1
|
Ivanov PC, Bartsch RP. Future of Sleep Medicine: Novel Insights on Sleep Regulation from Network Physiology (Part II). Sleep Med Clin 2025; 20:149-164. [PMID: 39894595 DOI: 10.1016/j.jsmc.2024.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
The authors review recent progress in understanding fundamental aspects of physiologic regulation during wake and sleep based on modern data-driven, analytic, and computational approaches with focus on the complex dynamics of physiologic systems interactions, their coexisting and transient forms of coupling, and the role of network integration among physiologic systems in generating states and functions at the organism level. They underscore the importance of novel network-based integrative approaches and the network physiology framework to investigate the structure and dynamics of physiologic networks and to quantify emergent global states and behaviors in health and disease.
Collapse
Affiliation(s)
- Plamen Ch Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA 02215, USA; Institute of Solid State Physics, Bulgarian Academy of Sciences, Sofia 1784, Bulgaria.
| | - Ronny P Bartsch
- Department of Physics, Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Grifoni J, Crispiatico V, Castagna A, Converti RM, Ramella M, Quartarone A, L’Abbate T, Armonaite K, Paulon L, Panuccio F, Tecchio F. Musician's dystonia: a perspective on the strongest evidence towards new prevention and mitigation treatments. FRONTIERS IN NETWORK PHYSIOLOGY 2025; 4:1508592. [PMID: 39911276 PMCID: PMC11794226 DOI: 10.3389/fnetp.2024.1508592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025]
Abstract
This perspective article addresses the critical and up-to-date problem of task-specific musician's dystonia (MD) from both theoretical and practical perspectives. Theoretically, MD is explored as a result of impaired sensorimotor interplay across different brain circuits, supported by the most frequently cited scientific evidence-each referenced dozens of times in Scopus. Practically, MD is a significant issue as it occurs over 60 times more frequently in musicians compared to other professions, underscoring the influence of individual training as well as environmental, social, and emotional factors. To address these challenges, we propose a novel application of the FeeSyCy principle (feedback-synchrony-plasticity), which emphasizes the pivotal role of feedback in guiding inter-neuronal synchronization and plasticity-the foundation of learning and memory. This model integrates with established literature to form a comprehensive framework for understanding MD as an impaired FeeSyCy-mediated relationship between the individual and their environment, ultimately leading to trauma. The proposed approach provides significant advantages by enabling the development of innovative therapeutic and preventive strategies. Specifically, it lays the groundwork for multimodal psycho-physical therapies aimed at restoring balance in the neural circuits affected by MD. These strategies include personalized psychotherapy combined with physical rehabilitation to address both the psychological and physiological dimensions of MD. This integration offers a practical and value-added solution to this pressing problem, with potential for broad applicability across similar conditions.
Collapse
Affiliation(s)
- Joy Grifoni
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | | | | | | | | | | | - Teresa L’Abbate
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | - Karolina Armonaite
- Faculty of Psychology and of Engineering, Uninettuno University, Rome, Italy
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| | - Luca Paulon
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
- Engineer Freelance, Rome, Italy
| | | | - Franca Tecchio
- Laboratory of Electrophysiology for Translational neuroScience LET’S, Institute of Cognitive Sciences and Technologies ISTC, Consiglio Nazionale delle Ricerche CNR, Roma, Italy
| |
Collapse
|
3
|
Moreno Cunha G, Corso G, Brasil de Sousa MP, dos Santos Lima GZ. Can ephapticity contribute to brain complexity? PLoS One 2024; 19:e0310640. [PMID: 39636938 PMCID: PMC11620465 DOI: 10.1371/journal.pone.0310640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 09/04/2024] [Indexed: 12/07/2024] Open
Abstract
The inquiry into the origin of brain complexity remains a pivotal question in neuroscience. While synaptic stimuli are acknowledged as significant, their efficacy often falls short in elucidating the extensive interconnections of the brain and nuanced levels of cognitive integration. Recent advances in neuroscience have brought the mechanisms underlying the generation of highly intricate dynamics, emergent patterns, and sophisticated oscillatory signals into question. Within this context, our study, in alignment with current research, postulates the hypothesis that ephaptic communication, in addition to synaptic mediation's, may emerge as a prime candidate for unraveling optimal brain complexity. Ephaptic communication, hitherto little studied, refers to direct interactions of the electric field between adjacent neurons, without the mediation of traditional synapses (electrical or chemical). We propose that these electric field couplings may provide an additional layer of connectivity that facilitates the formation of complex patterns and emergent dynamics in the brain. In this investigation, we conducted a comparative analysis between two types of networks utilizing the Quadratic Integrate-and-Fire Ephaptic model (QIF-E): (I) a small-world synaptic network (ephaptic-off) and (II) a mixed composite network comprising a small-world synaptic network with the addition of an ephaptic network (ephaptic-on). Utilizing the Multiscale Entropy methodology, we conducted an in-depth analysis of the responses generated by both network configurations, with complexity assessed by integrating across all temporal scales. Our findings demonstrate that ephaptic coupling enhances complexity under specific topological conditions, considering variables such as time, spatial scales, and synaptic intensity. These results offer fresh insights into the dynamics of communication within the nervous system and underscore the fundamental role of ephapticity in regulating complex brain functions.
Collapse
Affiliation(s)
- Gabriel Moreno Cunha
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gilberto Corso
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Departamento de Biofísica e Farmacologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Matheus Phellipe Brasil de Sousa
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
| | - Gustavo Zampier dos Santos Lima
- Departamento de Física Teórica e Experimental, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Escola de Ciências e Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Laboratório de Simulação e Modelagem Neurodinâmica, Universidade Federal do Rio Grande do Norte, Natal, RN, Brazil
- Institut Camille Jordan, UMR 5208 CNRS, University Lyon 1, Villeurbanne, France
| |
Collapse
|
4
|
Popescu BO, Batzu L, Ruiz PJG, Tulbă D, Moro E, Santens P. Neuroplasticity in Parkinson's disease. J Neural Transm (Vienna) 2024; 131:1329-1339. [PMID: 39102007 PMCID: PMC11502561 DOI: 10.1007/s00702-024-02813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 07/22/2024] [Indexed: 08/06/2024]
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disorder, affecting millions of people and rapidly increasing over the last decades. Even though there is no intervention yet to stop the neurodegenerative pathology, many efficient treatment methods are available, including for patients with advanced PD. Neuroplasticity is a fundamental property of the human brain to adapt both to external changes and internal insults and pathological processes. In this paper we examine the current knowledge and concepts concerning changes at network level, cellular level and molecular level as parts of the neuroplastic response to protein aggregation pathology, synapse loss and neuronal loss in PD. We analyse the beneficial, compensatory effects, such as augmentation of nigral neurons efficacy, as well as negative, maladaptive effects, such as levodopa-induced dyskinesia. Effects of physical activity and different treatments on neuroplasticity are considered and the opportunity of biomarkers identification and use is discussed.
Collapse
Affiliation(s)
- Bogdan Ovidiu Popescu
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania.
- Laboratory of Cell Biology, Neurosciences and Experimental Myology, 'Victor Babeș' National Institute of Pathology, Bucharest, Romania.
| | - Lucia Batzu
- Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, The Maurice Wohl Clinical Neuroscience Institute, King's College London, London, UK
- Parkinson's Foundation Centre of Excellence, King's College Hospital, London, UK
| | | | - Delia Tulbă
- Department of Clinical Neurosciences, 'Carol Davila' University of Medicine and Pharmacy Bucharest, Bucharest, Romania
| | - Elena Moro
- Division of Neurology, Centre Hospitalier Universitaire de Grenoble, Grenoble Alpes University, Grenoble Institute of Neuroscience, INSERM U1216, Grenoble, France
| | - Patrick Santens
- Department of Neurology, University Hospital Ghent, Ghent, Belgium
- Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
5
|
Saghafi S, Sanaei P. Dynamic entrainment: A deep learning and data-driven process approach for synchronization in the Hodgkin-Huxley model. CHAOS (WOODBURY, N.Y.) 2024; 34:103124. [PMID: 39470595 DOI: 10.1063/5.0219848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/24/2024] [Indexed: 10/30/2024]
Abstract
Resonance and synchronized rhythm are significant phenomena observed in dynamical systems in nature, particularly in biological contexts. These phenomena can either enhance or disrupt system functioning. Numerous examples illustrate the necessity for organs within the human body to maintain their rhythmic patterns for proper operation. For instance, in the brain, synchronized or desynchronized electrical activities can contribute to neurodegenerative conditions like Huntington's disease. In this paper, we utilize the well-established Hodgkin-Huxley (HH) model, which describes the propagation of action potentials in neurons through conductance-based mechanisms. Employing a "data-driven" approach alongside the outputs of the HH model, we introduce an innovative technique termed "dynamic entrainment." This technique leverages deep learning methodologies to dynamically sustain the system within its entrainment regime. Our findings show that the results of the dynamic entrainment technique match with the outputs of the mechanistic (HH) model.
Collapse
Affiliation(s)
- Soheil Saghafi
- Department of Biomedical Informatics, School of Medicine, Emory University, Atlanta, Georgia 30322, USA
- Department of Mathematical Sciences, New Jersey Institute of Technology, Newark 07102, New Jersey, USA
| | - Pejman Sanaei
- Department of Mathematics and Statistics, Georgia State University, Atlanta, Georgia 30303, USA
| |
Collapse
|
6
|
Tass PA, Bokil H. Editorial: Neuromodulation using spatiotemporally complex patterns. Front Neuroinform 2024; 18:1454834. [PMID: 39165628 PMCID: PMC11334158 DOI: 10.3389/fninf.2024.1454834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024] Open
Affiliation(s)
- Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States,
| | - Hemant Bokil
- Boston Scientific Neuromodulation, Valencia, CA, United States
| |
Collapse
|
7
|
Martins LA, Schiavo A, Paz LV, Xavier LL, Mestriner RG. Neural underpinnings of fine motor skills under stress and anxiety: A review. Physiol Behav 2024; 282:114593. [PMID: 38782244 DOI: 10.1016/j.physbeh.2024.114593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/17/2024] [Accepted: 05/21/2024] [Indexed: 05/25/2024]
Abstract
This review offers a comprehensive examination of how stress and anxiety affect motor behavior, particularly focusing on fine motor skills and gait adaptability. We explore the role of several neurochemicals, including brain-derived neurotrophic factor (BDNF) and dopamine, in modulating neural plasticity and motor control under these affective states. The review highlights the importance of developing therapeutic strategies that enhance motor performance by leveraging the interactions between key neurochemicals. Additionally, we investigate the complex interplay between emotional-cognitive states and sensorimotor behaviors, showing how stress and anxiety disrupt neural integration, leading to impairments in skilled movements and negatively impacting quality of life. Synthesizing evidence from human and rodent studies, we provide a detailed understanding of the relationships among stress, anxiety, and motor behavior. Our findings reveal neurophysiological pathways, behavioral outcomes, and potential therapeutic targets, emphasizing the intricate connections between neurobiological mechanisms, environmental factors, and motor performance.
Collapse
Affiliation(s)
- Lucas Athaydes Martins
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Aniuska Schiavo
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Lisiê Valéria Paz
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Léder Leal Xavier
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil
| | - Régis Gemerasca Mestriner
- Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Biomedical Gerontology, Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Neuroscience, Motor Behavior, and Rehabilitation Research Group (NECORE-CNPq), Av. Ipiranga, 6681, Porto Alegre, Brazil; Pontifical Catholic University of Rio Grande do Sul (PUCRS). Graduate Program in Cellular and Molecular Biology, Av. Ipiranga, 6681, Porto Alegre, Brazil.
| |
Collapse
|
8
|
Kromer JA, Tass PA. Coordinated reset stimulation of plastic neural networks with spatially dependent synaptic connections. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1351815. [PMID: 38863734 PMCID: PMC11165135 DOI: 10.3389/fnetp.2024.1351815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 04/15/2024] [Indexed: 06/13/2024]
Abstract
Background Abnormal neuronal synchrony is associated with several neurological disorders, including Parkinson's disease (PD), essential tremor, dystonia, and epilepsy. Coordinated reset (CR) stimulation was developed computationally to counteract abnormal neuronal synchrony. During CR stimulation, phase-shifted stimuli are delivered to multiple stimulation sites. Computational studies in plastic neural networks reported that CR stimulation drove the networks into an attractor of a stable desynchronized state by down-regulating synaptic connections, which led to long-lasting desynchronization effects that outlasted stimulation. Later, corresponding long-lasting desynchronization and therapeutic effects were found in animal models of PD and PD patients. To date, it is unclear how spatially dependent synaptic connections, as typically observed in the brain, shape CR-induced synaptic downregulation and long-lasting effects. Methods We performed numerical simulations of networks of leaky integrate-and-fire neurons with spike-timing-dependent plasticity and spatially dependent synaptic connections to study and further improve acute and long-term responses to CR stimulation. Results The characteristic length scale of synaptic connections relative to the distance between stimulation sites plays a key role in CR parameter adjustment. In networks with short synaptic length scales, a substantial synaptic downregulation can be achieved by selecting appropriate stimulus-related parameters, such as the stimulus amplitude and shape, regardless of the employed spatiotemporal pattern of stimulus deliveries. Complex stimulus shapes can induce local connectivity patterns in the vicinity of the stimulation sites. In contrast, in networks with longer synaptic length scales, the spatiotemporal sequence of stimulus deliveries is of major importance for synaptic downregulation. In particular, rapid shuffling of the stimulus sequence is advantageous for synaptic downregulation. Conclusion Our results suggest that CR stimulation parameters can be adjusted to synaptic connectivity to further improve the long-lasting effects. Furthermore, shuffling of CR sequences is advantageous for long-lasting desynchronization effects. Our work provides important hypotheses on CR parameter selection for future preclinical and clinical studies.
Collapse
Affiliation(s)
- Justus A. Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | | |
Collapse
|
9
|
Rosenblum M. Feedback control of collective dynamics in an oscillator population with time-dependent connectivity. FRONTIERS IN NETWORK PHYSIOLOGY 2024; 4:1358146. [PMID: 38371453 PMCID: PMC10869593 DOI: 10.3389/fnetp.2024.1358146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 01/23/2024] [Indexed: 02/20/2024]
Abstract
We present a numerical study of pulsatile feedback-based control of synchrony level in a highly-interconnected oscillatory network. We focus on a nontrivial case when the system is close to the synchronization transition point and exhibits collective rhythm with strong amplitude modulation. We pay special attention to technical but essential steps like causal real-time extraction of the signal of interest from a noisy measurement and estimation of instantaneous phase and amplitude. The feedback loop's parameters are tuned automatically to suppress synchrony. Though the study is motivated by neuroscience, the results are relevant to controlling oscillatory activity in ensembles of various natures and, thus, to the rapidly developing field of network physiology.
Collapse
Affiliation(s)
- Michael Rosenblum
- Institute of Physics and Astronomy, University of Potsdam, Potsdam, Germany
| |
Collapse
|
10
|
Gigi I, Senatore R, Marcelli A. The onset of motor learning impairments in Parkinson's disease: a computational investigation. Brain Inform 2024; 11:4. [PMID: 38286886 PMCID: PMC11333672 DOI: 10.1186/s40708-023-00215-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 12/11/2023] [Indexed: 01/31/2024] Open
Abstract
The basal ganglia (BG) is part of a basic feedback circuit regulating cortical function, such as voluntary movements control, via their influence on thalamocortical projections. BG disorders, namely Parkinson's disease (PD), characterized by the loss of neurons in the substantia nigra, involve the progressive loss of motor functions. At the present, PD is incurable. Converging evidences suggest the onset of PD-specific pathology prior to the appearance of classical motor signs. This latent phase of neurodegeneration in PD is of particular relevance in developing more effective therapies by intervening at the earliest stages of the disease. Therefore, a key challenge in PD research is to identify and validate markers for the preclinical and prodromal stages of the illness. We propose a mechanistic neurocomputational model of the BG at a mesoscopic scale to investigate the behavior of the simulated neural system after several degrees of lesion of the substantia nigra, with the aim of possibly evaluating which is the smallest lesion compromising motor learning. In other words, we developed a working framework for the analysis of theoretical early-stage PD. While simulations in healthy conditions confirm the key role of dopamine in learning, in pathological conditions the network predicts that there may exist abnormalities of the motor learning process, for physiological alterations in the BG, that do not yet involve the presence of symptoms typical of the clinical diagnosis.
Collapse
Affiliation(s)
- Ilaria Gigi
- Institute of Cognitive Sciences and Technologies (ISTC), National Research Council of Italy (CNR), Via Beato Pellegrino 28, Padova, 35137, Veneto, Italy.
| | - Rosa Senatore
- Natural Intelligent Technologies Ltd, Piazza Vittorio Emanuele 10, Fisciano, 84084, Campania, Italy
| | - Angelo Marcelli
- Department of Information Engineering, Electrical Engineering, and Applied Mathematics (DIEM), University of Salerno, Via Giovanni Paolo II 132, Fisciano, 84084, Campania, Italy
| |
Collapse
|
11
|
Zeng Z, Huang P, Lin Z, Pan Y, Wan X, Zhang C, Sun B, Li D. Rescue subthalamic stimulation after unsatisfactory outcome of pallidal stimulation in Parkinson's disease: a case series and review. Front Aging Neurosci 2024; 15:1323541. [PMID: 38264547 PMCID: PMC10803461 DOI: 10.3389/fnagi.2023.1323541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 12/20/2023] [Indexed: 01/25/2024] Open
Abstract
Background Subthalamic nucleus (STN) and globus pallidus interna (GPi) are two main structures primarily targeted by deep brain stimulation (DBS) to treat advanced Parkinson's disease (PD). A subset of cases with unsatisfactory outcomes may benefit from rescue DBS surgery targeting another structure, while these patients' characteristics have not been well described and this phenomenon has not been well reviewed. Methods This monocentric retrospective study included patients with PD, who underwent rescue STN DBS following an unsatisfactory outcome of the initial bilateral GPi DBS in a retrospective manner. A short review of the current literature was conducted to report the clinical outcome of rescue DBS surgeries. Results Eight patients were identified, and six of them were included in this study. The rescue STN DBS was performed 19.8 months after the initial GPi DBS. After 8.8 months from the rescue STN DBS, patients showed a significant off-medication improvement by 29.2% in motor symptoms compared to initial GPi DBS. Non-motor symptoms and the health-related quality of life were also significantly improved. Conclusion Our findings suggest that the rescue STN DBS may improve off-medication motor and non-motor symptoms and quality of life in patients with failure of initial GPi DBS. The short review of the current literature showed that the target switching from GPi to STN was mainly due to poor initial outcomes and was performed by target substitution, whereas the switching from STN to GPi was mainly due to a gradual waning of benefits, long-term axial symptoms, dyskinesia, and dystonia and was performed by target addition.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Dianyou Li
- Department of Neurosurgery, Center for Functional Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Kim B, Kim JS, Youn B, Moon C. Dopamine depletion alters neuroplasticity-related signaling in the rat hippocampus. Anim Cells Syst (Seoul) 2023; 27:436-446. [PMID: 38125760 PMCID: PMC10732217 DOI: 10.1080/19768354.2023.2294308] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023] Open
Abstract
Dopamine (DA) plays a significant role in regulating hippocampal function, particularly in modulating synaptic plasticity. Despite this, a comprehensive understanding of the molecular mechanisms involved in neuroplasticity-related signaling influenced by DA remains incomplete. This study aimed to elucidate the changes in the expression of key molecules related to hippocampal neuroplasticity following DA depletion in rats. To induce DA depletion, unilateral striatal infusions of 6-hydroxydopamine (6-OHDA) were administered to adult Sprague-Dawley rats. The subsequent loss of nigrostriatal DAergic signaling in these 6-OHDA-lesioned rats was confirmed using an apomorphine-induced rotation test at 4 weeks post-infusion and by assessing the expression levels of tyrosine hydroxylase (TH) through immunohistochemistry and western blotting at 7 weeks post-infusion. A decrease in DAergic signaling, evidenced by reduced TH-positive immunoreactivity, was also noted in the ipsilateral hippocampus of the lesioned rats. Interestingly, 6-OHDA infusion led to increased phosphorylation of pivotal hippocampal plasticity-related proteins, including extracellular signal-regulated kinase (ERK), protein kinase B (Akt), glycogen synthase kinase 3β (GSK3β), and cAMP response element-binding protein (CREB), in the ipsilateral hippocampus 7 weeks following the infusion. To extend these findings, in vitro experiments were conducted on primary hippocampal neurons exposed to DA and/or the active D1/D2 DA receptor antagonist, flupentixol (Flux). DA inhibited the constitutive phosphorylation of ERK, Akt, GSK3, and CREB, while Flux restored these phosphorylation levels. Taken together, these findings indicate that DA depletion triggers an increase in plasticity-related signaling in the hippocampus, suggesting a possible compensatory mechanism that promotes activity-independent neuroplasticity following DA depletion.
Collapse
Affiliation(s)
- Bohye Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - Joong-Sun Kim
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| | - BuHyun Youn
- Department of Biological Science, Pusan National University, Busan, Republic of Korea
| | - Changjong Moon
- Department of Veterinary Anatomy and Animal Behavior, College of Veterinary Medicine and BK21 FOUR Program, Chonnam National University, Gwangju, Republic of Korea
| |
Collapse
|
13
|
Rizzo R, Wang JWJL, DePold Hohler A, Holsapple JW, Vaou OE, Ivanov PC. Dynamic networks of cortico-muscular interactions in sleep and neurodegenerative disorders. FRONTIERS IN NETWORK PHYSIOLOGY 2023; 3:1168677. [PMID: 37744179 PMCID: PMC10512188 DOI: 10.3389/fnetp.2023.1168677] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
The brain plays central role in regulating physiological systems, including the skeleto-muscular and locomotor system. Studies of cortico-muscular coordination have primarily focused on associations between movement tasks and dynamics of specific brain waves. However, the brain-muscle functional networks of synchronous coordination among brain waves and muscle activity rhythms that underlie locomotor control remain unknown. Here we address the following fundamental questions: what are the structure and dynamics of cortico-muscular networks; whether specific brain waves are main network mediators in locomotor control; how the hierarchical network organization relates to distinct physiological states under autonomic regulation such as wake, sleep, sleep stages; and how network dynamics are altered with neurodegenerative disorders. We study the interactions between all physiologically relevant brain waves across cortical locations with distinct rhythms in leg and chin muscle activity in healthy and Parkinson's disease (PD) subjects. Utilizing Network Physiology framework and time delay stability approach, we find that 1) each physiological state is characterized by a unique network of cortico-muscular interactions with specific hierarchical organization and profile of links strength; 2) particular brain waves play role as main mediators in cortico-muscular interactions during each state; 3) PD leads to muscle-specific breakdown of cortico-muscular networks, altering the sleep-stage stratification pattern in network connectivity and links strength. In healthy subjects cortico-muscular networks exhibit a pronounced stratification with stronger links during wake and light sleep, and weaker links during REM and deep sleep. In contrast, network interactions reorganize in PD with decline in connectivity and links strength during wake and non-REM sleep, and increase during REM, leading to markedly different stratification with gradual decline in network links strength from wake to REM, light and deep sleep. Further, we find that wake and sleep stages are characterized by specific links strength profiles, which are altered with PD, indicating disruption in the synchronous activity and network communication among brain waves and muscle rhythms. Our findings demonstrate the presence of previously unrecognized functional networks and basic principles of brain control of locomotion, with potential clinical implications for novel network-based biomarkers for early detection of Parkinson's and neurodegenerative disorders, movement, and sleep disorders.
Collapse
Affiliation(s)
- Rossella Rizzo
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Department of Engineering, University of Palermo, Palermo, Italy
| | - Jilin W. J. L. Wang
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
| | - Anna DePold Hohler
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - James W. Holsapple
- Department of Neurosurgery, Boston University School of Medicine, Boston, MA, United States
| | - Okeanis E. Vaou
- Department of Neurology, Steward St. Elizabeth’s Medical Center, Boston, MA, United States
- Department of Neurology, Boston University School of Medicine, Boston, MA, United States
| | - Plamen Ch. Ivanov
- Keck Laboratory for Network Physiology, Department of Physics, Boston University, Boston, MA, United States
- Harvard Medical School and Division of Sleep Medicine, Brigham and Women Hospital, Boston, MA, United States
- Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
14
|
Kromer JA, Bokil H, Tass PA. Synaptic network structure shapes cortically evoked spatio-temporal responses of STN and GPe neurons in a computational model. Front Neuroinform 2023; 17:1217786. [PMID: 37675246 PMCID: PMC10477454 DOI: 10.3389/fninf.2023.1217786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/31/2023] [Indexed: 09/08/2023] Open
Abstract
Introduction The basal ganglia (BG) are involved in motor control and play an essential role in movement disorders such as hemiballismus, dystonia, and Parkinson's disease. Neurons in the motor part of the BG respond to passive movement or stimulation of different body parts and to stimulation of corresponding cortical regions. Experimental evidence suggests that the BG are organized somatotopically, i.e., specific areas of the body are associated with specific regions in the BG nuclei. Signals related to the same body part that propagate along different pathways converge onto the same BG neurons, leading to characteristic shapes of cortically evoked responses. This suggests the existence of functional channels that allow for the processing of different motor commands or information related to different body parts in parallel. Neurological disorders such as Parkinson's disease are associated with pathological activity in the BG and impaired synaptic connectivity, together with reorganization of somatotopic maps. One hypothesis is that motor symptoms are, at least partly, caused by an impairment of network structure perturbing the organization of functional channels. Methods We developed a computational model of the STN-GPe circuit, a central part of the BG. By removing individual synaptic connections, we analyzed the contribution of signals propagating along different pathways to cortically evoked responses. We studied how evoked responses are affected by systematic changes in the network structure. To quantify the BG's organization in the form of functional channels, we suggested a two-site stimulation protocol. Results Our model reproduced the cortically evoked responses of STN and GPe neurons and the contributions of different pathways suggested by experimental studies. Cortical stimulation evokes spatio-temporal response patterns that are linked to the underlying synaptic network structure. Our two-site stimulation protocol yielded an approximate functional channel width. Discussion/conclusion The presented results provide insight into the organization of BG synaptic connectivity, which is important for the development of computational models. The synaptic network structure strongly affects the processing of cortical signals and may impact the generation of pathological rhythms. Our work may motivate further experiments to analyze the network structure of BG nuclei and their organization in functional channels.
Collapse
Affiliation(s)
- Justus A. Kromer
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| | - Hemant Bokil
- Boston Scientific Neuromodulation, Valencia, CA, United States
| | - Peter A. Tass
- Department of Neurosurgery, Stanford University, Stanford, CA, United States
| |
Collapse
|
15
|
Duchet B, Bick C, Byrne Á. Mean-Field Approximations With Adaptive Coupling for Networks With Spike-Timing-Dependent Plasticity. Neural Comput 2023; 35:1481-1528. [PMID: 37437202 PMCID: PMC10422128 DOI: 10.1162/neco_a_01601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Accepted: 04/26/2023] [Indexed: 07/14/2023]
Abstract
Understanding the effect of spike-timing-dependent plasticity (STDP) is key to elucidating how neural networks change over long timescales and to design interventions aimed at modulating such networks in neurological disorders. However, progress is restricted by the significant computational cost associated with simulating neural network models with STDP and by the lack of low-dimensional description that could provide analytical insights. Phase-difference-dependent plasticity (PDDP) rules approximate STDP in phase oscillator networks, which prescribe synaptic changes based on phase differences of neuron pairs rather than differences in spike timing. Here we construct mean-field approximations for phase oscillator networks with STDP to describe part of the phase space for this very high-dimensional system. We first show that single-harmonic PDDP rules can approximate a simple form of symmetric STDP, while multiharmonic rules are required to accurately approximate causal STDP. We then derive exact expressions for the evolution of the average PDDP coupling weight in terms of network synchrony. For adaptive networks of Kuramoto oscillators that form clusters, we formulate a family of low-dimensional descriptions based on the mean-field dynamics of each cluster and average coupling weights between and within clusters. Finally, we show that such a two-cluster mean-field model can be fitted to synthetic data to provide a low-dimensional approximation of a full adaptive network with symmetric STDP. Our framework represents a step toward a low-dimensional description of adaptive networks with STDP, and could for example inform the development of new therapies aimed at maximizing the long-lasting effects of brain stimulation.
Collapse
Affiliation(s)
- Benoit Duchet
- Nuffield Department of Clinical Neuroscience, University of Oxford, Oxford X3 9DU, U.K
- MRC Brain Network Dynamics Unit, University of Oxford, Oxford X1 3TH, U.K.
| | - Christian Bick
- Department of Mathematics, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, the Netherlands
- Amsterdam Neuroscience-Systems and Network Neuroscience, Amsterdam 1081 HV, the Netherlands
- Mathematical Institute, University of Oxford, Oxford X2 6GG, U.K.
| | - Áine Byrne
- School of Mathematics and Statistics, University College Dublin, Dublin D04 V1W8, Ireland
| |
Collapse
|
16
|
Sawicki J, Berner R, Loos SAM, Anvari M, Bader R, Barfuss W, Botta N, Brede N, Franović I, Gauthier DJ, Goldt S, Hajizadeh A, Hövel P, Karin O, Lorenz-Spreen P, Miehl C, Mölter J, Olmi S, Schöll E, Seif A, Tass PA, Volpe G, Yanchuk S, Kurths J. Perspectives on adaptive dynamical systems. CHAOS (WOODBURY, N.Y.) 2023; 33:071501. [PMID: 37486668 DOI: 10.1063/5.0147231] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 05/24/2023] [Indexed: 07/25/2023]
Abstract
Adaptivity is a dynamical feature that is omnipresent in nature, socio-economics, and technology. For example, adaptive couplings appear in various real-world systems, such as the power grid, social, and neural networks, and they form the backbone of closed-loop control strategies and machine learning algorithms. In this article, we provide an interdisciplinary perspective on adaptive systems. We reflect on the notion and terminology of adaptivity in different disciplines and discuss which role adaptivity plays for various fields. We highlight common open challenges and give perspectives on future research directions, looking to inspire interdisciplinary approaches.
Collapse
Affiliation(s)
- Jakub Sawicki
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Rico Berner
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Sarah A M Loos
- DAMTP, University of Cambridge, Wilberforce Road, Cambridge CB3 0WA, United Kingdom
| | - Mehrnaz Anvari
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Fraunhofer Institute for Algorithms and Scientific Computing, Schloss Birlinghoven, 53757 Sankt-Augustin, Germany
| | - Rolf Bader
- Institute of Systematic Musicology, University of Hamburg, Hamburg, Germany
| | - Wolfram Barfuss
- Transdisciplinary Research Area: Sustainable Futures, University of Bonn, 53113 Bonn, Germany
- Center for Development Research (ZEF), University of Bonn, 53113 Bonn, Germany
| | - Nicola Botta
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science and Engineering, Chalmers University of Technology, 412 96 Göteborg, Sweden
| | - Nuria Brede
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Computer Science, University of Potsdam, An der Bahn 2, 14476 Potsdam, Germany
| | - Igor Franović
- Scientific Computing Laboratory, Center for the Study of Complex Systems, Institute of Physics Belgrade, University of Belgrade, Pregrevica 118, 11080 Belgrade, Serbia
| | - Daniel J Gauthier
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Sebastian Goldt
- Department of Physics, International School of Advanced Studies (SISSA), Trieste, Italy
| | - Aida Hajizadeh
- Research Group Comparative Neuroscience, Leibniz Institute for Neurobiology, Magdeburg, Germany
| | - Philipp Hövel
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
| | - Omer Karin
- Department of Mathematics, Imperial College London, London SW7 2AZ, United Kingdom
| | - Philipp Lorenz-Spreen
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Lentzeallee 94, 14195 Berlin, Germany
| | - Christoph Miehl
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Jan Mölter
- Department of Mathematics, School of Computation, Information and Technology, Technical University of Munich, Boltzmannstraße 3, 85748 Garching bei München, Germany
| | - Simona Olmi
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Eckehard Schöll
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Akademie Basel, Fachhochschule Nordwestschweiz FHNW, Leonhardsstrasse 6, 4009 Basel, Switzerland
| | - Alireza Seif
- Pritzker School of Molecular Engineering, The University of Chicago, Chicago, Illinois 60637, USA
| | - Peter A Tass
- Department of Neurosurgery, Stanford University School of Medicine, Stanford, California 94304, USA
| | - Giovanni Volpe
- Department of Physics, University of Gothenburg, Gothenburg, Sweden
| | - Serhiy Yanchuk
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| | - Jürgen Kurths
- Potsdam Institute for Climate Impact Research, Telegrafenberg, 14473 Potsdam, Germany
- Department of Physics, Humboldt-Universität zu Berlin, Newtonstraße 15, 12489 Berlin, Germany
| |
Collapse
|
17
|
Asp AJ, Chintaluru Y, Hillan S, Lujan JL. Targeted neuroplasticity in spatiotemporally patterned invasive neuromodulation therapies for improving clinical outcomes. Front Neuroinform 2023; 17:1150157. [PMID: 37035718 PMCID: PMC10080034 DOI: 10.3389/fninf.2023.1150157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/06/2023] [Indexed: 04/11/2023] Open
Affiliation(s)
- Anders J. Asp
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - Yaswanth Chintaluru
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Neurology and Neurosurgery, University of Colorado Anschutz School of Medicine, Aurora, CO, United States
| | - Sydney Hillan
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN, United States
| | - J. Luis Lujan
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
18
|
Bahadori-Jahromi F, Salehi S, Madadi Asl M, Valizadeh A. Efficient suppression of parkinsonian beta oscillations in a closed-loop model of deep brain stimulation with amplitude modulation. Front Hum Neurosci 2023; 16:1013155. [PMID: 36776221 PMCID: PMC9908610 DOI: 10.3389/fnhum.2022.1013155] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 12/09/2022] [Indexed: 01/27/2023] Open
Abstract
Introduction Parkinson's disease (PD) is a movement disorder characterized by the pathological beta band (15-30 Hz) neural oscillations within the basal ganglia (BG). It is shown that the suppression of abnormal beta oscillations is correlated with the improvement of PD motor symptoms, which is a goal of standard therapies including deep brain stimulation (DBS). To overcome the stimulation-induced side effects and inefficiencies of conventional DBS (cDBS) and to reduce the administered stimulation current, closed-loop adaptive DBS (aDBS) techniques were developed. In this method, the frequency and/or amplitude of stimulation are modulated based on various disease biomarkers. Methods Here, by computational modeling of a cortico-BG-thalamic network in normal and PD conditions, we show that closed-loop aDBS of the subthalamic nucleus (STN) with amplitude modulation leads to a more effective suppression of pathological beta oscillations within the parkinsonian BG. Results Our results show that beta band neural oscillations are restored to their normal range and the reliability of the response of the thalamic neurons to motor cortex commands is retained due to aDBS with amplitude modulation. Furthermore, notably less stimulation current is administered during aDBS compared with cDBS due to a closed-loop control of stimulation amplitude based on the STN local field potential (LFP) beta activity. Discussion Efficient models of closed-loop stimulation may contribute to the clinical development of optimized aDBS techniques designed to reduce potential stimulation-induced side effects of cDBS in PD patients while leading to a better therapeutic outcome.
Collapse
Affiliation(s)
| | - Sina Salehi
- Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mojtaba Madadi Asl
- School of Biological Sciences, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
- Pasargad Institute for Advanced Innovative Solutions (PIAIS), Tehran, Iran
| |
Collapse
|
19
|
Kromer JA, Tass PA. Synaptic reshaping of plastic neuronal networks by periodic multichannel stimulation with single-pulse and burst stimuli. PLoS Comput Biol 2022; 18:e1010568. [PMID: 36327232 PMCID: PMC9632832 DOI: 10.1371/journal.pcbi.1010568] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/14/2022] [Indexed: 11/06/2022] Open
Abstract
Synaptic dysfunction is associated with several brain disorders, including Alzheimer's disease, Parkinson's disease (PD) and obsessive compulsive disorder (OCD). Utilizing synaptic plasticity, brain stimulation is capable of reshaping synaptic connectivity. This may pave the way for novel therapies that specifically counteract pathological synaptic connectivity. For instance, in PD, novel multichannel coordinated reset stimulation (CRS) was designed to counteract neuronal synchrony and down-regulate pathological synaptic connectivity. CRS was shown to entail long-lasting therapeutic aftereffects in PD patients and related animal models. This is in marked contrast to conventional deep brain stimulation (DBS) therapy, where PD symptoms return shortly after stimulation ceases. In the present paper, we study synaptic reshaping by periodic multichannel stimulation (PMCS) in networks of leaky integrate-and-fire (LIF) neurons with spike-timing-dependent plasticity (STDP). During PMCS, phase-shifted periodic stimulus trains are delivered to segregated neuronal subpopulations. Harnessing STDP, PMCS leads to changes of the synaptic network structure. We found that the PMCS-induced changes of the network structure depend on both the phase lags between stimuli and the shape of individual stimuli. Single-pulse stimuli and burst stimuli with low intraburst frequency down-regulate synapses between neurons receiving stimuli simultaneously. In contrast, burst stimuli with high intraburst frequency up-regulate these synapses. We derive theoretical approximations of the stimulation-induced network structure. This enables us to formulate stimulation strategies for inducing a variety of network structures. Our results provide testable hypotheses for future pre-clinical and clinical studies and suggest that periodic multichannel stimulation may be suitable for reshaping plastic neuronal networks to counteract pathological synaptic connectivity. Furthermore, we provide novel insight on how the stimulus type may affect the long-lasting outcome of conventional DBS. This may strongly impact parameter adjustment procedures for clinical DBS, which, so far, primarily focused on acute effects of stimulation.
Collapse
Affiliation(s)
- Justus A Kromer
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| | - Peter A Tass
- Department of Neurosurgery, Stanford University, Stanford, California, United States of America
| |
Collapse
|
20
|
Wang K, Wei A, Fu Y, Wang T, Gao X, Fu B, Zhu Y, Cui B, Zhu M. State-dependent modulation of thalamocortical oscillations by gamma light flicker with different frequencies, intensities, and duty cycles. Front Neuroinform 2022; 16:968907. [PMID: 36081653 PMCID: PMC9445583 DOI: 10.3389/fninf.2022.968907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
Rhythmic light flickers have emerged as useful tools to modulate cognition and rescue pathological oscillations related to neurological disorders by entrainment. However, a mechanistic understanding of the entrainment for different brain oscillatory states and light flicker parameters is lacking. To address this issue, we proposed a biophysical neural network model for thalamocortical oscillations (TCOs) and explored the stimulation effects depending on the thalamocortical oscillatory states and stimulation parameters (frequency, intensity, and duty cycle) using the proposed model and electrophysiology experiments. The proposed model generated alpha, beta, and gamma oscillatory states (with main oscillation frequences at 9, 25, and 35 Hz, respectively), which were successfully transmitted from the thalamus to the cortex. By applying light flicker stimulation, we found that the entrainment was state-dependent and it was more prone to induce entrainment if the flicker perturbation frequency was closer to the endogenous oscillatory frequency. In addition, endogenous oscillation would be accelerated, whereas low-frequency oscillatory power would be suppressed by gamma (30-50 Hz) flickers. Notably, the effects of intensity and duty cycle on entrainment were complex; a high intensity of light flicker did not mean high entrainment possibility, and duty cycles below 50% could induce entrainment easier than those above 50%. Further, we observed entrainment discontinuity during gamma flicker stimulations with different frequencies, attributable to the non-linear characteristics of the network oscillations. These results provide support for the experimental design and clinical applications of the modulation of TCOs by gamma (30-50 Hz) light flicker.
Collapse
Affiliation(s)
- Kun Wang
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Aili Wei
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yu Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Tianhui Wang
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Xiujie Gao
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Fu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Yingwen Zhu
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Bo Cui
- Department of Occupational Medicine, Tianjin Institute of Environmental and Operational Medicine, Tianjin, China
| | - Mengfu Zhu
- Institute of Medical Support Technology, Academy of Military Science of Chinese PLA, Tianjin, China
| |
Collapse
|
21
|
Madadi Asl M, Asadi A, Enayati J, Valizadeh A. Inhibitory Spike-Timing-Dependent Plasticity Can Account for Pathological Strengthening of Pallido-Subthalamic Synapses in Parkinson's Disease. Front Physiol 2022; 13:915626. [PMID: 35665225 PMCID: PMC9160312 DOI: 10.3389/fphys.2022.915626] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 04/29/2022] [Indexed: 01/26/2023] Open
Abstract
Parkinson's disease (PD) is a neurodegenerative brain disorder associated with dysfunction of the basal ganglia (BG) circuitry. Dopamine (DA) depletion in experimental PD models leads to the pathological strengthening of pallido-subthalamic synaptic connections, contributing to the emergence of abnormally synchronized neuronal activity in the external segment of the globus pallidus (GPe) and subthalamic nucleus (STN). Augmented GPe-STN transmission following loss of DA was attributed to heterosynaptic plasticity mechanisms induced by cortico-subthalamic inputs. However, synaptic plasticity may play a role in this process. Here, by employing computational modeling we show that assuming inhibitory spike-timing-dependent plasticity (iSTDP) at pallido-subthalamic synapses can account for pathological strengthening of pallido-subthalamic synapses in PD by further promoting correlated neuronal activity in the GPe-STN network. In addition, we show that GPe-STN transmission delays can shape bistable activity-connectivity states due to iSTDP, characterized by strong connectivity and strong synchronized activity (pathological states) as opposed to weak connectivity and desynchronized activity (physiological states). Our results may shed light on how abnormal reshaping of GPe-STN connectivity by synaptic plasticity during parkinsonism is related to the PD pathophysiology and contribute to the development of therapeutic brain stimulation techniques targeting plasticity-induced rewiring of network connectivity.
Collapse
Affiliation(s)
- Mojtaba Madadi Asl
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Atefeh Asadi
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| | - Jamil Enayati
- Physics Department, College of Education, University of Garmian, Kalar, Iraq
| | - Alireza Valizadeh
- Department of Physics, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan, Iran
| |
Collapse
|