1
|
Tobon S, Bierbower S, Giovanis A. Osteopathic Manipulative Treatment for Postconcussive Symptoms: A Case Report. Mil Med 2025:usaf016. [PMID: 39869092 DOI: 10.1093/milmed/usaf016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/05/2025] [Accepted: 01/13/2025] [Indexed: 01/28/2025] Open
Abstract
Concussions are a common form of mild traumatic brain injury characterized by a transient alteration of cerebral function leading to a range of physical, cognitive, and emotional symptoms. Postconcussive symptoms (PCSs) usually resolve in about a week but can persist in 10% to 15% of patients. If left untreated, PCS can profoundly affect a patient's life. The authors present a case of a previously healthy patient who dealt with residual headaches and anxiety for 10 months after a head injury. She was treated with osteopathic manipulative treatment (OMT), which helped resolve her headaches and her anxiety. The OMT techniques applied during treatment included balanced ligamentous tension, myofascial release, and osteopathy in the cranial field techniques. OMT is a nonpharmacological, noninvasive treatment that can benefit patients suffering with PCS. The authors would like to increase the awareness of clinicians and researchers for OMT's potential positive outcomes for PCS, as part of a multifactorial approach to care.
Collapse
Affiliation(s)
- Steven Tobon
- Primary Care Department, Touro College of Osteopathic Medicine-Middletown Campus, Middletown, NY 10940, USA
| | - Sonya Bierbower
- Department of Chemistry and Life Science, United States Military Academy at West Point, West Point, NY 10996, USA
| | - Athina Giovanis
- Primary Care Department, Touro College of Osteopathic Medicine-Middletown Campus, Middletown, NY 10940, USA
| |
Collapse
|
2
|
Fitzgerald B, Bari S, Vike N, Lee TA, Lycke RJ, Auger JD, Leverenz LJ, Nauman E, Goñi J, Talavage TM. Longitudinal changes in resting state fMRI brain self-similarity of asymptomatic high school American football athletes. Sci Rep 2024; 14:1747. [PMID: 38243048 PMCID: PMC10799081 DOI: 10.1038/s41598-024-51688-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024] Open
Abstract
American football has become the focus of numerous studies highlighting a growing concern that cumulative exposure to repetitive, sports-related head acceleration events (HAEs) may have negative consequences for brain health, even in the absence of a diagnosed concussion. In this longitudinal study, brain functional connectivity was analyzed in a cohort of high school American football athletes over a single play season and compared against participants in non-collision high school sports. Football athletes underwent four resting-state functional magnetic resonance imaging sessions: once before (pre-season), twice during (in-season), and once 34-80 days after the contact activities play season ended (post-season). For each imaging session, functional connectomes (FCs) were computed for each athlete and compared across sessions using a metric reflecting the (self) similarity between two FCs. HAEs were monitored during all practices and games throughout the season using head-mounted sensors. Relative to the pre-season scan session, football athletes exhibited decreased FC self-similarity at the later in-season session, with apparent recovery of self-similarity by the time of the post-season session. In addition, both within and post-season self-similarity was correlated with cumulative exposure to head acceleration events. These results suggest that repetitive exposure to HAEs produces alterations in functional brain connectivity and highlight the necessity of collision-free recovery periods for football athletes.
Collapse
Affiliation(s)
- Bradley Fitzgerald
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA.
| | - Sumra Bari
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
| | - Nicole Vike
- Department of Computer Science, University of Cincinnati, Cincinnati, OH, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Roy J Lycke
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
| | - Joshua D Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, USA
| | - Eric Nauman
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, USA
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Joaquín Goñi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
- School of Industrial Engineering, Purdue University, West Lafayette, IN, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN, USA
| | - Thomas M Talavage
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH, USA
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
3
|
McIver KG, Lee P, Bucherl S, Talavage TM, Myer GD, Nauman EA. Design Considerations for the Attenuation of Translational and Rotational Accelerations in American Football Helmets. J Biomech Eng 2023; 145:061008. [PMID: 36628996 PMCID: PMC10782865 DOI: 10.1115/1.4056653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/05/2023] [Accepted: 01/07/2023] [Indexed: 01/12/2023]
Abstract
Participants in American football experience repetitive head impacts that induce negative changes in neurocognitive function over the course of a single season. This study aimed to quantify the transfer function connecting the force input to the measured output acceleration of the helmet system to provide a comparison of the impact attenuation of various modern American football helmets. Impact mitigation varied considerably between helmet models and with location for each helmet model. The current data indicate that helmet mass is a key variable driving force attenuation, however flexible helmet shells, helmet shell cutouts, and more compliant padding can improve energy absorption.
Collapse
Affiliation(s)
- Kevin G. McIver
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Patrick Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Sean Bucherl
- School of Mechanical Engineering, Purdue University, West Lafayette, IN 47907
| | - Thomas M. Talavage
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, OH 45221; School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907
| | - Gregory D. Myer
- Emory Sports Performance and Research Center (SPARC), Flowery Branch, GA 30542; Emory Sports Medicine Center, Atlanta, GA 30329; Department of Orthopaedics, Emory University School of Medicine, Atlanta, GA 30329; The Micheli Center for Sports Injury Prevention, Waltham, MA 02452
| | - Eric A. Nauman
- Dane A. and Mary Louise Miller Professor Department of Biomedical Engineering, College of Engineering and Applied Science, University of Cincinnati, 2901 Woodside Drive, Cincinnati, OH 45221
| |
Collapse
|
4
|
Seifert J, Shah AS, Harezlak J, Rowson S, Mihalik JP, Riggen L, Duma S, Brooks A, Cameron KL, Giza CC, Goldman J, Guskiewicz KM, Houston MN, Jackson JC, McGinty G, Pasquina P, Broglio SP, McAllister TW, McCrea MA, Stemper BD. Time Delta Head Impact Frequency: An Analysis on Head Impact Exposure in the Lead Up to a Concussion: Findings from the NCAA-DOD Care Consortium. Ann Biomed Eng 2022; 50:1473-1487. [PMID: 35933459 PMCID: PMC9652163 DOI: 10.1007/s10439-022-03032-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Sport-related concussions can result from a single high magnitude impact that generates concussive symptoms, repeated subconcussive head impacts aggregating to generate concussive symptoms, or a combined effect from the two mechanisms. The array of symptoms produced by these mechanisms may be clinically interpreted as a sport-related concussion. It was hypothesized that head impact exposure resulting in concussion is influenced by severity, total number, and frequency of subconcussive head impacts. The influence of total number and magnitude of impacts was previously explored, but frequency was investigated to a lesser degree. In this analysis, head impact frequency was investigated over a new metric called ‘time delta’, the time difference from the first recorded head impact of the day until the concussive impact. Four exposure metrics were analyzed over the time delta to determine whether frequency of head impact exposure was greater for athletes on their concussion date relative to other dates of contact participation. Those metrics included head impact frequency, head impact accrual rate, risk weighted exposure (RWE), and RWE accrual rate. Athletes experienced an elevated median number of impacts, RWE, and RWE accrual rate over the time delta on their concussion date compared to non-injury sessions. This finding suggests elevated frequency of head impact exposure on the concussion date compared to other dates that may precipitate the onset of concussion.
Collapse
Affiliation(s)
- Jack Seifert
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Alok S Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Jaroslaw Harezlak
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Steven Rowson
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Jason P Mihalik
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Larry Riggen
- Department of Epidemiology and Biostatistics, Indiana University School of Public Health, Bloomington, IN, USA
| | - Stefan Duma
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Alison Brooks
- Department of Orthopedics, School of Medicine and Public Health, University of Wisconsin, Madison, WI, USA
| | - Kenneth L Cameron
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Christopher C Giza
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Joshua Goldman
- Departments of Neurosurgery and Pediatrics, UCLA Steve Tisch BrainSPORT Program, David Geffem School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Kevin M Guskiewicz
- Matthew Gfeller Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Megan N Houston
- John A. Feagin Jr. Sports Medicine Fellowship, Keller Army Hospital, United States Military Academy, West Point, NY, USA
| | - Jonathan C Jackson
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Gerald McGinty
- Department of Sports Medicine, United States Air Force Academy, Colorado Springs, CO, USA
| | - Paul Pasquina
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | | | - Michael A McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA
| | - Brian D Stemper
- Joint Department of Biomedical Engineering, Marquette University and Medical College of Wisconsin, Milwaukee, WI, USA. .,Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA. .,Neuroscience Research Labs, Clement J. Zablocki Veterans Affairs Medical Center, Research 151, 5000 W. National Ave., Milwaukee, WI, 53295, USA.
| |
Collapse
|
5
|
Stemper BD, Shah A, Chiariello R, McCarthy C, Jessen K, Sarka B, Seifert J, Budde MD, Wang K, Olsen CM, McCrea M. A Preclinical Rodent Model for Repetitive Subconcussive Head Impact Exposure in Contact Sport Athletes. Front Behav Neurosci 2022; 16:805124. [PMID: 35368301 PMCID: PMC8965565 DOI: 10.3389/fnbeh.2022.805124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/05/2022] [Indexed: 11/13/2022] Open
Abstract
Repetitive subconcussive head impact exposure has been associated with clinical and MRI changes in some non-concussed contact sport athletes over the course of a season. However, analysis of human tolerance for repeated head impacts is complicated by concussion and head impact exposure history, genetics, and other personal factors. Therefore, the objective of the current study was to develop a rodent model for repetitive subconcussive head impact exposure that can be used to understand injury mechanisms and tolerance in the human. This study incorporated the Medical College of Wisconsin Rotational Injury Model to expose rats to multiple low-level head accelerations per day over a 4-week period. The peak magnitude of head accelerations were scaled from our prior human studies of contact sport athletes and the number of exposures per day were based on the median (moderate exposure) and 95th percentile (high exposure) number of exposures per day across the human sample. Following the exposure protocol, rats were assessed for cognitive deficits, emotional changes, blood serum levels of axonal injury biomarkers, and histopathological evidence of injury. High exposure rats demonstrated cognitive deficits and evidence of anxiety-like behaviors relative to shams. Moderate exposure rats did not demonstrate either of those behaviors. Similarly, high exposure rats had histopathological evidence of gliosis [i.e., elevated Iba1 intensity and glial fibrillary acidic protein (GFAP) volume relative to shams] in the basolateral amygdala and other areas. Blood serum levels of neurofilament light (NFL) demonstrated a dose response relationship with increasing numbers of low-level head acceleration exposures with a higher week-to-week rate of NFL increase for the high exposure group compared to the moderate exposure group. These findings demonstrate a cumulative effect of repeated low-level head accelerations and provide a model that can be used in future studies to better understand mechanisms and tolerance for brain injury resulting from repeated low-level head accelerations, with scalable biomechanics between the rat and human.
Collapse
Affiliation(s)
- Brian D. Stemper
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- *Correspondence: Brian D. Stemper,
| | - Alok Shah
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| | - Rachel Chiariello
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| | - Cassandra McCarthy
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| | - Kristin Jessen
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Bailey Sarka
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Jack Seifert
- Joint Department of Biomedical Engineering, Medical College of Wisconsin, Marquette University, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| | - Matthew D. Budde
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Kevin Wang
- Gryphon Bio, Inc., South San Francisco, CA, United States
| | - Christopher M. Olsen
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
- Department of Pharmacology and Toxicology, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Michael McCrea
- Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, United States
- Clement J. Zablocki Veterans Affairs Medical Center, Milwaukee, WI, United States
| |
Collapse
|
6
|
Kashyap P, Shenk TE, Svaldi DO, Lycke RJ, Lee TA, Tamer GG, Nauman EA, Talavage TM. Normalized Brain Tissue–Level Evaluation of Volumetric Changes of Youth Athletes Participating in Collision Sports. Neurotrauma Rep 2022; 3:57-69. [PMID: 35112108 PMCID: PMC8804236 DOI: 10.1089/neur.2021.0060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Observations of short-term changes in the neural health of youth athletes participating in collision sports (e.g., football and soccer) have highlighted a need to explore potential structural alterations in brain tissue volumes for these persons. Studies have shown biochemical, vascular, functional connectivity, and white matter diffusivity changes in the brain physiology of these athletes that are strongly correlated with repetitive head acceleration exposure. Here, research is presented that highlights regional anatomical volumetric measures that change longitudinally with accrued subconcussive trauma. A novel pipeline is introduced that provides simplified data analysis on standard-space template to quantify group-level longitudinal volumetric changes within these populations. For both sports, results highlight incremental relative regional volumetric changes in the subcortical cerebrospinal fluid that are strongly correlated with head exposure events greater than a 50-G threshold at the short-term post-season assessment. Moreover, longitudinal regional gray matter volumes are observed to decrease with time, only returning to baseline/pre-participation levels after sufficient (5–6 months) rest from collision-based exposure. These temporal structural volumetric alterations are significantly different from normal aging observed in sex- and age-matched controls participating in non-collision sports. Future work involves modeling repetitive head exposure thresholds with multi-modal image analysis and understanding the underlying physiological reason. A possible pathophysiological pathway is presented, highlighting the probable metabolic regulatory mechanisms. Continual participation in collision-based activities may represent a risk wherein recovery cannot occur. Even when present, the degree of the eventual recovery remains to be explored, but has strong implications for the well-being of collision-sport participants.
Collapse
Affiliation(s)
- Pratik Kashyap
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Trey E. Shenk
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Diana O. Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Roy J. Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Taylor A. Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Gregory G. Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Eric A. Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, USA
| | - Thomas M. Talavage
- Department of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, USA
- Department of Biomedical Engineering, University of Cincinnati, Cincinnati, Ohio, USA
| |
Collapse
|
7
|
Gard A, Tegner Y, Bakhsheshi MF, Marklund N. Selective head-neck cooling after concussion shortens return-to-play in ice hockey players. Concussion 2021; 6:CNC90. [PMID: 34084556 PMCID: PMC8162197 DOI: 10.2217/cnc-2021-0002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
We aimed to investigate whether selective head–neck cooling could shorten recovery after sports-related concussions (SRCs). In a nonrandomized study of 15 Swedish professional ice hockey teams, 29 concussed players received immediate head and neck cooling for ≥30 min (initiated at 12.3 ± 9.2 min post-SRC by a portable cooling system), and 52 SRC controls received standard management. Players receiving head–neck cooling had shorter time to return-to-play than controls (7 vs 12.5 days, p < 0.0001), and 7% in the intervention group versus 25% in the control group were out of play for ≥3 weeks (p = 0.07). Immediate selective head–neck cooling is a promising option in the acute management of SRC that should be addressed in larger cohorts.
Collapse
Affiliation(s)
- Anna Gard
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| | - Yelverton Tegner
- Department of Health Sciences, Luleå University of Technology, Luleå, Sweden
| | - Mohammad Fazel Bakhsheshi
- Lund University, Family Medicine & Community Medicine, Lund, Sweden.,BrainCool AB, Medicon Village, Lund, Sweden
| | - Niklas Marklund
- Lund University, Skåne University Hospital, Department of Clinical Sciences Lund, Neurosurgery, Lund, Sweden
| |
Collapse
|
8
|
DiFabio MS, Buckley TA. Effectiveness of a Computerized Cognitive Training Program for Reducing Head Impact Kinematics in Youth Ice Hockey Players. INTERNATIONAL JOURNAL OF EXERCISE SCIENCE 2021; 14:149-161. [PMID: 34055136 PMCID: PMC8136557 DOI: 10.70252/msnj4958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Cognitive training (CT) is an effective technique to improve neurological performance, but has not been investigated as a head impact primary prevention strategy. The purpose of this study was to investigate the CT's effectiveness in reducing head impact kinematics in youth ice hockey players. Twenty youth were divided into two groups: a CT and Control group. The CT group performed two 30-minute sessions of IntelliGym CT weekly for 20 weeks and the control group performed two 30-minute sessions weekly evaluating hockey videos. The dependent variables, number of head impacts, cumulative linear acceleration (CLA) and rotational acceleration (CRA) and mean linear and rotation peak acceleration, were compared with repeated measures ANOVAs, with post-hoc for main effect of time for each group, between the first and second half of the season. There were significant interactions for number of head impacts (p = 0.014) and CLA (p = 0.043) and post-hoc testing identified reductions in the second half of the season for the CT, but not control, group. There were no interactions for CRA, mean peak linear acceleration, and mean peak rotational acceleration. These preliminary results suggest CT may be an effective primary prevention strategy to reduce head impacts and cumulative linear acceleration in youth ice hockey players.
Collapse
Affiliation(s)
- Melissa S DiFabio
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA
| | - Thomas A Buckley
- Department of Kinesiology and Applied Physiology, University of Delaware, Newark, DE, USA
- Biomechanics and Movement Science Interdisciplinary Program, University of Delaware, Newark, DE, USA
| |
Collapse
|
9
|
Development of brain atlases for early-to-middle adolescent collision-sport athletes. Sci Rep 2021; 11:6440. [PMID: 33742031 PMCID: PMC7979742 DOI: 10.1038/s41598-021-85518-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 02/15/2021] [Indexed: 01/31/2023] Open
Abstract
Human brains develop across the life span and largely vary in morphology. Adolescent collision-sport athletes undergo repetitive head impacts over years of practices and competitions, and therefore may exhibit a neuroanatomical trajectory different from healthy adolescents in general. However, an unbiased brain atlas targeting these individuals does not exist. Although standardized brain atlases facilitate spatial normalization and voxel-wise analysis at the group level, when the underlying neuroanatomy does not represent the study population, greater biases and errors can be introduced during spatial normalization, confounding subsequent voxel-wise analysis and statistical findings. In this work, targeting early-to-middle adolescent (EMA, ages 13-19) collision-sport athletes, we developed population-specific brain atlases that include templates (T1-weighted and diffusion tensor magnetic resonance imaging) and semantic labels (cortical and white matter parcellations). Compared to standardized adult or age-appropriate templates, our templates better characterized the neuroanatomy of the EMA collision-sport athletes, reduced biases introduced during spatial normalization, and exhibited higher sensitivity in diffusion tensor imaging analysis. In summary, these results suggest the population-specific brain atlases are more appropriate towards reproducible and meaningful statistical results, which better clarify mechanisms of traumatic brain injury and monitor brain health for EMA collision-sport athletes.
Collapse
|
10
|
Auger J, Markel J, Pecoski DD, Leiva-Molano N, Talavage TM, Leverenz L, Shen F, Nauman EA. Factors affecting peak impact force during soccer headers and implications for the mitigation of head injuries. PLoS One 2020; 15:e0240162. [PMID: 33064732 PMCID: PMC7567382 DOI: 10.1371/journal.pone.0240162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 09/16/2020] [Indexed: 11/28/2022] Open
Abstract
It has been documented that up to 22% of all soccer injuries are concussions. This is in part due to players purposely using their head to direct the ball during play. To provide a more complete understanding of head trauma in soccer athletes, this study characterized the effects of four soccer ball characteristics (size, inflation pressure, mass, velocity) on the resulting peak impact force as it relates to the potential for incurring neurophysiological changes. A total of six hundred trials were performed on size 4 and 5 soccer balls as well as a novel lightweight soccer ball. Impact force was measured with a force plate and ball velocity was determined using motion capture. These data were used, in conjunction with dimensional analysis to relate impact force to ball size, mass, velocity, and pressure. Reasonable reductions in allowable ball parameters resulted in a 19.7% decrease in peak impact force. Adjustments to ball parameters could reduce a high cumulative peak translational acceleration soccer athlete down into a previously defined safer low loading range. In addition, it was noted that water absorption by soccer balls can result in masses that substantially increase impact force and quickly surpass the NCAA weight limit for game play. Additional research is required to determine whether varying soccer ball characteristics will enable soccer players to avoid persistent neurophysiological deficits or what additional interventions may be necessary and the legal implications of these data are discussed.
Collapse
Affiliation(s)
- Joshua Auger
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Justin Markel
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Dimitri D. Pecoski
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Nicolas Leiva-Molano
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Thomas M. Talavage
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, United States of America
| | - Larry Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
| | - Francis Shen
- University of Minnesota Law School, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Eric A. Nauman
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, United States of America
- Department of Health and Kinesiology, Purdue University, West Lafayette, Indiana, United States of America
- Department of Basic Medical Sciences, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
11
|
Brooks BL, Virani S, Khetani A, Carlson H, Jadavji Z, Mauthner M, Low TA, Plourde V, MacMaster FP, Bray S, Harris AD, Lebel C, Lebel RM, Esser MJ, Yeates KO, Barlow KM. Functional magnetic resonance imaging study of working memory several years after pediatric concussion. Brain Inj 2020; 34:895-904. [PMID: 32396403 DOI: 10.1080/02699052.2020.1753240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
PRIMARY OBJECTIVE The neurophysiological effects of pediatric concussion several years after injury remain inadequately characterized. The objective of this study was to determine if a history of concussion was associated with BOLD response differences during an n-back working memory task in youth. RESEARCH DESIGN Observational, cross-sectional. METHODS AND PROCEDURES Participants include 52 children and adolescents (M = 15.1 years, 95%CI = 14.4-15.8, range = 9-19) with past concussion (n = 33) or orthopedic injury (OI; n = 19). Mean time since injury was 2.5 years (95%CI = 2.0-3.0). Measures included postconcussion symptom ratings, neuropsychological testing, and blood-oxygen-dependent-level (BOLD) functional magnetic resonance imaging (fMRI) during an n-back working memory task. MAIN OUTCOMES AND RESULTS Groups did not differ on accuracy or speed during the three n-back conditions. They also did not differ in BOLD signal change for the 1- vs. 0-back or 2- vs. 0-back contrasts (controlling for task performance). CONCLUSIONS This study does not support group differences in BOLD response during an n-back working memory task in youth who are on average 2.5 years post-concussion. The findings are encouraging from the perspective of understanding recovery after pediatric concussion.
Collapse
Affiliation(s)
- Brian L Brooks
- Neurosciences Program, Alberta Children's Hospital , Calgary, Alberta, Canada.,Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Departments of Paediatrics, Clinical Neurosciences, and Psychology, University of Calgary , Calgary, Alberta, Canada
| | - Shane Virani
- Sport Injury Prevention Research Centre, Faculty of Kinesiology, University of Calgary , Calgary, Alberta, Canada.,Vi Riddell Pain and Rehabilitation Program, Alberta Children's Hospital Research Institute , Calgary, Alberta, Canada
| | - Aneesh Khetani
- Department of Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Helen Carlson
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary , Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada
| | - Zeanna Jadavji
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Department of Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Micaela Mauthner
- Department of Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Trevor A Low
- Department of Neurosciences, University of Calgary , Calgary, Alberta, Canada
| | - Vickie Plourde
- École de Psychologie, Faculté des sciences de la santé et des services communautaires, Université de Moncton, Monton, New Brunswick, Canada; Faculty Saint-Jean, University of Alberta , Edmonton, AB, Canada
| | - Frank P MacMaster
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Departments of Psychiatry and Paediatrics, University of Calgary , Calgary, Alberta, Canada.,Mathison Centre for Mental Health Research and Education, Hotchkiss Brain Institute , Calgary, Alberta, Canada.,Strategic Clinical Network for Addictions and Mental Health, Alberta Health Services , Edmonton, Alberta, Canada
| | - Signe Bray
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada
| | - Ashley D Harris
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Department of Radiology, University of Calgary , Calgary, Alberta, Canada
| | - Catherine Lebel
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada.,Department of Radiology, University of Calgary , Calgary, Alberta, Canada
| | - R Marc Lebel
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Departments of Radiology and Biomedical Engineering, University of Calgary , Calgary, Alberta, Canada.,MR Applications and Workflow, GE Healthcare , Calgary, Alberta, Canada
| | - Michael J Esser
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Department of Pediatrics, University of Calgary , Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada
| | - Keith Owen Yeates
- Alberta Children's Hospital Research Institute, University of Calgary , Calgary, Alberta, Canada.,Departments of Paediatrics, Clinical Neurosciences, and Psychology, University of Calgary , Calgary, Alberta, Canada.,Hotchkiss Brain Institute, University of Calgary , Calgary, Alberta, Canada
| | - Karen M Barlow
- Departments of Paediatrics and Clinical Neurosciences, University of Calgary , Calgary, Alberta, Canada.,Faculty of Medicine, University of Queensland , Brisbane, Australia
| |
Collapse
|
12
|
Li W, Chang C, Liang S, Bigler ED. Radiographic and neurobehavioral profile of sports-related concussion associated with scholastic wrestling: a case report. Neurocase 2020; 26:147-155. [PMID: 32412324 DOI: 10.1080/13554794.2020.1764977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Sports-related concussions (SRCs) are typically characterized by transient neurologic deficits due to physiologic and metabolic brain injury. However, following an SRC, subsequent insults may lead to severe and permanent injury in the affected brain cells. We present the case of a 15-year-old female scholastic wrestler who developed acute encephalopathy, macroscopic white matter injury on imaging, and chronic behavioral changes from inadequate neuro-recovery after a documented SRC. We also compare her case with established SRC data, demonstrating that wrestling-related concussions and repetitive head impacts can produce similar degrees of diffuse neuroinflammation, myelinated axonopathy, blood-brain barrier disruption, and post-concussive symptoms.
Collapse
Affiliation(s)
- Wentao Li
- Department of Neurology, University of California Davis , Sacramento, USA
| | - Celia Chang
- Department of Neurology, Division of Pediatric Neurology, University of California Davis , Sacramento, USA
| | - Shannon Liang
- Department of Neurology, Division of Pediatric Neurology, University of California Davis , Sacramento, USA
| | - Erin D Bigler
- Department of Neurology, University of California Davis , Sacramento, USA.,Department of Psychology and Neuroscience, Magnetic Resonance Imaging (MRI) Research Facility, Brigham Young University , Provo, USA.,Department of Neurology and Department of Psychiatry, University of Utah , Salt Lake City, USA
| |
Collapse
|
13
|
Gallant C, Barry N, Good D. Physiological arousal in athletes following repeated subconcussive impact exposure. CURRENT PSYCHOLOGY 2020. [DOI: 10.1007/s12144-018-9780-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
14
|
Repetitive Head Impact Exposure in College Football Following an NCAA Rule Change to Eliminate Two-A-Day Preseason Practices: A Study from the NCAA-DoD CARE Consortium. Ann Biomed Eng 2019; 47:2073-2085. [PMID: 31388849 PMCID: PMC6785580 DOI: 10.1007/s10439-019-02335-9] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 07/27/2019] [Indexed: 02/07/2023]
Abstract
Repetitive head impact exposure sustained by athletes of contact sports has been hypothesized to be a mechanism for concussion and a possible explanation for the high degree of variability in sport-related concussion biomechanics. In an attempt to limit repetitive head impact exposure during the football preseason, the NCAA eliminated two-a-day practices in 2017, while maintaining the total number of team practice sessions. The objective of this study was to quantify head impact exposure during the preseason and regular season in Division I college football athletes to determine whether the 2017 NCAA ruling decreased head impact exposure. 342 unique athletes from five NCAA Division I Football Bowl Subdivision (FBS) programs were consented and enrolled. Head impacts were recorded using the Head Impact Telemetry (HIT) System during the entire fall preseasons and regular seasons in 2016 and 2017. Despite the elimination of two-a-day practices, the number of preseason contact days increased in 2017, with an increase in average hourly impact exposure (i.e., contact intensity), resulting in a significant increase in total head impact burden (+ 26%) for the 2017 preseason. This finding would indicate that the 2017 NCAA ruling was not effective at reducing the head impact burden during the football preseason. Additionally, athletes sustained a significantly higher number of recorded head impacts per week (+ 40%) during the preseason than the regular season, implicating the preseason as a time of elevated repetitive head impact burden. With increased recognition of a possible association between repetitive head impact exposure and concussion, increased preseason exposure may predispose certain athletes to a higher risk of concussion during the preseason and regular season. Accordingly, efforts at reducing concussion incidence in contact sports should include a reduction in overall head impact exposure.
Collapse
|
15
|
Jang I, Chun IY, Brosch JR, Bari S, Zou Y, Cummiskey BR, Lee TA, Lycke RJ, Poole VN, Shenk TE, Svaldi DO, Tamer GG, Dydak U, Leverenz LJ, Nauman EA, Talavage TM. Every hit matters: White matter diffusivity changes in high school football athletes are correlated with repetitive head acceleration event exposure. NEUROIMAGE-CLINICAL 2019; 24:101930. [PMID: 31630026 PMCID: PMC6807364 DOI: 10.1016/j.nicl.2019.101930] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 06/29/2019] [Accepted: 07/09/2019] [Indexed: 11/29/2022]
Abstract
Recent evidence of short-term alterations in brain physiology associated with repeated exposure to moderate intensity subconcussive head acceleration events (HAEs), prompts the question whether these alterations represent an underlying neural injury. A retrospective analysis combining counts of experienced HAEs and longitudinal diffusion-weighted imaging explored whether greater exposure to incident mechanical forces was associated with traditional diffusion-based measures of neural injury—reduced fractional anisotropy (FA) and increased mean diffusivity (MD). Brains of high school athletes (N = 61) participating in American football exhibited greater spatial extents (or volumes) experiencing substantial changes (increases and decreases) in both FA and MD than brains of peers who do not participate in collision-based sports (N = 15). Further, the spatial extents of the football athlete brain exhibiting traditional diffusion-based markers of neural injury were found to be significantly correlated with the cumulative exposure to HAEs having peak translational acceleration exceeding 20 g. This finding demonstrates that subconcussive HAEs induce low-level neurotrauma, with prolonged exposure producing greater accumulation of neural damage. The duration and extent of recovery associated with periods in which athletes do not experience subconcussive HAEs now represents a priority for future study, such that appropriate participation and training schedules may be developed to minimize the risk of long-term neurological dysfunction. Brain volumes evidencing injury are larger in football athletes than controls. Spatial extent of decreased FA correlates with head acceleration event exposure. Spatial extent of increased MD correlates with head acceleration event exposure.
Collapse
Affiliation(s)
- Ikbeom Jang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America.
| | - Il Yong Chun
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Jared R Brosch
- Department of Neurology, Indiana University School of Medicine, Indianapolis, IN, United States of America
| | - Sumra Bari
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Yukai Zou
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Brian R Cummiskey
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Taylor A Lee
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Roy J Lycke
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Victoria N Poole
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Trey E Shenk
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Diana O Svaldi
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Gregory G Tamer
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| | - Ulrike Dydak
- School of Health Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Larry J Leverenz
- Department of Health and Kinesiology, Purdue University, West Lafayette, IN, United States of America
| | - Eric A Nauman
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America; School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States of America; Department of Basic Medical Sciences, Purdue University, West Lafayette, IN, United States of America
| | - Thomas M Talavage
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN, United States of America; Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
16
|
Tsushima WT, Ahn HJ, Siu AM, Yoshinaga K, Choi SY, Murata NM. Effects of repetitive subconcussive head trauma on the neuropsychological test performance of high school athletes: A comparison of high, moderate, and low contact sports. APPLIED NEUROPSYCHOLOGY. CHILD 2019; 8:223-230. [PMID: 29393677 DOI: 10.1080/21622965.2018.1427095] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The aim of this study was to examine the neuropsychological test results of non-concussed high school athletes playing at three different levels of contact sports. Based on the concussion risk data of 12 different sports, a High Contact group (n=2819; wrestling/martial arts, cheerleading, track and field, football), a Moderate Contact group (n=2323; softball, basketball, soccer), and a Low Contact group (n=1580; baseball, volleyball, water polo, tennis, cross-country) were formed and compared in terms of their scores on the Immediate Post-Concussion Assessment and Cognitive Testing (ImPACT). The results revealed that the High Contact group obtained small but statistically poorer performances in ImPACT Visual Memory, Visual Motor Speed, Impulse Control, and Total Symptom scores compared to the Moderate and Low Contact groups. The High Contact group also had poorer Reaction Time scores compared to the Low Contact group. No differences between the Moderate and Low Contact groups were noted. The findings, along with prior similar results, tentatively raise concerns that participant in high contact sports, exposed to repetitive subconcussive head trauma, may be at greater risk for lowered neuropsychological functioning and increased symptoms, compared to other high school athletes. In view of the preliminary nature of this investigation, more research into the effects of frequent head impacts in high school sports is strongly recommended.
Collapse
Affiliation(s)
- William T Tsushima
- a Psychiatry and Psychology Department , Straub Medical Center , Honolulu , Hawaii , USA
| | - Hyeong Jun Ahn
- b Office of Biostatistics & Quantitative Health Sciences, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii , USA
| | - Andrea M Siu
- c Hawaii Pacific Health, Research Institute , Honolulu , Hawaii , USA
| | - Kara Yoshinaga
- d Department of Psychology , University of Hawaii at Manoa , Honolulu , Hawaii , USA
| | - So Yung Choi
- e Department of Complementary and Integrative Medicine, John A. Burns School of Medicine , University of Hawaii , Honolulu , Hawaii , USA
| | - Nathan M Murata
- f Department of Kinesiology and Rehabilitation Science , University of Hawaii at Manoa , Honolulu , Hawaii , USA
| |
Collapse
|
17
|
Svaldi DO, Joshi C, McCuen EC, Music JP, Hannemann R, Leverenz LJ, Nauman EA, Talavage TM. Accumulation of high magnitude acceleration events predicts cerebrovascular reactivity changes in female high school soccer athletes. Brain Imaging Behav 2018; 14:164-174. [DOI: 10.1007/s11682-018-9983-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Irimia A, Van Horn JD, Vespa PM. Cerebral microhemorrhages due to traumatic brain injury and their effects on the aging human brain. Neurobiol Aging 2018; 66:158-164. [PMID: 29579686 PMCID: PMC5924627 DOI: 10.1016/j.neurobiolaging.2018.02.026] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 02/24/2018] [Accepted: 02/27/2018] [Indexed: 01/08/2023]
Abstract
Although cerebral microbleeds (CMBs) are frequently associated with traumatic brain injury (TBI), their effects on clinical outcome after TBI remain controversial and poorly understood, particularly in older adults. Here we (1) highlight major challenges and opportunities associated with studying the effects of TBI-mediated CMBs; (2) review the evidence on their potential effects on cognitive and neural outcome as a function of age at injury; and (3) suggest priorities for future research on understanding the clinical implications of CMBs. Although TBI-mediated CMBs are likely distinct from those due to cerebral amyloid angiopathy or other neurodegenerative diseases, the effects of these 2 CMB types on brain function may share common features. Furthermore, in older TBI victims, the incidence of TBI-mediated CMBs may approximate that of cerebral amyloid angiopathy-related CMBs, and thus warrants detailed study. Because the alterations effected by CMBs on brain structure and function are both unique and age-dependent, it seems likely that novel, age-tailored therapeutic approaches are necessary for the adequate clinical interpretation and treatment of these ubiquitous and underappreciated TBI sequelae.
Collapse
Affiliation(s)
- Andrei Irimia
- Ethel Percy Andrus Gerontology Center, USC Leonard Davis School of Gerontology, University of Southern California, Los Angeles CA, USA.
| | - John D Van Horn
- USC Mark & Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Paul M Vespa
- Departments of Neurosurgery and Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
19
|
Antonakakis M, Dimitriadis SI, Zervakis M, Papanicolaou AC, Zouridakis G. Reconfiguration of dominant coupling modes in mild traumatic brain injury mediated by δ-band activity: A resting state MEG study. Neuroscience 2017; 356:275-286. [DOI: 10.1016/j.neuroscience.2017.05.032] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Revised: 05/15/2017] [Accepted: 05/22/2017] [Indexed: 12/28/2022]
|
20
|
Ghosh N, Holshouser B, Oyoyo U, Barnes S, Tong K, Ashwal S. Combined Diffusion Tensor and Magnetic Resonance Spectroscopic Imaging Methodology for Automated Regional Brain Analysis: Application in a Normal Pediatric Population. Dev Neurosci 2017. [PMID: 28651252 DOI: 10.1159/000475545] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
During human brain development, anatomic regions mature at different rates. Quantitative anatomy-specific analysis of longitudinal diffusion tensor imaging (DTI) and magnetic resonance spectroscopic imaging (MRSI) data may improve our ability to quantify and categorize these maturational changes. Computational tools designed to quickly fuse and analyze imaging information from multiple, technically different datasets would facilitate research on changes during normal brain maturation and for comparison to disease states. In the current study, we developed a complete battery of computational tools to execute such data analyses that include data preprocessing, tract-based statistical analysis from DTI data, automated brain anatomy parsing from T1-weighted MR images, assignment of metabolite information from MRSI data, and co-alignment of these multimodality data streams for reporting of region-specific indices. We present statistical analyses of regional DTI and MRSI data in a cohort of normal pediatric subjects (n = 72; age range: 5-18 years; mean 12.7 ± 3.3 years) to establish normative data and evaluate maturational trends. Several regions showed significant maturational changes for several DTI parameters and MRSI ratios, but the percent change over the age range tended to be small. In the subcortical region (combined basal ganglia [BG], thalami [TH], and corpus callosum [CC]), the largest combined percent change was a 10% increase in fractional anisotropy (FA) primarily due to increases in the BG (12.7%) and TH (9%). The largest significant percent increase in N-acetylaspartate (NAA)/creatine (Cr) ratio was seen in the brain stem (BS) (18.8%) followed by the subcortical regions in the BG (11.9%), CC (8.9%), and TH (6.0%). We found consistent, significant (p < 0.01), but weakly positive correlations (r = 0.228-0.329) between NAA/Cr ratios and mean FA in the BS, BG, and CC regions. Age- and region-specific normative MR diffusion and spectroscopic metabolite ranges show brain maturation changes and are requisite for detecting abnormalities in an injured or diseased population.
Collapse
Affiliation(s)
- Nirmalya Ghosh
- Department of Pediatrics, Loma Linda University School of Medicine, Loma Linda, CA, USA
| | | | | | | | | | | |
Collapse
|
21
|
Narayana PA. White matter changes in patients with mild traumatic brain injury: MRI perspective. Concussion 2017; 2:CNC35. [PMID: 30202576 PMCID: PMC6093760 DOI: 10.2217/cnc-2016-0028] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2016] [Accepted: 02/10/2017] [Indexed: 12/20/2022] Open
Abstract
This review focuses on white matter (WM) changes in mild traumatic brain injury (mTBI) as assessed by multimodal MRI. All the peer reviewed publications on WM changes in mTBI from January 2011 through September 2016 are included in this review. This review is organized as follows: introduction to mTBI, the basics of multimodal MRI techniques that are potentially useful for probing the WM integrity, summary and critical evaluation of the published literature on the application of multimodal MRI techniques to assess the changes of WM in mTBI, and correlation of MRI measures with behavioral deficits. The MRI-pathology correlation studies based on preclinical models of mTBI are also reviewed. Finally, the author's perspective of future research directions is described.
Collapse
Affiliation(s)
- Ponnada A Narayana
- Department of Diagnostic & Interventional Imaging, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
22
|
Slobounov SM, Walter A, Breiter HC, Zhu DC, Bai X, Bream T, Seidenberg P, Mao X, Johnson B, Talavage TM. The effect of repetitive subconcussive collisions on brain integrity in collegiate football players over a single football season: A multi-modal neuroimaging study. NEUROIMAGE-CLINICAL 2017; 14:708-718. [PMID: 28393012 PMCID: PMC5377433 DOI: 10.1016/j.nicl.2017.03.006] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/17/2017] [Accepted: 03/19/2017] [Indexed: 01/14/2023]
Abstract
The cumulative effect of repetitive subconcussive collisions on the structural and functional integrity of the brain remains largely unknown. Athletes in collision sports, like football, experience a large number of impacts across a single season of play. The majority of these impacts, however, are generally overlooked, and their long-term consequences remain poorly understood. This study sought to examine the effects of repetitive collisions across a single competitive season in NCAA Football Bowl Subdivision athletes using advanced neuroimaging approaches. Players were evaluated before and after the season using multiple MRI sequences, including T1-weighted imaging, diffusion tensor imaging (DTI), arterial spin labeling (ASL), resting-state functional MRI (rs-fMRI), and susceptibility weighted imaging (SWI). While no significant differences were found between pre- and post-season for DTI metrics or cortical volumes, seed-based analysis of rs-fMRI revealed significant (p < 0.05) changes in functional connections to right isthmus of the cingulate cortex (ICC), left ICC, and left hippocampus. ASL data revealed significant (p < 0.05) increases in global cerebral blood flow (CBF), with a specific regional increase in right postcentral gyrus. SWI data revealed that 44% of the players exhibited outlier rates (p < 0.05) of regional decreases in SWI signal. Of key interest, athletes in whom changes in rs-fMRI, CBF and SWI were observed were more likely to have experienced high G impacts on a daily basis. These findings are indicative of potential pathophysiological changes in brain integrity arising from only a single season of participation in the NCAA Football Bowl Subdivision, even in the absence of clinical symptoms or a diagnosis of concussion. Whether these changes reflect compensatory adaptation to cumulative head impacts or more lasting alteration of brain integrity remains to be further explored.
Collapse
Affiliation(s)
- Semyon M. Slobounov
- Concussion Neuroimaging Consortium, Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Alexa Walter
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
- Corresponding author: 25 Recreation Hall University Park, PA 16802, United States.25 Recreation Hall University ParkPA16802United States
| | - Hans C. Breiter
- Concussion Neuroimaging Consortium, Department of Psychiatry and Behavioral Sciences, Northwestern University, Evanston, IL 60208, United States
| | - David C. Zhu
- Concussion Neuroimaging Consortium, Department of Radiology and Psychology, Michigan State University, East Lansing, MI 48824, United States
| | - Xiaoxiao Bai
- Social, Life, and Engineering Sciences Imaging Center, The Pennsylvania State University, University Park, PA 16802, United States
| | - Tim Bream
- Athletic Department, The Pennsylvania State University, University Park, PA 16802, United States
| | - Peter Seidenberg
- Athletic Department, The Pennsylvania State University, University Park, PA 16802, United States
| | - Xianglun Mao
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47907, United States
| | - Brian Johnson
- Department of Kinesiology, The Pennsylvania State University, University Park, PA 16802, United States
| | - Thomas M. Talavage
- Concussion Neuroimaging Consortium, School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, United States
| |
Collapse
|
23
|
Kim DH, Park ES, Kim MS, Park SH, Park JB, Kwon SC, Lyo IU, Sim HB. Correlation between Head Trauma and Outcome of Chronic Subdural Hematoma. Korean J Neurotrauma 2016; 12:94-100. [PMID: 27857915 PMCID: PMC5110926 DOI: 10.13004/kjnt.2016.12.2.94] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/08/2016] [Accepted: 07/27/2016] [Indexed: 11/15/2022] Open
Abstract
Objective Our study examined the prognostic factors involved in the outcome of patients with chronic subdural hematoma (CSDH) who had undergone burr hole drainage procedures, and investigated the association between outcome and traumatic head injury. In addition, we explored factors related to recurrence. Methods This study enrolled 238 patients with CSDH who had undergone burr hole drainage. Patients with history of head injury were categorized into the head trauma group and were compared with the no head trauma group. Outcome was considered good when modified Rankin Scale scores improved from admission to discharge and the final follow-up. Results Among 238 patients, 127 (53.4%) were included in the head trauma group. One hundred thirty-three (55.9%) patients demonstrated good outcome at discharge, and 171 (71.8%) patients demonstrated good outcome at the final follow-up. None of the factors examined was significantly correlated with good outcome at discharge. However, only history of head injury (p=0.033, odds ratio 0.511, 95% confidence interval 0.277-0.946) was significantly correlated with poor outcome at long-term follow-up. Recurrence occurred in 20 (8.4%) cases in the total cohort and 11 (55%) patients in the head trauma group. Conclusion History of head trauma is correlated with poor outcome at long-term follow-up in CSDH patients having undergone burr hole drainage. Therefore, CSDH patients with history of head injury are susceptible to poor outcome, warranting more careful evaluation and treatment after burr hole drainage.
Collapse
Affiliation(s)
- Dong Han Kim
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Eun Suk Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Min Soo Kim
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Sung Ho Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Jun Bum Park
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Soon Chan Kwon
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - In Uk Lyo
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| | - Hong Bo Sim
- Department of Neurosurgery, Ulsan University Hospital, University of Ulsan College of Medicine, Ulsan, Korea
| |
Collapse
|