1
|
Yakubovich S, Israeli-Korn S, Halperin O, Yahalom G, Hassin-Baer S, Zaidel A. Visual self-motion cues are impaired yet overweighted during visual-vestibular integration in Parkinson's disease. Brain Commun 2020; 2:fcaa035. [PMID: 32954293 PMCID: PMC7425426 DOI: 10.1093/braincomms/fcaa035] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 02/17/2020] [Accepted: 03/11/2020] [Indexed: 11/25/2022] Open
Abstract
Parkinson's disease is prototypically a movement disorder. Although perceptual and motor functions are highly interdependent, much less is known about perceptual deficits in Parkinson's disease, which are less observable by nature, and might go unnoticed if not tested directly. It is therefore imperative to seek and identify these, to fully understand the challenges facing patients with Parkinson's disease. Also, perceptual deficits may be related to motor symptoms. Posture, gait and balance, affected in Parkinson's disease, rely on veridical perception of one's own motion (self-motion) in space. Yet it is not known whether self-motion perception is impaired in Parkinson's disease. Using a well-established multisensory paradigm of heading discrimination (that has not been previously applied to Parkinson's disease), we tested unisensory visual and vestibular self-motion perception, as well as multisensory integration of visual and vestibular cues, in 19 Parkinson's disease, 23 healthy age-matched and 20 healthy young-adult participants. After experiencing vestibular (on a motion platform), visual (optic flow) or multisensory (combined visual-vestibular) self-motion stimuli at various headings, participants reported whether their perceived heading was to the right or left of straight ahead. Parkinson's disease participants and age-matched controls were tested twice (Parkinson's disease participants on and off medication). Parkinson's disease participants demonstrated significantly impaired visual self-motion perception compared with age-matched controls on both visits, irrespective of medication status. Young controls performed slightly (but not significantly) better than age-matched controls and significantly better than the Parkinson's disease group. The visual self-motion perception impairment in Parkinson's disease correlated significantly with clinical disease severity. By contrast, vestibular performance was unimpaired in Parkinson's disease. Remarkably, despite impaired visual self-motion perception, Parkinson's disease participants significantly overweighted the visual cues during multisensory (visual-vestibular ) integration (compared with Bayesian predictions of optimal integration) and significantly more than controls. These findings indicate that self-motion perception in Parkinson's disease is affected by impaired visual cues and by suboptimal visual-vestibular integration (overweighting of visual cues). Notably, vestibular self-motion perception was unimpaired. Thus, visual self-motion perception is specifically impaired in early-stage Parkinson's disease. This can impact Parkinson's disease diagnosis and subtyping. Overweighting of visual cues could reflect a general multisensory integration deficit in Parkinson's disease, or specific overestimation of visual cue reliability. Finally, impaired self-motion perception in Parkinson's disease may contribute to impaired balance and gait control. Future investigation into this connection might open up new avenues of alternative therapies to better treat these difficult symptoms.
Collapse
Affiliation(s)
- Sol Yakubovich
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Simon Israeli-Korn
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- The Neurology and Neurosurgery Department, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Orly Halperin
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| | - Gilad Yahalom
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- Department of Neurology, Movement Disorders Clinic, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
| | - Sharon Hassin-Baer
- Department of Neurology, Movement Disorders Institute, Sheba Medical Center, Tel Hashomer, Ramat Gan 5266202, Israel
- The Neurology and Neurosurgery Department, The Sackler School of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Adam Zaidel
- Gonda Multidisciplinary Brain Research Center, Bar Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
2
|
Meder D, Herz DM, Rowe JB, Lehéricy S, Siebner HR. The role of dopamine in the brain - lessons learned from Parkinson's disease. Neuroimage 2019; 190:79-93. [DOI: 10.1016/j.neuroimage.2018.11.021] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 10/25/2018] [Accepted: 11/16/2018] [Indexed: 11/30/2022] Open
|
3
|
Chen J, Ho SL, Lee TMC, Chang RSK, Pang SYY, Li L. Visuomotor control in patients with Parkinson's disease. Neuropsychologia 2016; 80:102-114. [DOI: 10.1016/j.neuropsychologia.2015.10.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 10/13/2015] [Accepted: 10/30/2015] [Indexed: 11/25/2022]
|
4
|
Cerasa A, Koch G, Fasano A, Morgante F. Future scenarios for levodopa-induced dyskinesias in Parkinson's disease. Front Neurol 2015; 6:76. [PMID: 25883587 PMCID: PMC4381644 DOI: 10.3389/fneur.2015.00076] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Accepted: 03/19/2015] [Indexed: 11/13/2022] Open
Affiliation(s)
| | - Giacomo Koch
- Laboratorio di Neurologia Clinica e Comportamentale, Fondazione Santa Lucia IRCCS , Rome , Italy
| | - Alfonso Fasano
- Morton and Gloria Shulman Movement Disorders Clinic and the Edmond J. Safra Program in Parkinson's Disease, Division of Neurology, Toronto Western Hospital, UHN, University of Toronto , Toronto, ON , Canada
| | - Francesca Morgante
- Dipartimento di Medicina Clinica e Sperimentale, Università di Messina , Messina , Italy
| |
Collapse
|
5
|
Schaeffer E, Maetzler W, Liepelt-Scarfone I, Sass C, Reilmann R, Berg D. Quantitative motor assessment of dyskinesias in Parkinson’s disease. J Neural Transm (Vienna) 2015; 122:1271-8. [DOI: 10.1007/s00702-015-1383-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 02/13/2015] [Indexed: 10/23/2022]
|