1
|
von Arx C, Calderaio C, Calabrese A, Marciano B, Martinelli C, Di Lauro V, Cerillo I, Cianniello D, De Laurentiis M. The multidisciplinary management of HER2-positive breast cancer brain metastases: from new biological insights to future therapeutic options. Front Oncol 2024; 14:1447508. [PMID: 39749036 PMCID: PMC11693720 DOI: 10.3389/fonc.2024.1447508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 12/02/2024] [Indexed: 01/04/2025] Open
Abstract
The advent and success of new drugs for treating HER2-positive metastatic breast cancer has led to a constant improvement in disease and progression-free survival as well as overall survival. Despite these advantages, the overall survival and quality of life of patients with HER2-positive breast cancer brain metastases are significantly worse than the ones of patients with HER2-positive breast cancer metastases outside the brain. For this reason, prevention and treatment of brain metastasis remain a major clinical challenge and the keys to further improving the clinical and survival outcomes of HER2-positive breast cancer patients. This review discusses the etiopathogenesis of brain metastasis, the currently available treatments, and the future perspective on new treatment strategies and diagnostic tools.
Collapse
Affiliation(s)
- Claudia von Arx
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Calderaio
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Alessandra Calabrese
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Benedetta Marciano
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Claudia Martinelli
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
- Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Vincenzo Di Lauro
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Ivana Cerillo
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Daniela Cianniello
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
| | - Michelino De Laurentiis
- Department of Breast and Thoracic Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale, Naples, Italy
- Clinical and Translational Oncology, Scuola Superiore Meridionale (SSM), Naples, Italy
| |
Collapse
|
2
|
Seyhan AA. Circulating Liquid Biopsy Biomarkers in Glioblastoma: Advances and Challenges. Int J Mol Sci 2024; 25:7974. [PMID: 39063215 PMCID: PMC11277426 DOI: 10.3390/ijms25147974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Gliomas, particularly glioblastoma (GBM), represent the most prevalent and aggressive tumors of the central nervous system (CNS). Despite recent treatment advancements, patient survival rates remain low. The diagnosis of GBM traditionally relies on neuroimaging methods such as magnetic resonance imaging (MRI) or computed tomography (CT) scans and postoperative confirmation via histopathological and molecular analysis. Imaging techniques struggle to differentiate between tumor progression and treatment-related changes, leading to potential misinterpretation and treatment delays. Similarly, tissue biopsies, while informative, are invasive and not suitable for monitoring ongoing treatments. These challenges have led to the emergence of liquid biopsy, particularly through blood samples, as a promising alternative for GBM diagnosis and monitoring. Presently, blood and cerebrospinal fluid (CSF) sampling offers a minimally invasive means of obtaining tumor-related information to guide therapy. The idea that blood or any biofluid tests can be used to screen many cancer types has huge potential. Tumors release various components into the bloodstream or other biofluids, including cell-free nucleic acids such as microRNAs (miRNAs), circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), proteins, extracellular vesicles (EVs) or exosomes, metabolites, and other factors. These factors have been shown to cross the blood-brain barrier (BBB), presenting an opportunity for the minimally invasive monitoring of GBM as well as for the real-time assessment of distinct genetic, epigenetic, transcriptomic, proteomic, and metabolomic changes associated with brain tumors. Despite their potential, the clinical utility of liquid biopsy-based circulating biomarkers is somewhat constrained by limitations such as the absence of standardized methodologies for blood or CSF collection, analyte extraction, analysis methods, and small cohort sizes. Additionally, tissue biopsies offer more precise insights into tumor morphology and the microenvironment. Therefore, the objective of a liquid biopsy should be to complement and enhance the diagnostic accuracy and monitoring of GBM patients by providing additional information alongside traditional tissue biopsies. Moreover, utilizing a combination of diverse biomarker types may enhance clinical effectiveness compared to solely relying on one biomarker category, potentially improving diagnostic sensitivity and specificity and addressing some of the existing limitations associated with liquid biomarkers for GBM. This review presents an overview of the latest research on circulating biomarkers found in GBM blood or CSF samples, discusses their potential as diagnostic, predictive, and prognostic indicators, and discusses associated challenges and future perspectives.
Collapse
Affiliation(s)
- Attila A. Seyhan
- Laboratory of Translational Oncology and Experimental Cancer Therapeutics, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA;
- Department of Pathology and Laboratory Medicine, Warren Alpert Medical School, Brown University, Providence, RI 02912, USA
- Joint Program in Cancer Biology, Lifespan Health System and Brown University, Providence, RI 02912, USA
- Legorreta Cancer Center, Brown University, Providence, RI 02912, USA
| |
Collapse
|
3
|
Ren F, Fei Q, Qiu K, Zhang Y, Zhang H, Sun L. Liquid biopsy techniques and lung cancer: diagnosis, monitoring and evaluation. J Exp Clin Cancer Res 2024; 43:96. [PMID: 38561776 PMCID: PMC10985944 DOI: 10.1186/s13046-024-03026-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/24/2024] [Indexed: 04/04/2024] Open
Abstract
Lung cancer stands as the most prevalent form of cancer globally, posing a significant threat to human well-being. Due to the lack of effective and accurate early diagnostic methods, many patients are diagnosed with advanced lung cancer. Although surgical resection is still a potential means of eradicating lung cancer, patients with advanced lung cancer usually miss the best chance for surgical treatment, and even after surgical resection patients may still experience tumor recurrence. Additionally, chemotherapy, the mainstay of treatment for patients with advanced lung cancer, has the potential to be chemo-resistant, resulting in poor clinical outcomes. The emergence of liquid biopsies has garnered considerable attention owing to their noninvasive nature and the ability for continuous sampling. Technological advancements have propelled circulating tumor cells (CTCs), circulating tumor DNA (ctDNA), extracellular vesicles (EVs), tumor metabolites, tumor-educated platelets (TEPs), and tumor-associated antigens (TAA) to the forefront as key liquid biopsy biomarkers, demonstrating intriguing and encouraging results for early diagnosis and prognostic evaluation of lung cancer. This review provides an overview of molecular biomarkers and assays utilized in liquid biopsies for lung cancer, encompassing CTCs, ctDNA, non-coding RNA (ncRNA), EVs, tumor metabolites, TAAs and TEPs. Furthermore, we expound on the practical applications of liquid biopsies, including early diagnosis, treatment response monitoring, prognostic evaluation, and recurrence monitoring in the context of lung cancer.
Collapse
Affiliation(s)
- Fei Ren
- Department of Geriatrics, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Qian Fei
- Department of Oncology, Shengjing Hospital of China Medical University, Shen Yang, 110000, China
| | - Kun Qiu
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Yuanjie Zhang
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China
| | - Heyang Zhang
- Department of Hematology, The First Hospital of China Medical University, Shen Yang, 110000, China.
| | - Lei Sun
- Thoracic Surgery, The First Hospital of China Medical University, Shen Yang, 110000, China.
| |
Collapse
|
4
|
Trivedi R, Bhat KP. Liquid biopsy: creating opportunities in brain space. Br J Cancer 2023; 129:1727-1746. [PMID: 37752289 PMCID: PMC10667495 DOI: 10.1038/s41416-023-02446-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/10/2023] [Accepted: 09/15/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, liquid biopsy has emerged as an alternative method to diagnose and monitor tumors. Compared to classical tissue biopsy procedures, liquid biopsy facilitates the repetitive collection of diverse cellular and acellular analytes from various biofluids in a non/minimally invasive manner. This strategy is of greater significance for high-grade brain malignancies such as glioblastoma as the quantity and accessibility of tumors are limited, and there are collateral risks of compromised life quality coupled with surgical interventions. Currently, blood and cerebrospinal fluid (CSF) are the most common biofluids used to collect circulating cells and biomolecules of tumor origin. These liquid biopsy analytes have created opportunities for real-time investigations of distinct genetic, epigenetic, transcriptomics, proteomics, and metabolomics alterations associated with brain tumors. This review describes different classes of liquid biopsy biomarkers present in the biofluids of brain tumor patients. Moreover, an overview of the liquid biopsy applications, challenges, recent technological advances, and clinical trials in the brain have also been provided.
Collapse
Affiliation(s)
- Rakesh Trivedi
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Krishna P Bhat
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
5
|
Individualized Multimodal Immunotherapy for Adults with IDH1 Wild-Type GBM: A Single Institute Experience. Cancers (Basel) 2023; 15:cancers15041194. [PMID: 36831536 PMCID: PMC9954396 DOI: 10.3390/cancers15041194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/08/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
Synergistic activity between maintenance temozolomide (TMZm) and individualized multimodal immunotherapy (IMI) during/after first-line treatment has been suggested to improve the overall survival (OS) of adults with IDH1 wild-type MGMT promoter-unmethylated (unmeth) GBM. We expand the data and include the OS of MGMT promoter-methylated (meth) adults with GBM. Unmeth (10 f, 18 m) and meth (12 f, 10 m) patients treated between 27 May 2015 and 1 January 2022 were analyzed retrospectively. There were no differences in age (median: 48 y) or Karnofsky performance index (median: 80). The IMI consisted of 5-day immunogenic cell death (ICD) therapies during TMZm: Newcastle disease virus (NDV) bolus injections and sessions of modulated electrohyperthermia (mEHT); subsequent active specific immunotherapy: dendritic cell (DC) vaccines plus modulatory immunotherapy; and maintenance ICD therapy. There were no differences in the number of vaccines (median: 2), total number of DCs (median: 25.6 × 106), number of NDV injections (median: 31), and number of mEHT sessions (median: 28) between both groups. The median OS of 28 unmeth patients was 22 m (2y-OS: 39%), confirming previous results. OS of 22 meth patients was significantly better (p = 0.0414) with 38 m (2y-OS: 81%). There were no major treatment-related adverse reactions. The addition of IMI during/after standard of care should be prospectively explored.
Collapse
|
6
|
Luan XZ, Wang HR, Xiang W, Li SJ, He H, Chen LG, Wang JM, Zhou J. Extracranial multiorgan metastasis from primary glioblastoma: A case report. World J Clin Cases 2021; 9:10300-10307. [PMID: 34904103 PMCID: PMC8638031 DOI: 10.12998/wjcc.v9.i33.10300] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/31/2021] [Accepted: 09/16/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma has a high degree of malignancy and poor prognosis. It is common to have in situ recurrence and intracranial metastasis, while extracranial metastasis is rare, and extracranial multiorgan metastasis is extremely rare. We report a case of glioblastoma with extracranial multiorgan metastasis, which will strengthen clinicians’ attention to the extracranial metastasis of glioblastoma and its treatment.
CASE SUMMARY A male patient visited our hospital for treatment of dizziness and headache. Magnetic resonance imaging of the brain revealed a space-occupying lesion in the right temporoparietal occipital region. Chest computed tomography and abdominal ultrasound were normal, and no space-occupying lesions were observed in other organs of the body. The patient underwent surgery and diagnosed with glioblastoma. Postoperative concurrent radiotherapy and chemotherapy were completed. During the follow-up, the tumor was found to have metastasized to the scalp and neck, and a second tumor resection was performed. Postoperative follow-up revealed extracranial metastases to multiple extracranial organs including skull, scalp, ribs, spine, liver and lung. His family members refused further treatment, and requested only symptomatic treatment such as pain relief, and the patient died of systemic multiple organ failure. Survival time from diagnosis to death was 13 mo and from extracranial metastasis to death was 6 mo.
CONCLUSION Glioblastoma extracranial metastasis is extremely rare, clinicians should always pay attention to its existence. The mechanism of glioblastoma extracranial metastasis is still unclear, and genetic and molecular studies are required.
Collapse
Affiliation(s)
- Xing-Zhao Luan
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Hao-Run Wang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Wei Xiang
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Shen-Jie Li
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Haiping He
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Li-Gang Chen
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jian-Mei Wang
- Department of Pathology, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
| | - Jie Zhou
- Department of Neurosurgery, The Affiliated Hospital of Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Sichuan Clinical Research Center for Neurosurgery, Southwest Medical University, Luzhou 646000, Sichuan Province, China
- Academician (Expert) Workstation of Sichuan Province, Southwest Medical University, Luzhou 646000, Sichuan Province, China
| |
Collapse
|
7
|
Zhang W, Qin T, Yang Z, Yin L, Zhao C, Feng L, Lin S, Liu B, Cheng S, Zhang K. Telomerase-positive circulating tumor cells are associated with poor prognosis via a neutrophil-mediated inflammatory immune environment in glioma. BMC Med 2021; 19:277. [PMID: 34763698 PMCID: PMC8588721 DOI: 10.1186/s12916-021-02138-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Gliomas are the most common aggressive cancer in the central nervous system. Considering the difficulty in monitoring glioma response and progression, an approach is needed to evaluate the progression or survival of patients with glioma. We propose an application to facilitate clinical detection and treatment monitoring in glioma patients by using telomerase-positive circulating tumor cells (CTCs) and to further evaluate the relationship between the immune microenvironment and CTCs in glioma patients. METHODS From October 2014 to June 2017, 106 patients newly diagnosed with glioma were enrolled. We used the telomerase reverse transcriptase CTC detection method to detect and analyze the CTC statuses of glioma patients before and after surgery. FlowSight and FISH confirmed the CTCs detected by the telomerase-based method. To verify the correlation between CTCs and the immune response, peripheral white blood cell RNA sequencing was performed. RESULTS CTCs were common in the peripheral blood of glioma patients and were not correlated with the pathological classification or grade of patients. The results showed that the presence of postoperative CTCs but not preoperative CTCs in glioma patients was a poor prognostic factor. The level of postoperative CTCs, which predicts a poor prognosis after surgery, may be associated with neutrophils. RNA sequencing suggested that postoperative CTCs were positively correlated with innate immune responses, especially the activation of neutrophils and the generation of neutrophil extracellular traps, but negatively correlated with the cytotoxic response. CONCLUSIONS Our results showed that telomerase-positive CTCs can predict a poor prognosis of patients with glioma. Our results also showed a correlation between CTCs and the immune macroenvironment, which provides a new perspective for the treatment of glioma.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Immunology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tiancheng Qin
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhenrong Yang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Liyuan Yin
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Changyun Zhao
- Chongqing Diatech Biotechnological Limited Company, Chongqing, 400020, China
| | - Lin Feng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Song Lin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China.
- National Clinical Research Center for Neurological Diseases, Center of Brain Tumor, Beijing Institute for Brain Disorders and Beijing Key Laboratory of Brain Tumor, Beijing, 100070, China.
| | - Binlei Liu
- National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Bioengineering, Hubei University of Technology, Wuhan, 430068, China.
| | - Shujun Cheng
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Kaitai Zhang
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
8
|
Bunda S, Zuccato JA, Voisin MR, Wang JZ, Nassiri F, Patil V, Mansouri S, Zadeh G. Liquid Biomarkers for Improved Diagnosis and Classification of CNS Tumors. Int J Mol Sci 2021; 22:4548. [PMID: 33925295 PMCID: PMC8123653 DOI: 10.3390/ijms22094548] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/15/2021] [Accepted: 04/22/2021] [Indexed: 12/22/2022] Open
Abstract
Liquid biopsy, as a non-invasive technique for cancer diagnosis, has emerged as a major step forward in conquering tumors. Current practice in diagnosis of central nervous system (CNS) tumors involves invasive acquisition of tumor biopsy upon detection of tumor on neuroimaging. Liquid biopsy enables non-invasive, rapid, precise and, in particular, real-time cancer detection, prognosis and treatment monitoring, especially for CNS tumors. This approach can also uncover the heterogeneity of these tumors and will likely replace tissue biopsy in the future. Key components of liquid biopsy mainly include circulating tumor cells (CTC), circulating tumor nucleic acids (ctDNA, miRNA) and exosomes and samples can be obtained from the cerebrospinal fluid, plasma and serum of patients with CNS malignancies. This review covers current progress in application of liquid biopsies for diagnosis and monitoring of CNS malignancies.
Collapse
Affiliation(s)
- Severa Bunda
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Jeffrey A. Zuccato
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Mathew R. Voisin
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Justin Z. Wang
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Farshad Nassiri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| | - Vikas Patil
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Sheila Mansouri
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
| | - Gelareh Zadeh
- MacFeeters-Hamilton Center for Neuro-Oncology Research, 4-305 Princess Margaret Cancer Research Tower, 101 College Street, Toronto, ON M5G 1L7, Canada; (S.B.); (J.A.Z.); (M.R.V.); (J.Z.W.); (F.N.); (V.P.); (S.M.)
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON M5T 2S8, Canada
| |
Collapse
|
9
|
Sabedot T, Malta T, Snyder J, Nelson K, Wells M, deCarvalho A, Mukherjee A, Chitale D, Mosella M, Sokolov A, Asmaro K, Robin A, Rosenblum M, Mikkelsen T, Rock J, Poisson L, Lee I, Walbert T, Kalkanis S, Iavarone A, Castro AV, Noushmehr H. A serum-based DNA methylation assay provides accurate detection of glioma. Neuro Oncol 2021; 23:1494-1508. [PMID: 33560371 DOI: 10.1093/neuonc/noab023] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The detection of somatic mutations in cell-free DNA (cfDNA) from liquid biopsy has emerged as a non-invasive tool to monitor the follow-up of cancer patients. However, the significance of cfDNA clinical utility remains uncertain in patients with brain tumors, primarily because of the limited sensitivity cfDNA has to detect real tumor-specific somatic mutations. This unresolved challenge has prevented accurate follow-up of glioma patients with non-invasive approaches. METHODS Genome-wide DNA methylation profiling of tumor tissue and serum cell-free DNA of glioma patients. RESULTS Here, we developed a non-invasive approach to profile the DNA methylation status in the serum of patients with gliomas and identified a cfDNA-derived methylation signature that is associated with the presence of gliomas and related immune features. By testing the signature in an independent discovery and validation cohorts, we developed and verified a score metric (the "glioma epigenetic liquid biopsy score" or GeLB) that optimally distinguished patients with or without glioma (sensitivity: 100%, specificity: 97.78%). Furthermore, we found that changes in GeLB score reflected clinicopathological changes during surveillance (e.g., progression, pseudoprogression or response to standard or experimental treatment). CONCLUSIONS Our results suggest that the GeLB score can be used as a complementary approach to diagnose and follow up patients with glioma.
Collapse
Affiliation(s)
- Thais Sabedot
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Tathiane Malta
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - James Snyder
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA.,Department of Neuro Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Kevin Nelson
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Michael Wells
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Ana deCarvalho
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Abir Mukherjee
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Dhan Chitale
- Department of Pathology, Henry Ford Health System, Detroit, MI, USA
| | - Maritza Mosella
- Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Artem Sokolov
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Karam Asmaro
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Adam Robin
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Michael Rosenblum
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Tom Mikkelsen
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Jack Rock
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Laila Poisson
- Department of Biostatistics, Henry Ford Health System, Detroit, MI, USA
| | - Ian Lee
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Tobias Walbert
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Department of Neuro Oncology, Henry Ford Health System, Detroit, MI, USA
| | - Steven Kalkanis
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA
| | - Antonio Iavarone
- Institute for Cancer Genetics, Department of Pathology and Cell Biology, Department of Neurology, Columbia University Medical Center, New York, USA
| | - Ana Valeria Castro
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| | - Houtan Noushmehr
- Department of Neurosurgery, Hermelin Brain Tumor Center, Henry Ford Health System, Detroit, MI, USA.,Omics Laboratory, Henry Ford Health System, Detroit, MI, USA
| |
Collapse
|
10
|
Zhao Y, Jiang F, Wang Q, Wang B, Han Y, Yang J, Wang J, Wang K, Ao J, Guo X, Liang X, Ma J. Cytoplasm protein GFAP magnetic beads construction and application as cell separation target for brain tumors. J Nanobiotechnology 2020; 18:169. [PMID: 33208163 PMCID: PMC7673097 DOI: 10.1186/s12951-020-00729-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 11/05/2020] [Indexed: 01/15/2023] Open
Abstract
Background It is very important to develop a highly efficient cerebrospinal fluid (CSF) detection system with diagnosis and prediction function, for which the detection of circulating tumor cells (CTCs) in CSF is a good choice. In contrast to the past use of epithelial EpCAM as CTCs separation target, a cytoplasm protein of GFAP antibody was first selected to construct highly-sensitive immunomagnetic liposome beads (IMLs). The validation and efficiency of this system in capturing CTCs for brain tumors were measured both in vitro and in vivo. The associations between the numbers of CTCs in patients with their clinical characteristics were further analyzed. Results Our data show that CTCs can be successfully isolated from CSF and blood samples from 32 children with brain tumors. The numbers of CTCs in CSF were significantly higher than those in blood. The level of CTCs in CSF was related to the type and location of the tumor rather than its stage. The higher the CTCs number is, the more possibly the patient will suffer from poor prognosis. Genetic testing in GFAP CTC-DNA by sanger sequencing, q-PCR and NGS methods indicated that the isolated CTCs (GFAP+/EGFR+) are the related tumor cell. For example, the high expression of NPR3 gene in CSF CTCs was consistent with that of tumor tissue. Conclusions The results indicated that GFAP-IML CTCs isolation system, combined with an EGFR immunofluorescence assay of antitumor marker, can serve as a brand-new method for the identification of CTCs for brain tumors. Via lumbar puncture, a minimally invasive procedure, this technique may play a significant role in the clinical diagnosis and drug evaluation of brain tumors.![]()
Collapse
Affiliation(s)
- Yang Zhao
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Feng Jiang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Qinhua Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Baocheng Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yipeng Han
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jian Yang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Jiajia Wang
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China
| | - Kai Wang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Junping Ao
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China
| | - Xunxiang Guo
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaofei Liang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai Cancer Institute, Renji Hospital, Shanghai Jiaotong University School of Medicine, No. 25/Ln 2200 Xie Tu Road, Shanghai, 200032, China. .,Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jie Ma
- Department of Pediatric Neurosurgery, Shanghai Xin Hua Hospital Affiliated To Shanghai Jiaotong University, School of Medicine, No. 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
11
|
Jin KT, Chen XY, Lan HR, Wang SB, Ying XJ, Abdi SM, Wang W, Hu ZM, Mou XZ. Current progress in the clinical use of circulating tumor cells as prognostic biomarkers. Cancer Cytopathol 2019; 127:739-749. [PMID: 31589381 DOI: 10.1002/cncy.22189] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/11/2022]
Abstract
The process of metastasis is characterized by the shedding of tumor cells into the bloodstream, where they are transported to other parts of the body to seed new tumors. These cells, known as circulating tumor cells (CTCs), have the potential to reveal much about an individual cancer case, and theoretically can aid in the prediction of outcomes and design of precision treatments. Recent advances in technology now allow for the robust and reproducible characterization of CTCs from a simple blood draw. Both the number of circulating cells and important molecular characteristics correlated with clinical phenotypes such as drug resistance can be obtained and used for real-time prognostic analysis. Molecular characterization can provide a snapshot of the activity of the main tumor (serving as a "liquid biopsy") and early warnings concerning changes such as the development of resistance, and aid in predicting the efficacy of different therapeutic approaches for treatment optimization. Herein, the authors review the current clinical use of CTCs as prognostic biomarkers for several different cancers. The quantification of CTCs can lead to more accurate staging and decision making regarding options such as adjuvant chemotherapy.
Collapse
Affiliation(s)
- Ke-Tao Jin
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Xiao-Yi Chen
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Huan-Rong Lan
- Department of Breast and Thyroid Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Shi-Bing Wang
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Jiang Ying
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Siyad Mohamed Abdi
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Wei Wang
- Department of Colorectal Surgery, Shaoxing People's Hospital, Zhejiang University School of Medicine, Shaoxing, China
| | - Zhi-Ming Hu
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Department of Hepatobiliary and Pancreatic Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Xiao-Zhou Mou
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China.,Clinical Research Institute, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, China
| |
Collapse
|
12
|
Current and Future Trends on Diagnosis and Prognosis of Glioblastoma: From Molecular Biology to Proteomics. Cells 2019; 8:cells8080863. [PMID: 31405017 PMCID: PMC6721640 DOI: 10.3390/cells8080863] [Citation(s) in RCA: 164] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 02/07/2023] Open
Abstract
Glioblastoma multiforme is the most aggressive malignant tumor of the central nervous system. Due to the absence of effective pharmacological and surgical treatments, the identification of early diagnostic and prognostic biomarkers is of key importance to improve the survival rate of patients and to develop new personalized treatments. On these bases, the aim of this review article is to summarize the current knowledge regarding the application of molecular biology and proteomics techniques for the identification of novel biomarkers through the analysis of different biological samples obtained from glioblastoma patients, including DNA, microRNAs, proteins, small molecules, circulating tumor cells, extracellular vesicles, etc. Both benefits and pitfalls of molecular biology and proteomics analyses are discussed, including the different mass spectrometry-based analytical techniques, highlighting how these investigation strategies are powerful tools to study the biology of glioblastoma, as well as to develop advanced methods for the management of this pathology.
Collapse
|
13
|
Chistiakov DA, Chekhonin VP. Circulating tumor cells and their advances to promote cancer metastasis and relapse, with focus on glioblastoma multiforme. Exp Mol Pathol 2018; 105:166-174. [DOI: 10.1016/j.yexmp.2018.07.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 07/01/2018] [Accepted: 07/16/2018] [Indexed: 12/12/2022]
|
14
|
A Label Free Disposable Device for Rapid Isolation of Rare Tumor Cells from Blood by Ultrasounds. MICROMACHINES 2018; 9:mi9030129. [PMID: 30424062 PMCID: PMC6187722 DOI: 10.3390/mi9030129] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/04/2018] [Accepted: 03/12/2018] [Indexed: 01/07/2023]
Abstract
The use of blood samples as liquid biopsy is a label-free method for cancer diagnosis that offers benefits over traditional invasive biopsy techniques. Cell sorting by acoustic waves offers a means to separate rare cells from blood samples based on their physical properties in a label-free, contactless and biocompatible manner. Herein, we describe a flow-through separation approach that provides an efficient separation of tumor cells (TCs) from white blood cells (WBCs) in a microfluidic device, “THINUS-Chip” (Thin-Ultrasonic-Separator-Chip), actuated by ultrasounds. We introduce for the first time the concept of plate acoustic waves (PAW) applied to acoustophoresis as a new strategy. It lies in the geometrical chip design: different to other microseparators based on either bulk acoustic waves (BAW) or surface waves (SAW, SSAW and tSAW), it allows the use of polymeric materials without restrictions in the frequency of work. We demonstrate its ability to perform high-throughput isolation of TCs from WBCs, allowing a recovery rate of 84% ± 8% of TCs with a purity higher than 80% and combined viability of 85% at a flow rate of 80 μL/min (4.8 mL/h). The THINUS-Chip performs cell fractionation with low-cost manufacturing processes, opening the door to possible easy printing fabrication.
Collapse
|
15
|
Rühle PF, Goerig N, Wunderlich R, Fietkau R, Gaipl US, Strnad A, Frey B. Modulations in the Peripheral Immune System of Glioblastoma Patient Is Connected to Therapy and Tumor Progression-A Case Report from the IMMO-GLIO-01 Trial. Front Neurol 2017; 8:296. [PMID: 28690586 PMCID: PMC5481307 DOI: 10.3389/fneur.2017.00296] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 06/09/2017] [Indexed: 12/20/2022] Open
Abstract
Immune responses are important for efficient tumor elimination, also in immune privileged organs such as the brain. Fostering antitumor immunity has therefore become an important challenge in cancer therapy. This cannot only be achieved by immunotherapies as already standard treatments such as radiotherapy and chemotherapy modify the immune system. Consequently, the understanding of how the tumor, the tumor microenvironment, and immune system are modulated by cancer therapy is required for prognosis, prediction, and therapy adaption. The prospective, explorative, and observational IMMO-GLIO-01 trial was initiated to examine the detailed immune status and its modulation of about 50 patients suffering from primary glioblastoma multiforme (GBM) or anaplastic astrocytoma during standard therapy. Prior to the study, a flow cytometry-based assay was established allowing the analysis of 34 immune cell subsets and their activation state. Here, we present the case of the first and longest accompanied patient, a 53-year-old woman suffering from GBM in the front left lobe. In context of tumor progression and therapy, we describe the modulation of the peripheral immune status over 17 months. Distinct immune modulations that were connected to therapy response or tumor progression were identified. Inter alia, a shift of CD4:CD8 ratio was observed that correlated with tumor progression. Twice we observed a unique composition of peripheral immune cells that correlated with tumor progression. Thus, following up these immune modulations in a closely-meshed manner is of high prognostic and predictive relevance for supporting personalized therapy and increasing therapy success. Clinical Trial registration: ClinicalTrials.gov, identifier NCT02022384 (registered retrospectively on 13th of December, 2013).
Collapse
Affiliation(s)
- Paul F Rühle
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Nicole Goerig
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Roland Wunderlich
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany.,Research Unit of Radiation Cytogenetics, Helmholtz Center Munich, Neuherberg, Germany
| | - Rainer Fietkau
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Udo S Gaipl
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Annedore Strnad
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Benjamin Frey
- Department of Radiation Oncology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
16
|
Nurwidya F, Zaini J, Putra AC, Andarini S, Hudoyo A, Syahruddin E, Yunus F. Circulating Tumor Cell and Cell-free Circulating Tumor DNA in Lung Cancer. Chonnam Med J 2016; 52:151-8. [PMID: 27689025 PMCID: PMC5040764 DOI: 10.4068/cmj.2016.52.3.151] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/05/2016] [Accepted: 06/07/2016] [Indexed: 12/15/2022] Open
Abstract
Circulating tumor cells (CTCs) are tumor cells that are separated from the primary site or metastatic lesion and disseminate in blood circulation. CTCs are considered to be part of the long process of cancer metastasis. As a 'liquid biopsy', CTC molecular examination and investigation of single cancer cells create an important opportunity for providing an understanding of cancer biology and the process of metastasis. In the last decade, we have seen dramatic development in defining the role of CTCs in lung cancer in terms of diagnosis, genomic alteration determination, treatment response and, finally, prognosis prediction. The aims of this review are to understand the basic biology and to review methods of detection of CTCs that apply to the various types of solid tumor. Furthermore, we explored clinical applications, including treatment monitoring to anticipate therapy resistance as well as biomarker analysis, in the context of lung cancer. We also explored the potential use of cell-free circulating tumor DNA (ctDNA) in the genomic alteration analysis of lung cancer.
Collapse
Affiliation(s)
- Fariz Nurwidya
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Jamal Zaini
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Andika Chandra Putra
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Sita Andarini
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Achmad Hudoyo
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Elisna Syahruddin
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| | - Faisal Yunus
- Department of Pulmonology and Respiratory Medicine, Universitas Indonesia Faculty of Medicine, Persahabatan Hospital, Jakarta, Indonesia
| |
Collapse
|
17
|
Hamilton G, Rath B. Detection of circulating tumor cells in non-small cell lung cancer. J Thorac Dis 2016; 8:1024-8. [PMID: 27293809 DOI: 10.21037/jtd.2016.03.86] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gerhard Hamilton
- Society for Research on Biology and Therapy of Cancer, A-1160 Vienna, Austria
| | - Barbara Rath
- Society for Research on Biology and Therapy of Cancer, A-1160 Vienna, Austria
| |
Collapse
|
18
|
Dai B, Zhang P, Zhang Y, Pan C, Meng G, Xiao X, Wu Z, Jia W, Zhang J, Zhang L. RNaseH2A is involved in human gliomagenesis through the regulation of cell proliferation and apoptosis. Oncol Rep 2016; 36:173-80. [PMID: 27176716 DOI: 10.3892/or.2016.4802] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/06/2016] [Indexed: 11/06/2022] Open
Abstract
Mutations in the RNaseH2A gene are involved in Aicardi‑Goutieres syndrome, an autosomal recessive neurological dysfunction; however, studies assessing RNaseH2A in relation to glioma are scarce. This study aimed to assess the role of RNaseH2A in glioma and to unveil the underlying mechanisms. RNaseH2A was silenced in glioblastoma cell lines U87 and U251. Gene expression was assessed in the cells transfected with RNaseH2A shRNA or scramble shRNA by microarrays, validated by quantitative real time PCR. Protein expression was evaluated by western blot analysis. Cell proliferation was assessed by the MTT assay; cell cycle distribution and apoptosis were analyzed by flow cytometry. Finally, the effects of RNaseH2A on colony formation and tumorigenicity were assessed in vitro and in a mouse xenograft model, respectively. RNaseH2A was successively knocked down in U87 and U251 cells. Notably, RNaseH2A silencing resulted in impaired cell proliferation, with 70.7 and 57.8% reduction in the U87 and U251 cells, respectively, with the cell cycle being blocked in the G0/G1 phase in vitro. Meanwhile, clone formation was significantly reduced by RNaseH2A knockdown, which also increased cell apoptosis by approximately 4.5-fold. In nude mice, tumor size was significantly decreased after RNaseH2A knockdown: 219.29±246.43 vs. 1160.26±222.61 mm3 for the control group; similar findings were obtained for tumor weight (0.261±0.245 and 1.127±0.232 g) in the shRNA and control groups, respectively). In the microarray data, RNaseH2A was shown to modulate several signaling pathways responsible for cell proliferation and apoptosis, such as IL-6 and FAS pathways. RNaseH2A may be involved in human gliomagenesis, likely by regulating signaling pathways responsible for cell proliferation and apoptosis.
Collapse
Affiliation(s)
- Bin Dai
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Peng Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Yisong Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Changcun Pan
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Guolu Meng
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Xinru Xiao
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Zhen Wu
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Junting Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| | - Liwei Zhang
- Department of Neurosurgery, Beijing Tian Tan Hospital, Capital Medical University, China National Clinical Research Center for Neurological Diseases, Beijing 100050, P.R. China
| |
Collapse
|
19
|
Montano N, D’Alessandris QG, Izzo A, Fernandez E, Pallini R. Biomarkers for glioblastoma multiforme: status quo. J Clin Transl Res 2016; 2:3-10. [PMID: 30873456 PMCID: PMC6410643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 03/26/2016] [Accepted: 03/26/2016] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most frequent and most malignant central nervous system (CNS) tumor. GBM shows poor prognosis with a median overall survival of 14.6 months, despite current surgical and adjuvant therapies. O(6)-methylguanine-DNA methyltransferase (MGMT) methylation is the strongest molecular prognosticator for GBM with therapeutic implications in adjuvant treatment. Isocitrate dehydrogenase (IDH) mutation is the most recently introduced molecular marker and is important for the GBM classification because distinguishes primary (de novo) from secondary GBM. In the last two decades huge advances in the understanding of biopathological bases of gliomagenesis have been made but, to date, there is a lack of biopathological markers endowed of some prognostic and predictive value for GBM. AIM In the present review we analyzed the role, as possible prognosticators, of epidermal growth factor receptor (EGFR) variant III (EGFRvIII), phosphatase and tensin homolog (PTEN) deletion and other alteration of the receptor tyrosine kinase (RTK) pathway, and vascular endothelial growth factor (VEGF) expression. We included in the review studies considering both the prognostic value and the predictive value for response to therapy of the above-mentioned biomarkers. RELEVANCE FOR PATIENTS These factors have a paramount importance in gliomagenesis and are potential targets for individualized therapies. EGFR can be targeted by tyrosine kinase inhibitors (TKIs). mTOR, whose activation is triggered by PTEN loss, is the target of rapalogs and VEGF is the target of the molecular antibody bevacizumab. Unfortunately, current evidence is insufficient to draw a definite prognostic/predictive role for these biomarkers in GBM. Further understanding the gliomagenesis pathways and looking for biomarkers endowed with translational relevance are necessary efforts in order to find the appropriate, tailored therapy for each specific GBM patient.
Collapse
|