1
|
Jellinger KA. The Spectrum of Cognitive Impairment in Atypical Parkinsonism Syndromes: A Comprehensive Review of Current Understanding and Research. Diseases 2025; 13:39. [PMID: 39997046 PMCID: PMC11854393 DOI: 10.3390/diseases13020039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/23/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025] Open
Abstract
Multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are the most common atypical parkinsonism (AP) syndromes. They are clinically characterized by varying combinations of levodopa-poorly responsive parkinsonism, motor, cerebellar, and other signs. They are associated with a wide spectrum of non-motor symptoms, including prominent cognitive impairment such as global cognitive deficits, memory, executive, attentional, visuospatial, language, and non-verbal reasoning dysfunctions. Within the APs, their cognitive functioning is distributed along a continuum from MSA with the least impaired cognitive profile (similar to Parkinson's disease) to PSP and CBD with the greatest decline in global cognitive and executive domains. Although their pathological hallmarks are different-MSA α-synucleinopathy, CBD, and PSP 4-repeat tauopathies-cognitive dysfunctions in APs show both overlaps and dissimilarities. They are often preceding and anticipate motor dysfunctions, finally contributing to reduced quality of life of patients and caregivers. The present paper will review the current evidence of the prevalence and type of cognitive impairment in these AP syndromes, their neuroimaging, pathogenic backgrounds, and current management options based on extensive literature research. Cognitive dysfunctions in APs are due to disruption of prefronto-subcortical and striato-thalamo-cortical circuitries and multiple essential brain networks. This supports the concept that they are brain network disorders due to complex pathogenic mechanisms related to the basic proteinopathies that are still poorly understood. Therefore, the pathophysiology and pathogenesis of cognitive impairment in APs deserve further elucidation as a basis for early diagnosis and adequate treatment of these debilitating comorbidities.
Collapse
Affiliation(s)
- Kurt A Jellinger
- Institute of Clinical Neurobiology, Alberichgasse 5/13, A-1150 Vienna, Austria
| |
Collapse
|
2
|
Ortega-Robles E, de Celis Alonso B, Cantillo-Negrete J, Carino-Escobar RI, Arias-Carrión O. Advanced Magnetic Resonance Imaging for Early Diagnosis and Monitoring of Movement Disorders. Brain Sci 2025; 15:79. [PMID: 39851446 PMCID: PMC11763950 DOI: 10.3390/brainsci15010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/09/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Advanced magnetic resonance imaging (MRI) techniques are transforming the study of movement disorders by providing valuable insights into disease mechanisms. This narrative review presents a comprehensive overview of their applications in this field, offering an updated perspective on their potential for early diagnosis, disease monitoring, and therapeutic evaluation. Emerging MRI modalities such as neuromelanin-sensitive imaging, diffusion-weighted imaging, magnetization transfer imaging, and relaxometry provide sensitive biomarkers that can detect early microstructural degeneration, iron deposition, and connectivity disruptions in key regions like the substantia nigra. These techniques enable earlier and more accurate differentiation of movement disorders, including Parkinson's disease, progressive supranuclear palsy, multiple system atrophy, corticobasal degeneration, Lewy body and frontotemporal dementia, Huntington's disease, and dystonia. Furthermore, MRI provides objective metrics for tracking disease progression and assessing therapeutic efficacy, making it an indispensable tool in clinical trials. Despite these advances, the absence of standardized protocols limits their integration into routine clinical practice. Addressing this gap and incorporating these techniques more systematically could bring the field closer to leveraging advanced MRI for personalized treatment strategies, ultimately improving outcomes for individuals with movement disorders.
Collapse
Affiliation(s)
- Emmanuel Ortega-Robles
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| | - Benito de Celis Alonso
- Facultad de Ciencias Físico Matemáticas, Benemérita Universidad Autónoma de Puebla, Puebla 72570, Mexico;
| | - Jessica Cantillo-Negrete
- Technological Research Subdirection, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Ruben I. Carino-Escobar
- Division of Research in Clinical Neuroscience, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Mexico City 14389, Mexico;
| | - Oscar Arias-Carrión
- Unidad de Trastornos del Movimiento y Sueño, Hospital General Dr. Manuel Gea González, Calzada de Tlalpan 4800, Mexico City 14080, Mexico;
| |
Collapse
|
3
|
Sintini I, Ali F, Stephens Y, Clark HM, Stierwalt JA, Machulda MM, Satoh R, Josephs KA, Whitwell JL. Functional connectivity abnormalities in clinical variants of progressive supranuclear palsy. Neuroimage Clin 2024; 45:103727. [PMID: 39719808 PMCID: PMC11728076 DOI: 10.1016/j.nicl.2024.103727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/07/2024] [Accepted: 12/16/2024] [Indexed: 12/26/2024]
Abstract
Progressive supranuclear palsy (PSP) can present with different clinical variants which show distinct, but partially overlapping, patterns of neurodegeneration and tau deposition in a network of regions including cerebellar dentate, superior cerebellar peduncle, midbrain, thalamus, basal ganglia, and frontal lobe. We sought to determine whether disruptions in functional connectivity within this PSP network measured using resting-state functional MRI (rs-fMRI) differed between PSP-Richardson's syndrome (PSP-RS) and the cortical and subcortical clinical variants of PSP. Structural MRI and rs-fMRI scans were collected for 36 PSP-RS, 25 PSP-cortical and 34 PSP-subcortical participants who met the Movement Disorder Society PSP clinical criteria. Ninety participants underwent flortaucipir-PET scans. MRIs were processed using CONN Toolbox. Functional connectivity between regions of the PSP network was compared between each PSP group and 83 healthy controls, and between the PSP groups, covarying for age. The effect of flortaucipir uptake and clinical scores on connectivity was assessed. Connectivity was reduced in PSP-RS compared to controls throughout the network, involving cerebellar dentate, midbrain, basal ganglia, thalamus, and frontal regions. Frontal regions showed reduced connectivity to other regions in the network in PSP-cortical, particularly the thalamus, caudate and substantia nigra. Disruptions in connectivity in PSP-subcortical were less pronounced, with the strongest disruption between the pallidum and striatum. There was moderate evidence that elevated subcortical flortaucipir uptake correlated with both increased and reduced connectivity between regions of the PSP network. Lower connectivity within the PSP network correlated with worse performance on clinical tests, including PSP rating scale. Patterns of disrupted functional connectivity revealed both variant-specific and shared disease pathways within the PSP network among PSP clinical variants, providing insight into disease heterogeneity.
Collapse
Affiliation(s)
- Irene Sintini
- Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Farwa Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN, USA
| | - Ryota Satoh
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | | | | |
Collapse
|
4
|
Keir G, Roytman M, Mashriqi F, Shahsavarani S, Franceschi AM. Atypical Parkinsonian Syndromes: Structural, Functional, and Molecular Imaging Features. AJNR Am J Neuroradiol 2024; 45:1865-1877. [PMID: 39209485 PMCID: PMC11630880 DOI: 10.3174/ajnr.a8313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/16/2024] [Indexed: 09/04/2024]
Abstract
Atypical parkinsonian syndromes, also known as Parkinson-plus syndromes, are a heterogeneous group of movement disorders, including dementia with Lewy bodies (DLB), progressive supranuclear palsy (PSP), multisystem atrophy (MSA), and corticobasal degeneration (CBD). This review highlights the characteristic structural, functional, and molecular imaging features of these complex disorders. DLB typically demonstrates parieto-occipital hypometabolism with involvement of the cuneus on FDG-PET, whereas dopaminergic imaging, such as [123I]-FP-CIT SPECT (DaTscan) or fluorodopa (FDOPA)-PET, can be utilized as an adjunct for diagnosis. PSP typically shows midbrain atrophy on structural imaging, whereas FDG-PET may be useful to depict frontal lobe hypometabolism and tau-PET confirms underlying tauopathy. MSA typically demonstrates putaminal or cerebellar atrophy, whereas FDG-PET highlights characteristic nigrostriatal or olivopontocerebellar hypometabolism, respectively. Finally, CBD typically shows asymmetric atrophy in the superior parietal lobules and corpus callosum, whereas FDG and tau-PET demonstrate asymmetric hemispheric and subcortical involvement contralateral to the side of clinical deficits. Additional advanced neuroimaging modalities and techniques described may assist in the diagnostic work-up or are promising areas of emerging research.
Collapse
Affiliation(s)
- Graham Keir
- From the Neuroradiology Division (G.K., M.R.), Department of Radiology, Weill Cornell Medical College, NY-Presbyterian Hospital, New York, New York
| | - Michelle Roytman
- From the Neuroradiology Division (G.K., M.R.), Department of Radiology, Weill Cornell Medical College, NY-Presbyterian Hospital, New York, New York
| | - Faizullah Mashriqi
- Neuroradiology Division (F.M., S.S., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| | - Shaya Shahsavarani
- Neuroradiology Division (F.M., S.S., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| | - Ana M Franceschi
- Neuroradiology Division (F.M., S.S., A.M.F.), Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Lenox Hill Hospital, New York, New York
| |
Collapse
|
5
|
Piramide N, De Micco R, Siciliano M, Silvestro M, Tessitore A. Resting-State Functional MRI Approaches to Parkinsonisms and Related Dementia. Curr Neurol Neurosci Rep 2024; 24:461-477. [PMID: 39046642 DOI: 10.1007/s11910-024-01365-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE OF THE REVIEW In this review, we attempt to summarize the most updated studies that applied resting-state functional magnetic resonance imaging (rs-fMRI) in the field of Parkinsonisms and related dementia. RECENT FINDINGS Over the past decades, increasing interest has emerged on investigating the presence and pathophysiology of cognitive symptoms in Parkinsonisms and their possible role as predictive biomarkers of neurodegenerative brain processes. In recent years, evidence has been provided, applying mainly three methodological approaches (i.e. seed-based, network-based and graph-analysis) on rs-fMRI data, with promising results. Neural correlates of cognitive impairment and dementia have been detected in patients with Parkinsonisms along the diseases course. Interestingly, early functional connectivity signatures were proposed to track and predict future progression of neurodegenerative processes. However, longitudinal studies are still sparce and further investigations are needed to overcome this knowledge gap.
Collapse
Affiliation(s)
- Noemi Piramide
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Rosa De Micco
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
- Neuropsychology Laboratory, Department of Psychology, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Marcello Silvestro
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical Sciences, University of Campania "Luigi Vanvitelli", Napoli, Italy.
| |
Collapse
|
6
|
Spinelli EG, Ghirelli A, Bottale I, Basaia S, Canu E, Castelnovo V, Volontè MA, Galantucci S, Magnani G, Caso F, Cecchetti G, Caroppo P, Prioni S, Villa C, Josephs KA, Whitwell JL, Filippi M, Agosta F. Stepwise Functional Brain Architecture Correlates with Atrophy in Progressive Supranuclear Palsy. Mov Disord 2024; 39:1493-1503. [PMID: 38881298 PMCID: PMC11499047 DOI: 10.1002/mds.29887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/19/2024] [Accepted: 05/28/2024] [Indexed: 06/18/2024] Open
Abstract
BACKGROUND Stepwise functional connectivity (SFC) detects whole-brain functional couplings of a selected region of interest at increasing link-step topological distances. OBJECTIVE This study applied SFC to test the hypothesis that stepwise architecture propagating from the disease epicenter would shape patterns of brain atrophy in patients with progressive supranuclear palsy-Richardson's syndrome (PSP-RS). METHODS Thirty-six patients with PSP-RS and 44 age-matched healthy control subjects underwent brain magnetic resonance imaging on a 3-T scanner. The disease epicenter was defined as the peak of atrophy observed in an independent cohort of 13 cases with postmortem confirmation of PSP pathology and used as seed region for SFC analysis. First, we explored SFC rearrangements in patients with PSP-RS, as compared with age-matched control subjects. Subsequently, we tested SFC architecture propagating from the disease epicenter as a determinant of brain atrophy distribution. RESULTS The disease epicenter was identified in the left midbrain tegmental region. Compared with age-matched control subjects, patients with PSP-RS showed progressively widespread decreased SFC of the midbrain with striatal and cerebellar regions through direct connections and sensorimotor cortical regions through indirect connections. A correlation was found between average link-step distance from the left midbrain in healthy subjects and brain volumes in patients with PSP-RS (r = 0.38, P < 0.001). CONCLUSIONS This study provides comprehensive insights into the topology of functional network rearrangements in PSP-RS and demonstrates that the brain architectural topology, as described by SFC propagating from the disease epicenter, shapes the pattern of atrophic changes in PSP-RS. Our findings support the view of a network-based pathology propagation in this primary tauopathy. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Edoardo Gioele Spinelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alma Ghirelli
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ilaria Bottale
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Basaia
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Canu
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Veronica Castelnovo
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | | | - Giuseppe Magnani
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Caso
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giordano Cecchetti
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Paola Caroppo
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Sara Prioni
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Cristina Villa
- Fondazione IRCCS Istituto Neurologico Carlo Besta, Unit of Neurology 5 - Neuropathology, Milan, Italy
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | | | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
- Neurophysiology Service, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| |
Collapse
|
7
|
Albrecht F, Mueller K, Ballarini T, Fassbender K, Wiltfang J, Otto M, Jech R, Schroeter ML. Structural parameters are superior to eigenvector centrality in detecting progressive supranuclear palsy with machine learning & multimodal MRI. Heliyon 2024; 10:e34910. [PMID: 39170550 PMCID: PMC11336336 DOI: 10.1016/j.heliyon.2024.e34910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/23/2024] Open
Abstract
Progressive supranuclear palsy (PSP) is an atypical Parkinsonian syndrome characterized initially by falls and eye movement impairment. This multimodal imaging study aimed at eliciting structural and functional disease-specific brain alterations. T1-weighted and resting-state functional MRI were applied in multi-centric cohorts of PSP and matched healthy controls. Midbrain, cerebellum, and cerebellar peduncles showed severely low gray/white matter volume, whereas thinner cortical gray matter was observed in cingulate cortex, medial and temporal gyri, and insula. Eigenvector centrality analyses revealed regionally specific alterations. Multivariate pattern recognition classified patients correctly based on gray and white matter segmentations with up to 98 % accuracy. Highest accuracies were obtained when restricting feature selection to the midbrain. Eigenvector centrality indices yielded an accuracy around 70 % in this comparison; however, this result did not reach significance. In sum, the study reveals multimodal, widespread brain changes in addition to the well-known midbrain atrophy in PSP. Alterations in brain structure seem to be superior to eigenvector centrality parameters, in particular for prediction with machine learning approaches.
Collapse
Affiliation(s)
- Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Division of Physiotherapy, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Stockholm, Sweden
- Women's Health and Allied Health Professionals Theme, Medical Unit Occupational Therapy & Physiotherapy, Karolinska University Hospital, Stockholm, Sweden
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | | | - Jens Wiltfang
- University Medical Center Göttingen, Germany
- German Center for Neurodegenerative Diseases (DZNE), Göttingen, Germany
| | - Markus Otto
- Department of Neurology, University of Ulm, Ulm, Germany
- Department of Neurology, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine and General University Hospital, Prague, Czech Republic
| | - Mattias L. Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Clinic of Cognitive Neurology, University of Leipzig, Germany
| |
Collapse
|
8
|
Garcia-Cordero I, Anastassiadis C, Khoja A, Morales-Rivero A, Thapa S, Vasilevskaya A, Davenport C, Sumra V, Couto B, Multani N, Taghdiri F, Anor C, Misquitta K, Vandevrede L, Heuer H, Tang-Wai D, Dickerson B, Pantelyat A, Litvan I, Boeve B, Rojas JC, Ljubenkov P, Huey E, Fox S, Kovacs GG, Boxer A, Lang A, Tartaglia MC. Evaluating the Effect of Alzheimer's Disease-Related Biomarker Change in Corticobasal Syndrome and Progressive Supranuclear Palsy. Ann Neurol 2024; 96:99-109. [PMID: 38578117 PMCID: PMC11249787 DOI: 10.1002/ana.26930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 02/26/2024] [Accepted: 03/11/2024] [Indexed: 04/06/2024]
Abstract
OBJECTIVES To evaluate the effect of Alzheimer's disease (AD) -related biomarker change on clinical features, brain atrophy and functional connectivity of patients with corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). METHODS Data from patients with a clinical diagnosis of CBS, PSP, and AD and healthy controls were obtained from the 4-R-Tauopathy Neuroimaging Initiative 1 and 2, the Alzheimer's Disease Neuroimaging Initiative, and a local cohort from the Toronto Western Hospital. Patients with CBS and PSP were divided into AD-positive (CBS/PSP-AD) and AD-negative (CBS/PSP-noAD) groups based on fluid biomarkers and amyloid PET scans. Cognitive, motor, and depression scores; AD fluid biomarkers (cerebrospinal p-tau, t-tau, and amyloid-beta, and plasma ptau-217); and neuroimaging data (amyloid PET, MRI and fMRI) were collected. Clinical features, whole-brain gray matter volume and functional networks connectivity were compared across groups. RESULTS Data were analyzed from 87 CBS/PSP-noAD and 23 CBS/PSP-AD, 18 AD, and 30 healthy controls. CBS/PSP-noAD showed worse performance in comparison to CBS/PSP-AD in the PSPRS [mean(SD): 34.8(15.8) vs 23.3(11.6)] and the UPDRS scores [mean(SD): 34.2(17.0) vs 21.8(13.3)]. CBS/PSP-AD demonstrated atrophy in AD signature areas and brainstem, while CBS/PSP-noAD patients displayed atrophy in frontal and temporal areas, globus pallidus, and brainstem compared to healthy controls. The default mode network showed greatest disconnection in CBS/PSP-AD compared with CBS/PSP-no AD and controls. The thalamic network connectivity was most affected in CBS/PSP-noAD. INTERPRETATION AD biomarker positivity may modulate the clinical presentation of CBS/PSP, with evidence of distinctive structural and functional brain changes associated with the AD pathology/co-pathology. ANN NEUROL 2024;96:99-109.
Collapse
Affiliation(s)
- Indira Garcia-Cordero
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Chloe Anastassiadis
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Abeer Khoja
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Neurology division, Medical Department, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Alonso Morales-Rivero
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- ABC Medical Center, Mexico City, Mexico
| | - Simrika Thapa
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Anna Vasilevskaya
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Carly Davenport
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Vishaal Sumra
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Blas Couto
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Institute of Cognitive and Translational Neuroscience (INCyT-INECO-CONICET), Favaloro University Hospital, Buenos Aires, Argentina
| | - Namita Multani
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Foad Taghdiri
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Cassandra Anor
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Karen Misquitta
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
| | - Lawren Vandevrede
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Hilary Heuer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - David Tang-Wai
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Bradford Dickerson
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | | | - Irene Litvan
- Department of Neurosciences, University of California San Diego, La Jolla, California, USA
| | - Bradley Boeve
- Department of Neurology, Mayo Clinic, Rochester, Minnesota, USA
| | - Julio C. Rojas
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Peter Ljubenkov
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Edward Huey
- Department of Psychiatry and Human Behavior, Brown University, Providence, Rhode Island, USA
| | - Susan Fox
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
| | - Gabor G. Kovacs
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Adam Boxer
- Memory and Aging Center, Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, California, USA
| | - Anthony Lang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- The Edmond J. Safra Program in Parkinson’s Disease and Morton and Gloria Shulman Movement Disorders Clinic, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - M. Carmela Tartaglia
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, Canada
- University Health Network Memory Clinic, Toronto, Ontario, Canada
- Rossy PSP Program, University Health Network and the University of Toronto, Toronto, Ontario, Canada
- Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | | |
Collapse
|
9
|
Savoie FA, Arpin DJ, Vaillancourt DE. Magnetic Resonance Imaging and Nuclear Imaging of Parkinsonian Disorders: Where do we go from here? Curr Neuropharmacol 2024; 22:1583-1605. [PMID: 37533246 PMCID: PMC11284713 DOI: 10.2174/1570159x21666230801140648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 08/04/2023] Open
Abstract
Parkinsonian disorders are a heterogeneous group of incurable neurodegenerative diseases that significantly reduce quality of life and constitute a substantial economic burden. Nuclear imaging (NI) and magnetic resonance imaging (MRI) have played and continue to play a key role in research aimed at understanding and monitoring these disorders. MRI is cheaper, more accessible, nonirradiating, and better at measuring biological structures and hemodynamics than NI. NI, on the other hand, can track molecular processes, which may be crucial for the development of efficient diseasemodifying therapies. Given the strengths and weaknesses of NI and MRI, how can they best be applied to Parkinsonism research going forward? This review aims to examine the effectiveness of NI and MRI in three areas of Parkinsonism research (differential diagnosis, prodromal disease identification, and disease monitoring) to highlight where they can be most impactful. Based on the available literature, MRI can assist with differential diagnosis, prodromal disease identification, and disease monitoring as well as NI. However, more work is needed, to confirm the value of MRI for monitoring prodromal disease and predicting phenoconversion. Although NI can complement or be a substitute for MRI in all the areas covered in this review, we believe that its most meaningful impact will emerge once reliable Parkinsonian proteinopathy tracers become available. Future work in tracer development and high-field imaging will continue to influence the landscape for NI and MRI.
Collapse
Affiliation(s)
- Félix-Antoine Savoie
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David J. Arpin
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
| | - David E. Vaillancourt
- Department of Applied Physiology and Kinesiology, Laboratory for Rehabilitation Neuroscience, University of Florida, Gainesville, FL, USA
- Department of Neurology, Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, USA
- J. Crayton Pruitt Family Department of Biomedical Engineering, University of Florida, Gainesville, FL, USA
| |
Collapse
|
10
|
Risacher SL, Apostolova LG. Neuroimaging in Dementia. Continuum (Minneap Minn) 2023; 29:219-254. [PMID: 36795879 DOI: 10.1212/con.0000000000001248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
OBJECTIVE Neurodegenerative diseases are significant health concerns with regard to morbidity and social and economic hardship around the world. This review describes the state of the field of neuroimaging measures as biomarkers for detection and diagnosis of both slowly progressing and rapidly progressing neurodegenerative diseases, specifically Alzheimer disease, vascular cognitive impairment, dementia with Lewy bodies or Parkinson disease dementia, frontotemporal lobar degeneration spectrum disorders, and prion-related diseases. It briefly discusses findings in these diseases in studies using MRI and metabolic and molecular-based imaging (eg, positron emission tomography [PET] and single-photon emission computerized tomography [SPECT]). LATEST DEVELOPMENTS Neuroimaging studies with MRI and PET have demonstrated differential patterns of brain atrophy and hypometabolism in different neurodegenerative disorders, which can be useful in differential diagnoses. Advanced MRI sequences, such as diffusion-based imaging, and functional MRI (fMRI) provide important information about underlying biological changes in dementia and new directions for development of novel measures for future clinical use. Finally, advancements in molecular imaging allow clinicians and researchers to visualize dementia-related proteinopathies and neurotransmitter levels. ESSENTIAL POINTS Diagnosis of neurodegenerative diseases is primarily based on symptomatology, although the development of in vivo neuroimaging and fluid biomarkers is changing the scope of clinical diagnosis, as well as the research into these devastating diseases. This article will help inform the reader about the current state of neuroimaging in neurodegenerative diseases, as well as how these tools might be used for differential diagnoses.
Collapse
Affiliation(s)
- Shannon L Risacher
- Address correspondence to Dr Shannon L. Risacher, 355 W 16th St, Indianapolis, IN 46202,
| | | |
Collapse
|
11
|
Loftus JR, Puri S, Meyers SP. Multimodality imaging of neurodegenerative disorders with a focus on multiparametric magnetic resonance and molecular imaging. Insights Imaging 2023; 14:8. [PMID: 36645560 PMCID: PMC9842851 DOI: 10.1186/s13244-022-01358-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 12/13/2022] [Indexed: 01/17/2023] Open
Abstract
Neurodegenerative diseases afflict a large number of persons worldwide, with the prevalence and incidence of dementia rapidly increasing. Despite their prevalence, clinical diagnosis of dementia syndromes remains imperfect with limited specificity. Conventional structural-based imaging techniques also lack the accuracy necessary for confident diagnosis. Multiparametric magnetic resonance imaging and molecular imaging provide the promise of improving specificity and sensitivity in the diagnosis of neurodegenerative disease as well as therapeutic monitoring of monoclonal antibody therapy. This educational review will briefly focus on the epidemiology, clinical presentation, and pathologic findings of common and uncommon neurodegenerative diseases. Imaging features of each disease spanning from conventional magnetic resonance sequences to advanced multiparametric methods such as resting-state functional magnetic resonance imaging and arterial spin labeling imaging will be described in detail. Additionally, the review will explore the findings of each diagnosis on molecular imaging including single-photon emission computed tomography and positron emission tomography with a variety of clinically used and experimental radiotracers. The literature and clinical cases provided demonstrate the power of advanced magnetic resonance imaging and molecular techniques in the diagnosis of neurodegenerative diseases and areas of future and ongoing research. With the advent of combined positron emission tomography/magnetic resonance imaging scanners, hybrid protocols utilizing both techniques are an attractive option for improving the evaluation of neurodegenerative diseases.
Collapse
Affiliation(s)
- James Ryan Loftus
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Savita Puri
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| | - Steven P. Meyers
- grid.412750.50000 0004 1936 9166Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY 14642 USA
| |
Collapse
|
12
|
Gonzalez-Gomez R, Ibañez A, Moguilner S. Multiclass characterization of frontotemporal dementia variants via multimodal brain network computational inference. Netw Neurosci 2023; 7:322-350. [PMID: 37333999 PMCID: PMC10270711 DOI: 10.1162/netn_a_00285] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 10/03/2022] [Indexed: 04/03/2024] Open
Abstract
Characterizing a particular neurodegenerative condition against others possible diseases remains a challenge along clinical, biomarker, and neuroscientific levels. This is the particular case of frontotemporal dementia (FTD) variants, where their specific characterization requires high levels of expertise and multidisciplinary teams to subtly distinguish among similar physiopathological processes. Here, we used a computational approach of multimodal brain networks to address simultaneous multiclass classification of 298 subjects (one group against all others), including five FTD variants: behavioral variant FTD, corticobasal syndrome, nonfluent variant primary progressive aphasia, progressive supranuclear palsy, and semantic variant primary progressive aphasia, with healthy controls. Fourteen machine learning classifiers were trained with functional and structural connectivity metrics calculated through different methods. Due to the large number of variables, dimensionality was reduced, employing statistical comparisons and progressive elimination to assess feature stability under nested cross-validation. The machine learning performance was measured through the area under the receiver operating characteristic curves, reaching 0.81 on average, with a standard deviation of 0.09. Furthermore, the contributions of demographic and cognitive data were also assessed via multifeatured classifiers. An accurate simultaneous multiclass classification of each FTD variant against other variants and controls was obtained based on the selection of an optimum set of features. The classifiers incorporating the brain's network and cognitive assessment increased performance metrics. Multimodal classifiers evidenced specific variants' compromise, across modalities and methods through feature importance analysis. If replicated and validated, this approach may help to support clinical decision tools aimed to detect specific affectations in the context of overlapping diseases.
Collapse
Affiliation(s)
- Raul Gonzalez-Gomez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
| | - Agustín Ibañez
- Latin American Brain Health Institute (BrainLat), Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Trinity College Dublin, Dublin, Ireland
| | - Sebastian Moguilner
- Center for Social and Cognitive Neuroscience, School of Psychology, Universidad Adolfo Ibañez, Santiago de Chile, Chile
- Cognitive Neuroscience Center, Universidad de San Andres, Buenos Aires, Argentina
- Global Brain Health Institute, University of California San Francisco, San Francisco, CA, USA
- Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| |
Collapse
|
13
|
Aghakhanyan G, Rullmann M, Rumpf J, Schroeter ML, Scherlach C, Patt M, Brendel M, Koglin N, Stephens AW, Classen J, Hoffmann KT, Sabri O, Barthel H. Interplay of tau and functional network connectivity in progressive supranuclear palsy: a [ 18F]PI-2620 PET/MRI study. Eur J Nucl Med Mol Imaging 2022; 50:103-114. [PMID: 36048259 DOI: 10.1007/s00259-022-05952-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/23/2022] [Indexed: 01/18/2023]
Abstract
PURPOSE Progressive supranuclear palsy (PSP) is primary 4-repeat tauopathy. Evidence spanning from imaging studies indicate aberrant connectivity in PSPs. Our goal was to assess functional connectivity network alterations in PSP patients and the potential link between regional tau-burden and network-level functional connectivity using the next-generation tau PET tracer [18F]PI-2620 and resting-state functional MRI (fMRI). MATERIAL AND METHODS Twenty-four probable PSP patients (70.9 ± 6.9 years, 13 female), including 14 Richardson syndrome (RS) and 10 non-RS phenotypes, underwent [18F]PI-2620 PET/MRI imaging. Distribution volume ratios (DVRs) were estimated using non-invasive pharmacokinetic modeling. Resting-state fMRI was also acquired in these patients as well as in thirteen older non-AD MCI reference group (64 ± 9 years, 4 female). The functional network was constructed using 141 by 141 region-to-region functional connectivity metrics (RRC) and network-based statistic was carried out (connection threshold p < 0.001, cluster threshold pFDR < 0.05). RESULTS In total, 9870 functional connections were analyzed. PSPs compared to aged non-AD MCI reference group expressed aberrant connectivity evidenced by the significant NBS network consisting of 89 ROIs and 118 connections among them (NBS mass 4226, pFDR < 0.05). Tau load in the right globus pallidus externus (GPe) and left dentate nucleus (DN) showed significant effects on functional network connectivity. The network linked with increased tau load in the right GPe was associated with hyperconnectivity of low-range intra-opercular connections (NBS mass 356, pFDR < 0.05), while the network linked with increased tau load in the left cerebellar DN was associated with cerebellar hyperconnectivity and cortico-cerebellar hypoconnectivity (NBS mass 517, pFDR < 0.05). CONCLUSIONS PSP patients show altered functional connectivity. Network incorporating deep gray matter structures demonstrate hypoconnectivity, cerebellum hyperconnectivity, while cortico-cortical connections show variable changes. Tau load in the right GPe and left DN is associated with functional networks which strengthen low-scale intra-opercular and intra-cerebellar connections and weaken opercular-cerebellar connections. These findings support the concept of tau load-dependent functional network changes in PSP, by that providing evidence for downstream effects of neuropathology on brain functionality in this primary tauopathy.
Collapse
Affiliation(s)
- Gayane Aghakhanyan
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany.
- Department of Translational Research and of New Surgical and Medical Technologies, University of Pisa, Pisa, Italy.
| | - M Rullmann
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - J Rumpf
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - M L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences & Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany
| | - C Scherlach
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - M Patt
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - M Brendel
- Department of Nuclear Medicine, University Hospital of Munich, LMU Munich, Munich, Germany
| | - N Koglin
- Life Molecular Imaging GmbH, Berlin, Germany
| | | | - J Classen
- Department of Neurology, University of Leipzig, Leipzig, Germany
| | - K T Hoffmann
- Department of Neuroradiology, University of Leipzig, Leipzig, Germany
| | - O Sabri
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| | - H Barthel
- Department of Nuclear Medicine, University of Leipzig, Leipzig, Germany
| |
Collapse
|
14
|
Kadota K, Onoda K, Abe S, Hamada C, Mitaki S, Oguro H, Nagai A, Kitagaki H, Yamaguchi S. Multiscale Entropy of Resting-State Functional Magnetic Resonance Imaging Differentiates Progressive Supranuclear Palsy and Multiple System Atrophy. Life (Basel) 2021; 11:life11121411. [PMID: 34947943 PMCID: PMC8707613 DOI: 10.3390/life11121411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/13/2021] [Accepted: 12/14/2021] [Indexed: 11/16/2022] Open
Abstract
Distinguishing progressive supranuclear palsy (PSP) from multiple system atrophy (MSA) in the early clinical stages is challenging; few sensitive and specific biomarkers are available for their differential diagnosis. Resting-state functional magnetic resonance imaging (rs-fMRI) is used to study the fluctuations in blood oxygen level-dependent (BOLD) signals at rest, which provides evidence for aberrant brain functional networks in neurodegenerative diseases. We aimed to examine whether rs-fMRI data could differentiate between PSP and MSA via a multiscale entropy (MSE) analysis of BOLD signals, which estimates the complexity of temporal fluctuations in brain activity. We recruited 14 and 18 patients with PSP and MSA, respectively, who underwent neuropsychological tests and rs-fMRI. PSP patients demonstrated greater cognitive function impairments, particularly in the frontal executive function. The bilateral prefrontal cortex revealed lower entropy BOLD signal values in multiple time scales for PSP, compared to the values observed in MSA patients; however, the functional connectivity of the representative brain networks was comparable between the diseases. The reduced complexity of BOLD signals in the prefrontal cortex was associated with frontal dysfunction. Thus, an MSE analysis of rs-fMRI could differentiate between PSP and MSA, and the reduced complexity of BOLD signals could be associated with cognitive impairment.
Collapse
Affiliation(s)
- Katsuhiko Kadota
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
- Correspondence: ; Tel.: +81-3-3813-3111
| | - Keiichi Onoda
- Department of Psychology, Otemon Gakuin University, Osaka 567-8502, Japan;
| | - Satoshi Abe
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| | - Chizuko Hamada
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| | - Shingo Mitaki
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| | - Hiroaki Oguro
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| | - Atsushi Nagai
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| | - Hajime Kitagaki
- Department of Radiology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan;
| | - Shuhei Yamaguchi
- Department of Neurology, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan; (S.A.); (C.H.); (S.M.); (H.O.); (A.N.); (S.Y.)
| |
Collapse
|
15
|
Stamelou M, Respondek G, Giagkou N, Whitwell JL, Kovacs GG, Höglinger GU. Evolving concepts in progressive supranuclear palsy and other 4-repeat tauopathies. Nat Rev Neurol 2021; 17:601-620. [PMID: 34426686 DOI: 10.1038/s41582-021-00541-5] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2021] [Indexed: 02/07/2023]
Abstract
Tauopathies are classified according to whether tau deposits predominantly contain tau isoforms with three or four repeats of the microtubule-binding domain. Those in which four-repeat (4R) tau predominates are known as 4R-tauopathies, and include progressive supranuclear palsy, corticobasal degeneration, argyrophilic grain disease, globular glial tauopathies and conditions associated with specific MAPT mutations. In these diseases, 4R-tau deposits are found in various cell types and anatomical regions of the brain and the conditions share pathological, pathophysiological and clinical characteristics. Despite being considered 'prototype' tauopathies and, therefore, ideal for studying neuroprotective agents, 4R-tauopathies are still severe and untreatable diseases for which no validated biomarkers exist. However, advances in research have addressed the issues of phenotypic overlap, early clinical diagnosis, pathophysiology and identification of biomarkers, setting a road map towards development of treatments. New clinical criteria have been developed and large cohorts with early disease are being followed up in prospective studies. New clinical trial readouts are emerging and biomarker research is focused on molecular pathways that have been identified. Lessons learned from failed trials of neuroprotective drugs are being used to design new trials. In this Review, we present an overview of the latest research in 4R-tauopathies, with a focus on progressive supranuclear palsy, and discuss how current evidence dictates ongoing and future research goals.
Collapse
Affiliation(s)
- Maria Stamelou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece. .,European University of Cyprus, Nicosia, Cyprus. .,Philipps University, Marburg, Germany.
| | - Gesine Respondek
- Department of Neurology, Hanover Medical School, Hanover, Germany
| | - Nikolaos Giagkou
- Parkinson's Disease and Movement Disorders Dept, HYGEIA Hospital, Athens, Greece
| | | | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Tanz Centre for Research in Neurodegenerative Disease (CRND), University of Toronto, Toronto, Ontario, Canada.,Laboratory Medicine Program and Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
| | - Günter U Höglinger
- Department of Neurology, Hanover Medical School, Hanover, Germany.,German Center for Neurodegenerative Diseases (DZNE), Munich, Germany
| |
Collapse
|
16
|
Soni N, Ora M, Bathla G, Nagaraj C, Boles Ponto LL, Graham MM, Saini J, Menda Y. Multiparametric magnetic resonance imaging and positron emission tomography findings in neurodegenerative diseases: Current status and future directions. Neuroradiol J 2021; 34:263-288. [PMID: 33666110 PMCID: PMC8447818 DOI: 10.1177/1971400921998968] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neurodegenerative diseases (NDDs) are characterized by progressive neuronal loss, leading to dementia and movement disorders. NDDs broadly include Alzheimer's disease, frontotemporal lobar degeneration, parkinsonian syndromes, and prion diseases. There is an ever-increasing prevalence of mild cognitive impairment and dementia, with an accompanying immense economic impact, prompting efforts aimed at early identification and effective interventions. Neuroimaging is an essential tool for the early diagnosis of NDDs in both clinical and research settings. Structural, functional, and metabolic imaging modalities, including magnetic resonance imaging (MRI) and positron emission tomography (PET), are widely available. They show encouraging results for diagnosis, monitoring, and treatment response evaluation. The current review focuses on the complementary role of various imaging modalities in relation to NDDs, the qualitative and quantitative utility of newer MRI techniques, novel radiopharmaceuticals, and integrated PET/MRI in the setting of NDDs.
Collapse
Affiliation(s)
- Neetu Soni
- University of Iowa Hospitals and Clinics, USA
| | - Manish Ora
- Department of Nuclear Medicine, SGPGIMS, India
| | - Girish Bathla
- Neuroradiology Department, University of Iowa Hospitals and
Clinics, USA
| | - Chandana Nagaraj
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | | | - Michael M Graham
- Division of Nuclear Medicine, University of Iowa Hospitals and
Clinics, USA
| | - Jitender Saini
- Department of Neuro Imaging and Interventional Radiology,
NIMHANS, India
| | - Yusuf Menda
- University of Iowa Hospitals and Clinics, USA
| |
Collapse
|
17
|
Tinaz S. Functional Connectome in Parkinson's Disease and Parkinsonism. Curr Neurol Neurosci Rep 2021; 21:24. [PMID: 33817766 DOI: 10.1007/s11910-021-01111-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/24/2021] [Indexed: 01/18/2023]
Abstract
PURPOSE OF REVIEW There has been an exponential growth in functional connectomics research in neurodegenerative disorders. This review summarizes the recent findings and limitations of the field in Parkinson's disease (PD) and atypical parkinsonian syndromes. RECENT FINDINGS Increasingly more sophisticated methods ranging from seed-based to network and whole-brain dynamic functional connectivity have been used. Results regarding the disruption in the functional connectome vary considerably based on disease severity and phenotypes, and treatment status in PD. Non-motor symptoms of PD also link to the dysfunction in heterogeneous networks. Studies in atypical parkinsonian syndromes are relatively scarce. An important clinical goal of functional connectomics in neurodegenerative disorders is to establish the presence of pathology, track disease progression, predict outcomes, and monitor treatment response. The obstacles of reliability and reproducibility in the field need to be addressed to improve the potential of the functional connectome as a biomarker for these purposes in PD and atypical parkinsonian syndromes.
Collapse
Affiliation(s)
- Sule Tinaz
- Department of Neurology, Division of Movement Disorders, Yale University School of Medicine, 15 York St, LCI 710, New Haven, CT, 06510, USA.
| |
Collapse
|
18
|
Prasad S, Rajan A, Pasha SA, Mangalore S, Saini J, Ingalhalikar M, Pal PK. Abnormal structural connectivity in progressive supranuclear palsy-Richardson syndrome. Acta Neurol Scand 2021; 143:430-440. [PMID: 33175396 DOI: 10.1111/ane.13372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 01/14/2023]
Abstract
OBJECTIVES Progressive supranuclear palsy-Richardson syndrome (PSP-RS) is characterized by symmetrical parkinsonism with postural instability and frontal dysfunction. This study aims to use the whole brain structural connectome (SC) to gain insights into the underlying disconnectivity which may be implicated in the clinical features of PSP-RS. METHODS Sixteen patients of PSP-RS and 12 healthy controls were recruited. Disease severity was quantified using PSP rating scale (PSPRS), and mini-mental scale was applied to evaluate cognition. Thirty-two direction diffusion MRIs were acquired and used to compute the structural connectome of the whole brain using deterministic fiber tracking. Group analyses were performed at the edge-wise, nodal, and global levels. Age and gender were used as nuisance covariates for all the subsequent analyses, and FDR correction was applied. RESULTS Network-based statistics revealed a 34-edge network with significantly abnormal edge-wise connectivity in the patient group. Of these, 25 edges were cortical connections, of which 68% were frontal connections. Abnormal deep gray matter connections were predominantly comprised of connections between structures of the basal ganglia. The characteristic path length of the SC was lower in PSP-RS, and nodal analysis revealed abnormal degree, strength, local efficiency, betweenness centrality, and participation coefficient in several nodes. CONCLUSIONS Significant alterations in the structural connectivity of the whole brain connectome were observed in PSP-RS. The higher degree of abnormality observed in nodes belonging to the frontal lobe and basal ganglia substantiates the predominant frontal dysfunction and parkinsonism observed in PSP-RS. The findings of this study support the concept that PSP-RS may be a network-based disorder.
Collapse
Affiliation(s)
- Shweta Prasad
- Department of Clinical Neurosciences National Institute of Mental Health & Neurosciences Bangalore India
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Archith Rajan
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Shaik Afsar Pasha
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| | - Sandhya Mangalore
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Jitender Saini
- Department of Neuroimaging & Interventional Radiology National Institute of Mental Health & Neurosciences Bangalore India
| | - Madhura Ingalhalikar
- Symbiosis Center for Medical Image Analysis Symbiosis International University Pune India
- Symbiosis Institute of Technology Symbiosis International University Pune India
| | - Pramod Kumar Pal
- Department of Neurology National Institute of Mental Health & Neurosciences Bangalore India
| |
Collapse
|
19
|
Suicidal and death ideation in patients with progressive supranuclear palsy and corticobasal syndrome. J Affect Disord 2020; 276:1061-1068. [PMID: 32768878 DOI: 10.1016/j.jad.2020.07.127] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 06/17/2020] [Accepted: 07/28/2020] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A large proportion of patients with atypical parkinsonian syndromes suffer from depression, an antecedent of suicide. This study aimed to explore the prevalence and clinical correlates of suicidal and death ideation (SDI) in patients with Progressive Supranuclear Palsy (PSP) and Corticobasal Syndrome (CBS), as well as compare the differences with patients with Parkinson's disease (PD). METHODS This was a case-control, cross-sectional study. SDI was diagnosed based on the assessment of the Hamilton Depression Rating Scale (HRDS). The prevalence of SDI among patients with PD, PSP, and CBS (n = 3400, 268, and 65 respectively) were compared before and after propensity score matching (PSM). A forward binary logistic regression model was used to explore the associated factors of SDI. RESULTS None of the patients reported suicide attempts. The prevalence of SDI in patients with PSP and CBS were 27.2% and 29.2%, respectively, which was significantly higher than that in patients with PD before and after PSM (P < 0.05). The prevalence of SDI was not significantly different among patients with PSP with different subtypes (Richardson syndrome, Parkinsonism, and other), both before and after PSM (P > 0.05). Multivariate analysis indicated that higher gait and midline score and depression were independently associated with an increased risk of SDI in patients with PSP (P < 0.05), while higher non-motor symptoms score and depression were independently associated with the occurrence of SDI in patients with CBS (P < 0.05). CONCLUSIONS Our study highlights the importance of screening SDI in patients with PSP and CBS.
Collapse
|
20
|
Spina S, Brown JA, Deng J, Gardner RC, Nana AL, Hwang JHL, Gaus SE, Huang EJ, Kramer JH, Rosen HJ, Kornak J, Neuhaus J, Miller BL, Grinberg LT, Boxer AL, Seeley WW. Neuropathological correlates of structural and functional imaging biomarkers in 4-repeat tauopathies. Brain 2020; 142:2068-2081. [PMID: 31081015 DOI: 10.1093/brain/awz122] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Revised: 02/23/2019] [Accepted: 03/07/2019] [Indexed: 12/24/2022] Open
Abstract
Neurodegenerative dementia syndromes are characterized by spreading of pathological protein deposition along syndrome-specific neural networks. Structural and functional MRI measures can assess the integrity of these networks and have been proposed as biomarkers of disease progression for clinical trials. The relationship between in vivo imaging measures and pathological features, at the single subject level, remains largely unknown. Patient-specific maps of atrophy and seed-based intrinsic connectivity disruption, as compared to normal controls, were obtained for 27 patients subsequently diagnosed with progressive supranuclear palsy (n = 16, seven males, age at death 68.9 ± 6.0 years, imaging-to-pathology interval = 670.2 ± 425.1 days) or corticobasal degeneration (n = 11, two males, age at death 66.7 ± 5.4 years, imaging-to-pathology interval = 696.2 ± 482.2 days). A linear mixed effect model with crossed random effects was used to test regional and single-subject level associations between post-mortem regional measures of neurodegeneration and tau inclusion burden, on the one hand, and regional volume loss and seed-based intrinsic connectivity reduction, on the other. A significant association was found between tau inclusion burden and in vivo volume loss, at the regional level and independent of neurodegeneration severity, in both progressive supranuclear palsy [n = 340 regions; beta 0.036; 95% confidence interval (CI): 0.001, 0.072; P = 0.046] and corticobasal degeneration (n = 215 regions; beta 0.044; 95% CI: 0.009, 0.079; P = 0.013). We also found a significant association between post-mortem neurodegeneration and in vivo volume loss in both progressive supranuclear palsy (n = 340 regions; beta 0.155; 95% CI: 0.061, 0.248; P = 0.001) and corticobasal degeneration (n = 215 regions; beta 0.277; 95% CI: 0.104, 0.450; P = 0.002). We found a significant association between regional neurodegeneration and intrinsic connectivity dysfunction in corticobasal degeneration (n = 215 regions; beta 0.074; 95% CI: 0.005, 0.143; P = 0.035), but no other associations between post-mortem measures of tauopathy and intrinsic connectivity dysfunction reached statistical significance. Our data suggest that in vivo structural imaging measures reflect independent contributions from neurodegeneration and tau burden in progressive supranuclear palsy and corticobasal degeneration. Seed-based measures of intrinsic connectivity dysfunction showed less reliable predictive value when used as in vivo biomarkers of tauopathy. The findings provide important guidance for the use of imaging biomarkers as indirect in vivo assays of microscopic pathology.
Collapse
Affiliation(s)
- Salvatore Spina
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Jesse A Brown
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Jersey Deng
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Raquel C Gardner
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Alissa L Nana
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Ji-Hye L Hwang
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Stephanie E Gaus
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Eric J Huang
- Department of Pathology, University of California San Francisco, USA
| | - Joel H Kramer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Howie J Rosen
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - John Kornak
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA
| | - John Neuhaus
- Department of Epidemiology and Biostatistics, University of California San Francisco, USA
| | - Bruce L Miller
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - Lea T Grinberg
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA.,Department of Pathology, University of California San Francisco, USA
| | - Adam L Boxer
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA
| | - William W Seeley
- Memory and Aging Center, Department of Neurology, University of California San Francisco, USA.,Department of Pathology, University of California San Francisco, USA
| |
Collapse
|
21
|
Abstract
PURPOSE OF REVIEW Corticobasal degeneration (CBD) is a rapidly progressive neurodegenerative tauopathy diagnosed postmortem by pathological examination. The clinical presentation of corticobasal syndrome (CBS) is an apraxic, dystonic, and rigid limb with asymmetrical cortical signs and myoclonus. However, less than half of the patients with CBS receive a CBD diagnosis. As tau-lowering therapies have entered clinical trials, improved antemortem diagnosis of CBD is needed. Here, clinicopathological, neuroimaging, and biofluid data in CBS and/or CBD patients are briefly summarized and some knowledge gaps identified. RECENT FINDINGS Developments of MRI-based and nuclear medicine imaging modalities have increased pathophysiological insights of CBS and may improve diagnostic accuracy. In particular, several tau-PET ligands have been evaluated in CBS patients. Cerebrospinal fluid and plasma levels of neurofilament light chain can distinguish CBS from Parkinson's disease but not from other atypical forms of Parkinsonism. SUMMARY Structural and functional imaging approaches provide some aid in the diagnosis of CBD but have low-content validity. None of the currently available tau-PET ligands is suitable for detecting straight filament 4repeat tau disease in clinical routine. Biofluid markers reflecting the distinct tau and/or astrocyte disease of CBD are needed. Examining biosamples along with clinical parameters from longitudinally followed patients with autopsy-confirmed CBD diagnosis shall hopefully delineate improved biomarkers.
Collapse
|
22
|
Ballarini T, Albrecht F, Mueller K, Jech R, Diehl-Schmid J, Fliessbach K, Kassubek J, Lauer M, Fassbender K, Schneider A, Synofzik M, Wiltfang J, Otto M, Schroeter ML. Disentangling brain functional network remodeling in corticobasal syndrome - A multimodal MRI study. NEUROIMAGE-CLINICAL 2019; 25:102112. [PMID: 31821953 PMCID: PMC6906725 DOI: 10.1016/j.nicl.2019.102112] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 11/27/2019] [Accepted: 12/01/2019] [Indexed: 11/01/2022]
Abstract
OBJECTIVE The clinical diagnosis of corticobasal syndrome (CBS) represents a challenge for physicians and reliable diagnostic imaging biomarkers would support the diagnostic work-up. We aimed to investigate the neural signatures of CBS using multimodal T1-weighted and resting-state functional magnetic resonance imaging (MRI). METHODS Nineteen patients with CBS (age 67.0 ± 6.0 years; mean±SD) and 19 matched controls (66.5 ± 6.0) were enrolled from the German Frontotemporal Lobar Degeneration Consortium. Changes in functional connectivity and structure were respectively assessed with eigenvector centrality mapping complemented by seed-based analysis and with voxel-based morphometry. In addition to mass-univariate statistics, multivariate support vector machine (SVM) classification tested the potential of multimodal MRI to differentiate patients and controls. External validity of SVM was assessed on independent CBS data from the 4RTNI database. RESULTS A decrease in brain interconnectedness was observed in the right central operculum, middle temporal gyrus and posterior insula, while widespread connectivity increases were found in the anterior cingulum, medial superior-frontal gyrus and in the bilateral caudate nuclei. Severe and diffuse gray matter volume reduction, especially in the bilateral insula, putamen and thalamus, characterized CBS. SVM classification revealed that both connectivity (area under the curve 0.81) and structural abnormalities (0.80) distinguished CBS from controls, while their combination led to statistically non-significant improvement in discrimination power, questioning the additional value of functional connectivity over atrophy. SVM analyses based on structural MRI generalized moderately well to new data, which was decisively improved when guided by meta-analytically derived disease-specific regions-of-interest. CONCLUSIONS Our data-driven results show impairment of functional connectivity and brain structure in CBS and explore their potential as imaging biomarkers.
Collapse
Affiliation(s)
- Tommaso Ballarini
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany.
| | - Franziska Albrecht
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Karsten Mueller
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany
| | - Robert Jech
- Department of Neurology, Charles University, First Faculty of Medicine, Prague, Czech Republic
| | - Janine Diehl-Schmid
- Department of Psychiatry and Psychotherapy, Technical University of Munich, Germany
| | - Klaus Fliessbach
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Germany
| | - Jan Kassubek
- Department of Neurology, University of Ulm, Germany
| | - Martin Lauer
- Clinic for Psychiatry, Psychosomatic medicine and Psychotherapy, University Würzburg, Germany
| | | | - Anja Schneider
- Department of Neurodegenerative Diseases and Geriatric Psychiatry, University Bonn, Germany
| | - Matthis Synofzik
- Department of Neurodegenerative Diseases, Centre for Neurology & Hertie-Institute for Clinical Brain Research, University of Tübingen, Germany; German Center for Neurodegenerative Diseases (DZNE), Tübingen, Germany
| | | | | | | | - Markus Otto
- Department of Neurology, University of Ulm, Germany
| | - Matthias L Schroeter
- Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Germany; Clinic for Cognitive Neurology, University Clinic, Leipzig, Germany
| |
Collapse
|
23
|
Saranza GM, Whitwell JL, Kovacs GG, Lang AE. Corticobasal degeneration. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2019; 149:87-136. [PMID: 31779825 DOI: 10.1016/bs.irn.2019.10.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Corticobasal degeneration (CBD) is a rare neurodegenerative disease characterized by the predominance of pathological 4 repeat tau deposition in various cell types and anatomical regions. Corticobasal syndrome (CBS) is one of the clinical phenotypes associated with CBD pathology, manifesting as a progressive asymmetric akinetic-rigid, poorly levodopa-responsive parkinsonism, with cerebral cortical dysfunction. CBD can manifest as several clinical phenotypes, and similarly, CBS can also have a pathologic diagnosis other than CBD. This chapter discusses the clinical manifestations of pathologically confirmed CBD cases, the current diagnostic criteria, as well as the pathologic and neuroimaging findings of CBD/CBS. At present, therapeutic options for CBD remain symptomatic. Further research is needed to improve the clinical diagnosis of CBD, as well as studies on disease-modifying therapies for this relentlessly progressive neurodegenerative disorder.
Collapse
Affiliation(s)
- Gerard M Saranza
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada
| | | | - Gabor G Kovacs
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada; Laboratory Medicine Program, University Health Network, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Anthony E Lang
- Edmond J. Safra Program in Parkinson's Disease and the Morton and Gloria Shulman Movement Disorders Clinic, Toronto Western Hospital, Toronto, Ontario, Canada; Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
24
|
Aberrant functional connectivity in patients with Parkinson's disease and freezing of gait: a within- and between-network analysis. Brain Imaging Behav 2019; 14:1543-1554. [PMID: 30887415 DOI: 10.1007/s11682-019-00085-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Freezing of gait (FOG) is a disabling motor symptom that affects patients with Parkinson's disease (PD). MRI-based evidence suggest that multiple brain structures are involved in the occurrence of FOG. We investigated the integrity of the neuronal networks in PD patients with FOG (PD-FOG), considering both within-network resting-state functional connectivity (rsFC) and between-network rsFC. Thirty-one PD patients (15 PD-FOG and 16 PD-nFOG) and 16 healthy subjects (HS) underwent a rsfMRI study. The data was analysed by using FSL Melodic and FSLNets software to study within- and between-network rsFC. PD-FOG displayed a higher within-network rsFC that involved a greater number of resting-state networks (RSNs) than PD-nFOG. rsFC in the basal ganglia network significantly correlated with the Timed Up and Go test. Moreover, when compared with HS, PD-FOG displayed reduced rsFC between the right fronto-parietal and executive-control RSNs, which significantly correlated with FOG severity. This study demonstrates that FOG is associated with an impaired interplay and communication between the RSNs that underpin attentive and executive abilities, especially in the right hemisphere.
Collapse
|
25
|
Di Stasio F, Suppa A, Marsili L, Upadhyay N, Asci F, Bologna M, Colosimo C, Fabbrini G, Pantano P, Berardelli A. Corticobasal syndrome: neuroimaging and neurophysiological advances. Eur J Neurol 2019; 26:701-e52. [PMID: 30720235 DOI: 10.1111/ene.13928] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Accepted: 01/30/2019] [Indexed: 01/14/2023]
Abstract
Corticobasal degeneration (CBD) is a neurodegenerative condition characterized by 4R tau protein deposition in several brain regions that clinically manifests itself as a heterogeneous atypical parkinsonism typically expressed in adulthood. The prototypical clinical phenotype of CBD is corticobasal syndrome (CBS). Important insights into the pathophysiological mechanisms underlying motor and higher cortical symptoms in CBS have been gained by using advanced neuroimaging and neurophysiological techniques. Structural and functional neuroimaging studies often show asymmetric cortical and subcortical abnormalities, mainly involving perirolandic and parietal regions and basal ganglia structures. Neurophysiological investigations including electroencephalography and somatosensory evoked potentials provide useful information on the origin of myoclonus and on cortical sensory loss. Transcranial magnetic stimulation demonstrates heterogeneous and asymmetric changes in the excitability and plasticity of primary motor cortex and abnormal hemispheric connectivity. Neuroimaging and neurophysiological abnormalities in multiple brain areas reflect asymmetric neurodegeneration, leading to asymmetric motor and higher cortical symptoms in CBS.
Collapse
Affiliation(s)
- F Di Stasio
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy
| | - A Suppa
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy.,Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - L Marsili
- Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - N Upadhyay
- Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - F Asci
- Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - M Bologna
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy.,Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - C Colosimo
- Department of Neurology, Santa Maria University Hospital, Terni, Italy
| | - G Fabbrini
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy.,Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - P Pantano
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy.,Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| | - A Berardelli
- IRCCS Neuromed Institute, 'Sapienza' University of Rome, Pozzilli (Isernia), Italy.,Department of Human Neuroscience, 'Sapienza' University of Rome, Rome, Italy
| |
Collapse
|
26
|
Filippi M, Sarasso E, Agosta F. Resting-state Functional MRI in Parkinsonian Syndromes. Mov Disord Clin Pract 2019; 6:104-117. [PMID: 30838308 DOI: 10.1002/mdc3.12730] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Revised: 12/28/2018] [Accepted: 01/16/2019] [Indexed: 01/18/2023] Open
Abstract
Background Functional MRI (fMRI) has been widely used to study abnormal patterns of functional connectivity at rest in patients with movement disorders such as idiopathic Parkinson's disease (PD) and atypical parkinsonisms. Methods This manuscript provides an educational review of the current use of resting-state fMRI in the field of parkinsonian syndromes. Results Resting-state fMRI studies have improved the current knowledge about the mechanisms underlying motor and non-motor symptom development and progression in movement disorders. Even if its inclusion in clinical practice is still far away, resting-state fMRI has the potential to be a promising biomarker for early disease detection and prediction. It may also aid in differential diagnosis and monitoring brain responses to therapeutic agents and neurorehabilitation strategies in different movement disorders. Conclusions There is urgent need to identify and validate prodromal biomarkers in PD patients, to perform further studies assessing both overlapping and disease-specific fMRI abnormalities among parkinsonian syndromes, and to continue technical advances to fully realize the potential of fMRI as a tool to monitor the efficacy of chronic therapies.
Collapse
Affiliation(s)
- Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy.,Laboratory of Movement Analysis San Raffaele Scientific Institute Milan Italy
| | - Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute Vita-Salute San Raffaele University Milan Italy
| |
Collapse
|
27
|
Pini L, Manenti R, Cotelli M, Pizzini FB, Frisoni GB, Pievani M. Non-Invasive Brain Stimulation in Dementia: A Complex Network Story. NEURODEGENER DIS 2019; 18:281-301. [PMID: 30695786 DOI: 10.1159/000495945] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 11/30/2018] [Indexed: 11/19/2022] Open
Abstract
Non-invasive brain stimulation (NIBS) is emerging as a promising rehabilitation tool for a number of neurodegenerative diseases. However, the therapeutic mechanisms of NIBS are not completely understood. In this review, we will summarize NIBS results in the context of brain imaging studies of functional connectivity and metabolites to gain insight into the possible mechanisms underlying recovery. We will briefly discuss how the clinical manifestations of common neurodegenerative disorders may be related with aberrant connectivity within large-scale neural networks. We will then focus on recent studies combining resting-state functional magnetic resonance imaging with NIBS to delineate how stimulation of different brain regions induce complex network modifications, both at the local and distal level. Moreover, we will review studies combining magnetic resonance spectroscopy and NIBS to investigate how microscale changes are related to modifications of large-scale networks. Finally, we will re-examine previous NIBS studies in dementia in light of this network perspective. A better understanding of NIBS impact on the functionality of large-scale brain networks may be useful to design beneficial treatments for neurodegenerative disorders.
Collapse
Affiliation(s)
- Lorenzo Pini
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Francesca B Pizzini
- Neuroradiology, Department of Diagnostics and Pathology, Verona University Hospital, Verona, Italy
| | - Giovanni B Frisoni
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.,University Hospitals and University of Geneva, Geneva, Switzerland
| | - Michela Pievani
- Laboratory Alzheimer's Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,
| |
Collapse
|
28
|
Fabbrini G, Fabbrini A, Suppa A. Progressive supranuclear palsy, multiple system atrophy and corticobasal degeneration. ACTA ACUST UNITED AC 2019; 165:155-177. [DOI: 10.1016/b978-0-444-64012-3.00009-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
29
|
Agosta F, Sarasso E, Filippi M. Functional MRI in Atypical Parkinsonisms. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2018; 142:149-173. [PMID: 30409252 DOI: 10.1016/bs.irn.2018.09.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
The present chapter reports the current knowledge on the use of functional MRI (fMRI) in patients with atypical parkinsonisms, including Multiple System Atrophy, Corticobasal Syndrome and Progressive Supranuclear Palsy syndrome. Both resting state functional connectivity and task-based brain activity abnormalities are reported in atypical parkinsonisms relative to healthy controls and Parkinson's disease patients. Functional alterations were observed earlier than structural damage and may help to make early diagnosis. The chapter also examines the few longitudinal evidence on fMRI changes in patients with these conditions. The potential use of fMRI techniques in aiding the differential diagnosis, accurately measuring disease progression and assessing the effectiveness of therapeutic interventions is discussed.
Collapse
Affiliation(s)
- Federica Agosta
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy.
| | - Elisabetta Sarasso
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Laboratory of Movement Analysis, San Raffaele Scientific Institute, Milan, Italy
| | - Massimo Filippi
- Neuroimaging Research Unit, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy; Department of Neurology, Institute of Experimental Neurology, Division of Neuroscience, San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
30
|
Belvisi D, Berardelli I, Suppa A, Fabbrini A, Pasquini M, Pompili M, Fabbrini G. Neuropsychiatric disturbances in atypical parkinsonian disorders. Neuropsychiatr Dis Treat 2018; 14:2643-2656. [PMID: 30349262 PMCID: PMC6186304 DOI: 10.2147/ndt.s178263] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Multiple system atrophy (MSA), progressive supranuclear palsy (PSP), and corticobasal degeneration (CBD) are the most common atypical parkinsonisms. These disorders are characterized by varying combinations of autonomic, cerebellar and pyramidal system, and cognitive dysfunctions. In this paper, we reviewed the evidence available on the presence and type of neuropsychiatric disturbances in MSA, PSP, and CBD. A MedLine, Excerpta Medica, PsycLit, PsycInfo, and Index Medicus search was performed to identify all articles published on this topic between 1965 and 2018. Neuropsychiatric disturbances including depression, anxiety, agitation, and behavioral abnormalities have been frequently described in these disorders, with depression as the most frequent disturbance. MSA patients show a higher frequency of depressive disorders when compared to healthy controls. An increased frequency of anxiety disorders has also been reported in some patients, and no studies have investigated apathy. PSP patients may have depression, apathy, disinhibition, and to a lesser extent, anxiety and agitation. In CBD, neuropsychiatric disorders are similar to those present in PSP. Hallucinations and delusions are rarely reported in these disorders. Neuropsychiatric symptoms in MSA, PSP, and CBD do not appear to be related to the severity of motor dysfunction and are one of the main factors that determine a low quality of life. The results suggest that neuropsychiatric disturbances should always be assessed in patients with atypical parkinsonisms.
Collapse
Affiliation(s)
| | - Isabella Berardelli
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Antonio Suppa
- IRCCS Neuromed, Pozzilli, Italy,
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy,
| | - Andrea Fabbrini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy,
| | - Massimo Pasquini
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy,
| | - Maurizio Pompili
- Department of Neurosciences, Mental Health and Sensory Organs, Suicide Prevention Center, Sant'Andrea Hospital, Sapienza University of Rome, Rome, Italy
| | - Giovanni Fabbrini
- IRCCS Neuromed, Pozzilli, Italy,
- Department of Human Neurosciences, Sapienza University of Rome, Rome, Italy,
| |
Collapse
|
31
|
Botha H, Utianski RL, Whitwell JL, Duffy JR, Clark HM, Strand EA, Machulda MM, Tosakulwong N, Knopman DS, Petersen RC, Jack CR, Josephs KA, Jones DT. Disrupted functional connectivity in primary progressive apraxia of speech. Neuroimage Clin 2018; 18:617-629. [PMID: 29845010 PMCID: PMC5964833 DOI: 10.1016/j.nicl.2018.02.036] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 02/13/2018] [Accepted: 02/28/2018] [Indexed: 12/12/2022]
Abstract
Apraxia of speech is a motor speech disorder thought to result from impaired planning or programming of articulatory movements. It can be the initial or only manifestation of a degenerative disease, termed primary progressive apraxia of speech (PPAOS). The aim of this study was to use task-free functional magnetic resonance imaging (fMRI) to assess large-scale brain network pathophysiology in PPAOS. Twenty-two PPAOS participants were identified from a prospective cohort of degenerative speech and language disorders patients. All participants had a comprehensive, standardized evaluation including an evaluation by a speech-language pathologist, examination by a behavioral neurologist and a multimodal imaging protocol which included a task-free fMRI sequence. PPAOS participants were age and sex matched to amyloid-negative, cognitively normal participants with a 1:2 ratio. We chose a set of hypothesis driven, predefined intrinsic connectivity networks (ICNs) from a large, out of sample independent component analysis and then used them to initialize a spatiotemporal dual regression to estimate participant level connectivity within these ICNs. Specifically, we evaluated connectivity within the speech and language, face and hand sensorimotor, left working memory, salience, superior parietal, supramarginal, insular and deep gray ICNs in a multivariate manner. The spatial maps for each ICN were then compared between PPAOS and control participants. We used clinical measures of apraxia of speech severity to assess for clinical-connectivity correlations for regions found to differ between PPAOS and control participants. Compared to controls, PPAOS participants had reduced connectivity of the right supplementary motor area and left posterior temporal gyrus to the rest of the speech and language ICN. The connectivity of the right supplementary motor area correlated negatively with an articulatory error score. PPAOS participants also had reduced connectivity of the left supplementary motor area to the face sensorimotor ICN, between the left lateral prefrontal cortex and the salience ICN and between the left temporal-occipital junction and the left working memory ICN. The latter connectivity correlated with the apraxia of speech severity rating scale, although the finding did not survive correction for multiple comparisons. Increased connectivity was noted in PPAOS participants between the dorsal posterior cingulate and the left working memory ICN. Our results support the importance of the supplementary motor area in the pathophysiology of PPAOS, which appears to be disconnected from speech and language regions. Supplementary motor area connectivity may serve as a biomarker of degenerative apraxia of speech severity.
Collapse
Key Words
- AES, Articulatory Error Score
- AOS, Apraxia Of Speech
- AQ, Aphasia Quotient
- ASRS, Apraxia of Speech Severity Rating Scale
- Apraxia of speech
- BNT, Boston Naming Test
- FAB, Frontal Assessment Battery
- FBI, Frontal Behavioral Inventory
- Functional connectivity
- ICN, Intrinsic Connectivity Network
- Intrinsic connectivity networks
- MMSE, Mini-Mental State Examination
- NPI-S, Neuropsychiatric Inventory – Severity
- NVOA, Nonverbal Oral Apraxia
- PCC, Posterior Cingulate Cortex
- PFC, Prefrontal Cortex
- PPA, Primary Progressive Aphasia
- SMA, Supplementary Motor Area
- TOJ, Temporal-Occipital Junction
- TT, Token Test
- UPDRS, Unified Parkinson Disease Rating Scale
- WAB, Western Aphasia Battery
- agPPA, Agrammatic/Nonfluent PPA
Collapse
Affiliation(s)
- Hugo Botha
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Rene L Utianski
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | | | - Joseph R Duffy
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Heather M Clark
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Edythe A Strand
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Mary M Machulda
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Nirubol Tosakulwong
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, United States.
| | - David S Knopman
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Ronald C Petersen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Clifford R Jack
- Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States.
| | - Keith A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States.
| | - David T Jones
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, United States; Department of Radiology, Mayo Clinic, Rochester, MN 55905, United States.
| |
Collapse
|
32
|
Ali F, Josephs KA. Corticobasal degeneration: key emerging issues. J Neurol 2017; 265:439-445. [PMID: 29063240 DOI: 10.1007/s00415-017-8644-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 10/08/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Corticobasal degeneration (CBD) was first described by Rebeiz et al. in 1967, and was called corticodentatonigral degeneration with neuronal achromasia [1]. Since then, our knowledge of the clinical features and underlying tau pathology has grown tremendously. Clinical antemortem diagnosis of CBD pathology remains challenging and has led to the development of revised diagnostic criteria. As various clinical phenotypes may have CBD pathology, accurate prevalence studies are lacking. Recently, pooled prevalence of fronto-temporal lobar degeneration, PSP and CBS was reported as 10.6 per 100,000 [2]. Although rare, CBD is an important disease to understand because it provides a model of a specific proteinopathy (tauopathy) and, therefore, opportunity to study pathophysiology of tauopathies and efficacy of tau-directed therapies. In the past few years, identification of tau specific ligands has advanced neuroimaging of tauopathies such as CBD and progressive supranuclear palsy. However, clinical prediction of CBD pathology remains challenging and an active are of research. In this review, we highlight key emerging issues in CBD pathophysiology, genetics and novel neuroimaging techniques with tau ligands.
Collapse
Affiliation(s)
- F Ali
- Department of Neurology, Mayo Clinic, Rochester, MN, USA.
| | - K A Josephs
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|