Japan
| | - Koji Kamagata
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Shigeki Aoki
- Department of Radiology, Juntendo University School of Medicine, Tokyo, Japan
| | - Osamu Abe
- Department of Radiology, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Hajime Sakamoto
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Yasuaki Sakano
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Shinsuke Kyogoku
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| | - Hiroyuki Daida
- Department of Radiological Technology, Faculty of Health Science, Juntendo University, 2-1-1 Hongo, Bunkyo-ku, Tokyo, 113-8421, Japan
| |
Collapse
|
4
|
Rashid T, Liu H, Ware JB, Li K, Romero JR, Fadaee E, Nasrallah IM, Hilal S, Bryan RN, Hughes TM, Davatzikos C, Launer L, Seshadri S, Heckbert SR, Habes M. Deep Learning Based Detection of Enlarged Perivascular Spaces on Brain MRI. NEUROIMAGE. REPORTS 2023; 3:100162. [PMID: 37035520 PMCID: PMC10078801 DOI: 10.1016/j.ynirp.2023.100162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Deep learning has been demonstrated effective in many neuroimaging applications. However, in many scenarios, the number of imaging sequences capturing information related to small vessel disease lesions is insufficient to support data-driven techniques. Additionally, cohort-based studies may not always have the optimal or essential imaging sequences for accurate lesion detection. Therefore, it is necessary to determine which imaging sequences are crucial for precise detection. This study introduces a deep learning framework to detect enlarged perivascular spaces (ePVS) and aims to find the optimal combination of MRI sequences for deep learning-based quantification. We implemented an effective lightweight U-Net adapted for ePVS detection and comprehensively investigated different combinations of information from SWI, FLAIR, T1-weighted (T1w), and T2-weighted (T2w) MRI sequences. The experimental results showed that T2w MRI is the most important for accurate ePVS detection, and the incorporation of SWI, FLAIR and T1w MRI in the deep neural network had minor improvements in accuracy and resulted in the highest sensitivity and precision (sensitivity =0.82, precision =0.83). The proposed method achieved comparable accuracy at a minimal time cost compared to manual reading. The proposed automated pipeline enables robust and time-efficient readings of ePVS from MR scans and demonstrates the importance of T2w MRI for ePVS detection and the potential benefits of using multimodal images. Furthermore, the model provides whole-brain maps of ePVS, enabling a better understanding of their clinical correlates compared to the clinical rating methods within only a couple of brain regions.
Collapse
Affiliation(s)
- Tanweer Rashid
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Hangfan Liu
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| | - Jeffrey B. Ware
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Karl Li
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Jose Rafael Romero
- Department of Neurology, School of Medicine, Boston University, Boston, MA, USA
| | - Elyas Fadaee
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ilya M. Nasrallah
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Hilal
- Saw Swee Hock School of Public Health, National University of Singapore and National University Health System, Singapore
| | - R. Nick Bryan
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
- Department of Diagnostic Medicine, Dell Medical School, University of Texas at Austin, Austin, TX, USA
| | - Timothy M. Hughes
- Department of Internal Medicine and Department of Epidemiology and Prevention, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Christos Davatzikos
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA, USA
| | - Lenore Launer
- Laboratory of Epidemiology and Population Sciences, National Institute on Aging, National Institutes of Health, Bethesda, MD, USA
| | - Sudha Seshadri
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Susan R. Heckbert
- Department of Epidemiology and Cardiovascular Health Research Unit, University of Washington, Seattle, WA, USA
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Neurodegenerative Disorders, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Center for Biomedical Image Computing and Analytics, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
5
|
Siegbahn M, Engmér Berglin C, Moreno R. Automatic segmentation of the core of the acoustic radiation in humans. Front Neurol 2022; 13:934650. [PMID: 36212647 PMCID: PMC9539320 DOI: 10.3389/fneur.2022.934650] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 09/19/2022] [Indexed: 11/13/2022] Open
Abstract
Introduction Acoustic radiation is one of the most important white matter fiber bundles of the human auditory system. However, segmenting the acoustic radiation is challenging due to its small size and proximity to several larger fiber bundles. TractSeg is a method that uses a neural network to segment some of the major fiber bundles in the brain. This study aims to train TractSeg to segment the core of acoustic radiation. Methods We propose a methodology to automatically extract the acoustic radiation from human connectome data, which is both of high quality and high resolution. The segmentation masks generated by TractSeg of nearby fiber bundles are used to steer the generation of valid streamlines through tractography. Only streamlines connecting the Heschl's gyrus and the medial geniculate nucleus were considered. These streamlines are then used to create masks of the core of the acoustic radiation that is used to train the neural network of TractSeg. The trained network is used to automatically segment the acoustic radiation from unseen images. Results The trained neural network successfully extracted anatomically plausible masks of the core of the acoustic radiation in human connectome data. We also applied the method to a dataset of 17 patients with unilateral congenital ear canal atresia and 17 age- and gender-paired controls acquired in a clinical setting. The method was able to extract 53/68 acoustic radiation in the dataset acquired with clinical settings. In 14/68 cases, the method generated fragments of the acoustic radiation and completely failed in a single case. The performance of the method on patients and controls was similar. Discussion In most cases, it is possible to segment the core of the acoustic radiations even in images acquired with clinical settings in a few seconds using a pre-trained neural network.
Collapse
Affiliation(s)
- Malin Siegbahn
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
- Medical Unit Ear, Nose, Throat and Hearing, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Engmér Berglin
- Division of Ear, Nose and Throat Diseases, Department of Clinical Science, Intervention and Technology, Karolinska Institute, Stockholm, Sweden
- Medical Unit Ear, Nose, Throat and Hearing, Karolinska University Hospital, Stockholm, Sweden
| | - Rodrigo Moreno
- Department of Biomedical Engineering and Health Systems, KTH Royal Institute of Technology, Stockholm, Sweden
- *Correspondence: Rodrigo Moreno
| |
Collapse
|