1
|
Takano K, Monna-Oiwa M, Isobe M, Kato S, Takahashi S, Nannya Y, Konuma T. Low urinary sodium-to-potassium ratio in the early phase following single-unit cord blood transplantation is a predictive factor for poor non-relapse mortality in adults. Sci Rep 2024; 14:1413. [PMID: 38228718 DOI: 10.1038/s41598-024-51748-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Accepted: 01/09/2024] [Indexed: 01/18/2024] Open
Abstract
Although daily higher urinary sodium (Na) and potassium (K) excretion ratio is associated with the risk of cardiovascular disease in the general population, a low Na/K ratio is associated with renal dysfunction in critically ill patients. Thus, we retrospectively analyzed the impact of daily urinary Na and K excretion and their ratio on non-relapse mortality (NRM) and overall mortality in 172 adult single-unit cord blood transplantation (CBT) patients treated at our institution between 2007 and 2020. Multivariate analysis showed that a low urinary Na/K ratio at both 14 days (hazard ratio [HR], 4.82; 95% confidence interval [CI], 1.81-12.83; P = 0.001) and 28 days (HR, 4.47; 95% CI 1.32-15.12; P = 0.015) was significantly associated with higher NRM. Furthermore, a low urinary Na/K ratio at 28 days was significantly associated with higher overall mortality (HR, 2.38; 95% CI 1.15-4.91; P = 0.018). Patients with a low urinary Na/K ratio had decreased urine volume, more weight gain, experienced more grade III-IV acute graft-versus-host disease, and required corticosteroids by 28 days after CBT. These findings indicate that a low urinary Na/K ratio early after single-unit CBT is associated with poor NRM and survival in adults.
Collapse
Affiliation(s)
- Kosuke Takano
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Maki Monna-Oiwa
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Masamichi Isobe
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Seiko Kato
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Satoshi Takahashi
- Division of Clinical Precision Research Platform, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Yasuhito Nannya
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan
| | - Takaaki Konuma
- Department of Hematology/Oncology, The Institute of Medical Science, The University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo, 108-8639, Japan.
| |
Collapse
|
2
|
Stanski NL, Rodrigues CE, Strader M, Murray PT, Endre ZH, Bagshaw SM. Precision management of acute kidney injury in the intensive care unit: current state of the art. Intensive Care Med 2023; 49:1049-1061. [PMID: 37552332 DOI: 10.1007/s00134-023-07171-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 07/12/2023] [Indexed: 08/09/2023]
Abstract
Acute kidney injury (AKI) is a prototypical example of a common syndrome in critical illness defined by consensus. The consensus definition for AKI, traditionally defined using only serum creatinine and urine output, was needed to standardize the description for epidemiology and to harmonize eligibility for clinical trials. However, AKI is not a simple disease, but rather a complex and multi-factorial syndrome characterized by a wide spectrum of pathobiology. AKI is now recognized to be comprised of numerous sub-phenotypes that can be discriminated through shared features such as etiology, prognosis, or common pathobiological mechanisms of injury and damage. The characterization of sub-phenotypes can serve to enable prognostic enrichment (i.e., identify subsets of patients more likely to share an outcome of interest) and predictive enrichment (identify subsets of patients more likely to respond favorably to a given therapy). Existing and emerging biomarkers will aid in discriminating sub-phenotypes of AKI, facilitate expansion of diagnostic criteria, and be leveraged to realize personalized approaches to management, particularly for recognizing treatment-responsive mechanisms (i.e., endotypes) and targets for intervention (i.e., treatable traits). Specific biomarkers (e.g., serum renin; olfactomedin 4 (OLFM4); interleukin (IL)-9) may further enable identification of pathobiological mechanisms to serve as treatment targets. However, even non-specific biomarkers of kidney injury (e.g., neutrophil gelatinase-associated lipocalin, NGAL; [tissue inhibitor of metalloproteinases 2, TIMP2]·[insulin like growth factor binding protein 7, IGFBP7]; kidney injury molecule 1, KIM-1) can direct greater precision management for specific sub-phenotypes of AKI. This review will summarize these evolving concepts and recent innovations in precision medicine approaches to the syndrome of AKI in critical illness, along with providing examples of how they can be leveraged to guide patient care.
Collapse
Affiliation(s)
- Natalja L Stanski
- Division of Critical Care Medicine, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Camila E Rodrigues
- Department of Nephrology, Prince of Wales Clinical School, UNSW Medicine, Sydney, NSW, Australia
- Nephrology Department, Hospital das Clínicas, University of São Paulo School of Medicine, São Paulo, Brazil
| | - Michael Strader
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Patrick T Murray
- Department of Medicine, School of Medicine, University College Dublin, Dublin, Ireland
| | - Zoltan H Endre
- Department of Nephrology, Prince of Wales Clinical School, UNSW Medicine, Sydney, NSW, Australia
| | - Sean M Bagshaw
- Department of Critical Care Medicine, Faculty of Medicine and Dentistry, University of Alberta and Alberta Health Services, 2-124 Clinical Sciences Building, 8440-112 ST NW, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|