1
|
Beauchamp JA, Pearcey GEP, Khurram OU, Negro F, Dewald JPA, Heckman CJ. Intrinsic properties of spinal motoneurons degrade ankle torque control in humans. J Physiol 2025; 603:2443-2463. [PMID: 40153847 PMCID: PMC12013794 DOI: 10.1113/jp287446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/26/2025] [Indexed: 04/01/2025] Open
Abstract
Motoneurons are the final common pathway for all motor commands and possess intrinsic electrical properties that must be tuned to control muscle across the full range of motor behaviours. Neuromodulatory input from the brainstem is probably essential for adapting motoneuron properties to match this diversity of motor tasks. A primary mechanism of this adaptation, control of dendritic persistent inward currents (PICs) in motoneurons by brainstem monoaminergic systems, generates both amplification and prolongation of synaptic inputs. While essential, there is an inherent tension between this amplification and prolongation. Although amplification by PICs allows for quick recruitment and acceleration of motoneuron discharge, PICs must be deactivated to derecruit motoneurons upon movement cessation. In contrast, during stabilizing or postural tasks, PIC-induced prolongation of synaptic inputs is critical for sustained motoneuron discharge. Here, we designed two motor tasks that challenged the inhibitory control of PICs, generating unduly PIC prolongation that increases variability in human torque control. This included a paradigm combining a discrete motor task with a stabilizing task and another involving muscle length-induced changes to the balance of excitatory and inhibitory inputs available for controlling PICs. We show that prolongation from PICs introduces difficulties in ankle torque control and that these difficulties are further degraded at shorter muscle lengths when PIC prolongation is greatest. These results highlight the necessity for inhibitory control of PICs and showcase issues introduced when inhibitory control is constrained. Our findings suggest that, like sensory systems, errors are inherent in motor systems. These errors are not due to problems in the perception of movement-related sensory input but are embedded in the final stage of motor output. This has many implications relevant to clinical conditions (e.g. chronic stroke) where pathological shifts in monoamines may further amplify these errors. KEY POINTS: All motor commands are processed via spinal motoneurons, whose intrinsic electrical properties are adapted by brainstem neuromodulatory input. The effects of these neuromodulatory inputs (i.e. persistent inward currents; PICs) must be tightly regulated by inhibitory inputs to allow for the large repertoire of human motor behaviours. We designed two motor tasks to restrict the ability of inhibitory synaptic inputs to control PICs and show that this generates substantial errors that reduce the precision of motor output in humans. Our findings suggest that errors are inherent in motor systems and embedded in the final stage of motor output. This has many implications relevant to clinical conditions (e.g. chronic stroke) and may, speculatively, shed light on contributing factors to muscle cramps.
Collapse
Affiliation(s)
- James A. Beauchamp
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityChicagoILUSA
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - Gregory E. P. Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- School of Human Kinetics and RecreationMemorial University of NewfoundlandSt. John'sNLCanada
| | - Obaid U. Khurram
- Department of Physiology and Biomedical EngineeringMayo ClinicRochesterMNUSA
| | - Francesco Negro
- Department of Clinical and Experimental SciencesUniversita degli Studi di BresciaBresciaItaly
| | - Julius P. A. Dewald
- Department of Biomedical Engineering, McCormick School of EngineeringNorthwestern UniversityChicagoILUSA
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
| | - C. J. Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Physical Medicine and Rehabilitation, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Department of Neuroscience, Feinberg School of MedicineNorthwestern UniversityChicagoILUSA
- Shirley Ryan AbilityLabChicagoILUSA
| |
Collapse
|
2
|
Sinha N, Dewald JPA, Yang Y. Perturbation-induced electromyographic activity is predictive of flexion synergy expression and a sensitive measure of post-stroke motor impairment. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2024; 2024:1-4. [PMID: 40039166 PMCID: PMC11883170 DOI: 10.1109/embc53108.2024.10781597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The goal of this study was to explore whether the stretch reflex-induced muscle activity is correlated with the expression of the flexion synergy and, therefore, can serve as a quantitative indicator of post-stroke motor impairment. Eleven stroke participants stroke were recruited for this study. Their forearm was connected to a robotic device that applied continuous position perturbations to the paretic elbow joint. The magnitude of EMG activity of the spastic biceps brachii was measured. The expression of the flexion synergy was determined using the increase of synergistic elbow flexion torque when subjects were gradually lifting their paretic arm with two derived measures: normalized flexion synergy area (NFSA) and the mean slope of the expression of flexion synergy (ΔFS). Significant positive correlations were found between spastic biceps EMG (predictor variable) and the flexion synergy expression (response variables), i.e., NFSA (ρ = 0.89, p < 0.001) and ΔFS (ρ = 0.73, p = 0.01). This result indicates that the perturbation-induced EMG activity can serve as a sensitive indicator of post-stroke motor impairments related to the expression of spasticity and flexion synergy and demonstrates that these motor impairments may be mechanistically linked.
Collapse
|
3
|
Beauchamp JA, Hassan AS, McPherson LM, Negro F, Pearcey GEP, Cummings M, Heckman CJ, Dewald JPA. Motor unit firing rate modulation is more impaired during flexion synergy-driven contractions of the biceps brachii in chronic stroke. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.22.23298905. [PMID: 38045404 PMCID: PMC10690344 DOI: 10.1101/2023.11.22.23298905] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
Following a hemiparetic stroke, individuals exhibit altered motor unit firing patterns during voluntary muscle contractions, including impairments in firing rate modulation and recruitment. These individuals also exhibit abnormal muscle coactivation through multi-joint synergies (e.g., flexion synergy). Here, we investigate whether motor unit firing activity during flexion synergy-driven contractions of the paretic biceps brachii differs from that of voluntary contractions and use these differences to predict changes in descending motor commands. To accomplish this, we characterized motor unit firing patterns of the biceps brachii in individuals with chronic hemiparetic stroke during voluntary isometric elbow flexion contractions in the paretic and non-paretic limbs, as well as during contractions driven by voluntary effort and by flexion synergy expression in the paretic limb. We observed significant reductions in motor unit firing rate modulation from the non-paretic to paretic limb (non-paretic - paretic: 0.14 pps/%MVT, 95% CI: [0.09 0.19]) that were further reduced during synergy-driven contractions (voluntary paretic - synergy driven: 0.19 pps/%MVT, 95% CI: [0.14 0.25]). Moreover, using recently developed metrics, we evaluated how a stroke-induced reliance on indirect motor pathways alters the inputs that motor units receive and revealed progressive increases in neuromodulatory and inhibitory drive to the motor pool in the paretic limb, with the changes greatest during synergy-driven contractions. These findings suggest that an interplay between heightened neuromodulatory drive and alterations in inhibitory command structure may account for the observed motor unit impairments, further illuminating underlying neural mechanisms involved in the flexion synergy and its impact on motor unit firing patterns post-stroke.
Collapse
|
4
|
Williamson JN, James SA, He D, Li S, Sidorov EV, Yang Y. High-definition transcranial direct current stimulation for upper extremity rehabilitation in moderate-to-severe ischemic stroke: a pilot study. Front Hum Neurosci 2023; 17:1286238. [PMID: 37900725 PMCID: PMC10602806 DOI: 10.3389/fnhum.2023.1286238] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 09/20/2023] [Indexed: 10/31/2023] Open
Abstract
Introduction Previous studies found that post-stroke motor impairments are associated with damage to the lesioned corticospinal tract (CST) and hyperexcitability of the contralesional cortico-reticulospinal tract (CRST). This proof-of-concept study aims to develop a non-invasive brain stimulation protocol that facilitates the lesioned CST and inhibits the contralesional CRST to improve upper extremity rehabilitation in individuals with moderate-to-severe motor impairments post-stroke. Methods Fourteen individuals (minimum 3 months post ischemic stroke) consented. Physician decision of the participants baseline assessment qualified eight to continue in a randomized, double-blind cross-over pilot trial (ClinicalTrials.gov Identifier: NCT05174949) with: (1) anodal high-definition transcranial direct stimulation (HD-tDCS) over the ipsilesional primary motor cortex (M1), (2) cathodal HD-tDCS over contralesional dorsal premotor cortex (PMd), (3) sham stimulation, with a two-week washout period in-between. Subject-specific MR images and computer simulation were used to guide HD-tDCS and verified by Transcranial Magnetic Stimulation (TMS) induced Motor Evoked Potential (MEP). The motor behavior outcome was evaluated by an Fugl-Meyer Upper Extremity score (primary outcome measure) and the excitability of the ipslesoinal CST and contralesional CRST was determined by the change of MEP latencies and amplitude (secondary outcome measures). Results The baseline ipsilesional M1 MEP latency and amplitude were correlated with FM-UE. FM-UE scores were improved post HD-tDCS, in comparison to sham stimulation. Both anodal and cathodal HD-tDCS reduced the latency of the ipsilesional M1 MEP. The contralesional PMd MEP disappeared/delayed after HD-tDCS. Discussion These results suggest that HD-tDCS could improve the function of the lesioned corticospinal tract and reduce the excitability of the contralesional cortico-reticulospinal tract, thus, improving motor function of the upper extremity in more severely impaired individuals.
Collapse
Affiliation(s)
- Jordan N. Williamson
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
| | - Shirley A. James
- University of Oklahoma Health Sciences Center, Hudson College of Public Health, Oklahoma City, OK, United States
| | - Dorothy He
- University of Oklahoma Health Sciences Center, College of Medicine, Oklahoma City, OK, United States
| | - Sheng Li
- Department of Physical Medicine and Rehabilitation, UT Health Huston, McGovern Medical School, Houston, TX, United States
| | - Evgeny V. Sidorov
- Department of Neurology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
| | - Yuan Yang
- Department of Bioengineering, Grainger College of Engineering, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Clinical Imaging Research Center, Stephenson Family Clinical Research Institute, Carle Foundation Hospital, Urbana, IL, United States
- Beckman Institute for Advanced Science and Technology, University of Illinois Urbana-Champaign, Urbana, IL, United States
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Rehabilitation Sciences, College of Allied Health, University of Oklahoma Health Sciences Center, Oklahoma City, OK, United States
- Gallogly College of Engineering, Stephenson School of Biomedical Engineering, University of Oklahoma, Oklahoma City, OK, United States
| |
Collapse
|
5
|
Beauchamp JA, Pearcey GEP, Khurram OU, Chardon M, Wang YC, Powers RK, Dewald JPA, Heckman CJ. A geometric approach to quantifying the neuromodulatory effects of persistent inward currents on individual motor unit discharge patterns. J Neural Eng 2023; 20:016034. [PMID: 36626825 PMCID: PMC9885522 DOI: 10.1088/1741-2552/acb1d7] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/11/2022] [Accepted: 01/10/2023] [Indexed: 01/11/2023]
Abstract
Objective.All motor commands flow through motoneurons, which entrain control of their innervated muscle fibers, forming a motor unit (MU). Owing to the high fidelity of action potentials within MUs, their discharge profiles detail the organization of ionotropic excitatory/inhibitory as well as metabotropic neuromodulatory commands to motoneurons. Neuromodulatory inputs (e.g. norepinephrine, serotonin) enhance motoneuron excitability and facilitate persistent inward currents (PICs). PICs introduce quantifiable properties in MU discharge profiles by augmenting depolarizing currents upon activation (i.e. PIC amplification) and facilitating discharge at lower levels of excitatory input than required for recruitment (i.e. PIC prolongation).Approach. Here, we introduce a novel geometric approach to estimate neuromodulatory and inhibitory contributions to MU discharge by exploiting discharge non-linearities introduced by PIC amplification during time-varying linear tasks. In specific, we quantify the deviation from linear discharge ('brace height') and the rate of change in discharge (i.e. acceleration slope, attenuation slope, angle). We further characterize these metrics on a simulated motoneuron pool with known excitatory, inhibitory, and neuromodulatory inputs and on human MUs (number of MUs; Tibialis Anterior: 1448, Medial Gastrocnemius: 2100, Soleus: 1062, First Dorsal Interosseus: 2296).Main results. In the simulated motor pool, we found brace height and attenuation slope to consistently indicate changes in neuromodulation and the pattern of inhibition (excitation-inhibition coupling), respectively, whereas the paired MU analysis (ΔF) was dependent on both neuromodulation and inhibition pattern. Furthermore, we provide estimates of these metrics in human MUs and show comparable variability in ΔFand brace height measures for MUs matched across multiple trials.Significance. Spanning both datasets, we found brace height quantification to provide an intuitive method for achieving graded estimates of neuromodulatory and inhibitory drive to individual MUs. This complements common techniques and provides an avenue for decoupling changes in the level of neuromodulatory and pattern of inhibitory motor commands.
Collapse
Affiliation(s)
- James A Beauchamp
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Gregory E P Pearcey
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John’s, NL, Canada
| | - Obaid U Khurram
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, United States of America
| | - Matthieu Chardon
- Northwestern Argonne Institute for Science and Engineering (NAISE), Northwestern University, Evanston, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - Y Curtis Wang
- Department of Electrical and Computer Engineering, California State University, Los Angeles, Los Angeles, CA, United States of America
| | - Randall K Powers
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, United States of America
| | - Julius P A Dewald
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Chicago, IL, United States of America
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
| | - CJ Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Neuroscience, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States of America
- Shirley Ryan AbilityLab, Chicago, IL, United States of America
| |
Collapse
|
6
|
Abstract
Spasticity is characterized by an enhanced size and reduced threshold for activation of stretch reflexes and is associated with "positive signs" such as clonus and spasms, as well as "negative features" such as paresis and a loss of automatic postural responses. Spasticity develops over time after a lesion and can be associated with reduced speed of movement, cocontraction, abnormal synergies, and pain. Spasticity is caused by a combination of damage to descending tracts, reductions in inhibitory activity within spinal cord circuits, and adaptive changes within motoneurons. Increased tone, hypertonia, can also be caused by changes in passive stiffness due to, for example, increase in connective tissue and reduction in muscle fascicle length. Understanding the cause of hypertonia is important for determining the management strategy as nonneural, passive causes of stiffness will be more amenable to physical rather than pharmacological interventions. The management of spasticity is determined by the views and goals of the patient, family, and carers, which should be integral to the multidisciplinary assessment. An assessment, and treatment, of trigger factors such as infection and skin breakdown should be made especially in people with a recent change in tone. The choice of management strategies for an individual will vary depending on the severity of spasticity, the distribution of spasticity (i.e., whether it affects multiple muscle groups or is more prominent in one or two groups), the type of lesion, and the potential for recovery. Management options include physical therapy, oral agents; focal therapies such as botulinum injections; and peripheral nerve blocks. Intrathecal baclofen can lead to a reduction in required oral antispasticity medications. When spasticity is severe intrathecal phenol may be an option. Surgical interventions, largely used in the pediatric population, include muscle transfers and lengthening and selective dorsal root rhizotomy.
Collapse
Affiliation(s)
- Jonathan Marsden
- School of Health Professions, Faculty of Health, University of Plymouth, Plymouth, United Kingdom.
| | - Valerie Stevenson
- Department of Therapies and Rehabilitation, National Hospital for Neurology and Neurosurgery UCLH, London, United Kingdom
| | - Louise Jarrett
- Department of Neurology, Royal Devon and Exeter Hospital, Exeter, United Kingdom
| |
Collapse
|
7
|
McPherson LM, Dewald JPA. Abnormal synergies and associated reactions post-hemiparetic stroke reflect muscle activation patterns of brainstem motor pathways. Front Neurol 2022; 13:934670. [PMID: 36299276 PMCID: PMC9588949 DOI: 10.3389/fneur.2022.934670] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 08/25/2022] [Indexed: 12/02/2022] Open
Abstract
Individuals with moderate-to-severe post-stroke hemiparesis cannot control proximal and distal joints of the arm independently because they are constrained to stereotypical movement patterns called flexion and extension synergies. Accumulating evidence indicates that these synergies emerge because of upregulation of diffusely projecting brainstem motor pathways following stroke-induced damage to corticofugal pathways. During our recent work on differences in synergy expression among proximal and distal joints, we serendipitously observed some notable characteristics of synergy-driven muscle activation. It seemed that: paretic wrist/finger muscles were activated maximally during contractions of muscles at a different joint; differences in the magnitude of synergy expression occurred when elicited via contraction of proximal vs. distal muscles; and associated reactions in the paretic limb occurred during maximal efforts with the non-paretic limb, the strength of which seemed to vary depending on which muscles in the non-paretic limb were contracting. Here we formally investigated these observations and interpreted them within the context of the neural mechanisms thought to underlie stereotypical movement patterns. If upregulation of brainstem motor pathways occurs following stroke-induced corticofugal tract damage, then we would expect a pattern of muscle dependency in the observed behaviors consistent with such neural reorganization. Twelve participants with moderate-to-severe hemiparetic stroke and six without stroke performed maximal isometric torque generation in eight directions: shoulder abduction/adduction and elbow, wrist, and finger flexion/extension. Isometric joint torques and surface EMG were recorded from shoulder, elbow, wrist, and finger joints and muscles. For some participants, joint torque and muscle activation generated during maximal voluntary contractions were lower than during maximal synergy-induced contractions (i.e., contractions about a different joint), particularly for wrist and fingers. Synergy-driven contractions were strongest when elicited via proximal joints and weakest when elicited via distal joints. Associated reactions in the wrist/finger flexors were stronger than those of other paretic muscles and were the only ones whose response depended on whether the non-paretic contraction was at a proximal or distal joint. Results provide indirect evidence linking the influence of brainstem motor pathways to abnormal motor behaviors post-stroke, and they demonstrate the need to examine whole-limb behavior when studying or seeking to rehabilitate the paretic upper limb.
Collapse
Affiliation(s)
- Laura M. McPherson
- Program in Physical Therapy, Washington University School of Medicine, St. Louis, MO, United States
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, United States
- Program in Neurosciences, Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, United States
| | - Julius P. A. Dewald
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
- Department of Physical Therapy and Human Movement Sciences, The Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
- Department of Physical Medicine and Rehabilitation, The Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
8
|
Waterhouse BD, Predale HK, Plummer NW, Jensen P, Chandler DJ. Probing the structure and function of locus coeruleus projections to CNS motor centers. Front Neural Circuits 2022; 16:895481. [PMID: 36247730 PMCID: PMC9556855 DOI: 10.3389/fncir.2022.895481] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
The brainstem nucleus locus coeruleus (LC) sends projections to the forebrain, brainstem, cerebellum and spinal cord and is a source of the neurotransmitter norepinephrine (NE) in these areas. For more than 50 years, LC was considered to be homogeneous in structure and function such that NE would be released uniformly and act simultaneously on the cells and circuits that receive LC projections. However, recent studies have provided evidence that LC is modular in design, with segregated output channels and the potential for differential release and action of NE in its projection fields. These new findings have prompted a radical shift in our thinking about LC operations and demand revision of theoretical constructs regarding impact of the LC-NE system on behavioral outcomes in health and disease. Within this context, a major gap in our knowledge is the relationship between the LC-NE system and CNS motor control centers. While we know much about the organization of the LC-NE system with respect to sensory and cognitive circuitries and the impact of LC output on sensory guided behaviors and executive function, much less is known about the role of the LC-NE pathway in motor network operations and movement control. As a starting point for closing this gap in understanding, we propose using an intersectional recombinase-based viral-genetic strategy TrAC (Tracing Axon Collaterals) as well as established ex vivo electrophysiological assays to characterize efferent connectivity and physiological attributes of mouse LC-motor network projection neurons. The novel hypothesis to be tested is that LC cells with projections to CNS motor centers are scattered throughout the rostral-caudal extent of the nucleus but collectively display a common set of electrophysiological properties. Additionally, we expect to find these LC projection neurons maintain an organized network of axon collaterals capable of supporting selective, synchronous release of NE in motor circuitries for the purpose of coordinately regulating operations across networks that are responsible for balance and movement dynamics. Investigation of this hypothesis will advance our knowledge of the role of the LC-NE system in motor control and provide a basis for treating movement disorders resulting from disease, injury, or normal aging.
Collapse
Affiliation(s)
- Barry D. Waterhouse
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States,*Correspondence: Barry D. Waterhouse,
| | - Haven K. Predale
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| | - Nicholas W. Plummer
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Patricia Jensen
- Neurobiology Laboratory, Department of Health and Human Services, National Institute of Environmental Health Sciences, National Institutes of Health, Raleigh, NC, United States
| | - Daniel J. Chandler
- Department of Cell Biology and Neuroscience, Rowan University, Stratford, NJ, United States
| |
Collapse
|
9
|
Tian R, Dewald JPA, Yang Y. Assessing the Usage of Indirect Motor Pathways Following a Hemiparetic Stroke. IEEE Trans Neural Syst Rehabil Eng 2021; 29:1568-1572. [PMID: 34343095 PMCID: PMC8372540 DOI: 10.1109/tnsre.2021.3102493] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A hallmark impairment in a hemiparetic stroke is a loss of independent joint control resulting in abnormal co-activation of shoulder abductor and elbow flexor muscles in their paretic arm, clinically known as the flexion synergy. The flexion synergy appears while generating shoulder abduction (SABD) torques as lifting the paretic arm. This likely be caused by an increased reliance on contralesional indirect motor pathways following damage to direct corticospinal projections. The assessment of functional connectivity between brain and muscle signals, i.e., brain-muscle connectivity (BMC), may provide insight into such changes to the usage of motor pathways. Our previous model simulation shows that multi-synaptic connections along the indirect motor pathway can generate nonlinear connectivity. We hypothesize that increased usage of indirect motor pathways (as increasing SABD load) will lead to an increase of nonlinear BMC. To test this hypothesis, we measured brain activity, muscle activity from shoulder abductors when stroke participants generate 20% and 40% of maximum SABD torque with their paretic arm. We computed both linear and nonlinear BMC between EEG and EMG. We found dominant nonlinear BMC at contralesional/ipsilateral hemisphere for stroke, whose magnitude increased with the SABD load. These results supported our hypothesis and indicated that nonlinear BMC could provide a quantitative indicator for determining the usage of indirect motor pathways following a hemiparetic stroke.
Collapse
|
10
|
Nazarova M, Novikov P, Ivanina E, Kozlova K, Dobrynina L, Nikulin VV. Mapping of multiple muscles with transcranial magnetic stimulation: absolute and relative test-retest reliability. Hum Brain Mapp 2021; 42:2508-2528. [PMID: 33682975 PMCID: PMC8090785 DOI: 10.1002/hbm.25383] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 02/09/2021] [Accepted: 02/11/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial accuracy of transcranial magnetic stimulation (TMS) may be as small as a few millimeters. Despite such great potential, navigated TMS (nTMS) mapping is still underused for the assessment of motor plasticity, particularly in clinical settings. Here, we investigate the within-limb somatotopy gradient as well as absolute and relative reliability of three hand muscle cortical representations (MCRs) using a comprehensive grid-based sulcus-informed nTMS motor mapping. We enrolled 22 young healthy male volunteers. Two nTMS mapping sessions were separated by 5-10 days. Motor evoked potentials were obtained from abductor pollicis brevis (APB), abductor digiti minimi, and extensor digitorum communis. In addition to individual MRI-based analysis, we studied normalized MNI MCRs. For the reliability assessment, we calculated intraclass correlation and the smallest detectable change. Our results revealed a somatotopy gradient reflected by APB MCR having the most lateral location. Reliability analysis showed that the commonly used metrics of MCRs, such as areas, volumes, centers of gravity (COGs), and hotspots had a high relative and low absolute reliability for all three muscles. For within-limb TMS somatotopy, the most common metrics such as the shifts between MCR COGs and hotspots had poor relative reliability. However, overlaps between different muscle MCRs were highly reliable. We, thus, provide novel evidence that inter-muscle MCR interaction can be reliably traced using MCR overlaps while shifts between the COGs and hotspots of different MCRs are not suitable for this purpose. Our results have implications for the interpretation of nTMS motor mapping results in healthy subjects and patients with neurological conditions.
Collapse
Affiliation(s)
- Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Federal State Budgetary Institution «Federal center of brain research and neurotechnologies» of the Federal Medical Biological AgencyMoscowRussian Federation
| | - Pavel Novikov
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ekaterina Ivanina
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | - Ksenia Kozlova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
| | | | - Vadim V. Nikulin
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of EconomicsMoscowRussian Federation
- Department of NeurologyMax Planck Institute for Human Cognitive and Brain SciencesLeipzigGermany
| |
Collapse
|
11
|
Li S, Francisco GE, Rymer WZ. A New Definition of Poststroke Spasticity and the Interference of Spasticity With Motor Recovery From Acute to Chronic Stages. Neurorehabil Neural Repair 2021; 35:601-610. [PMID: 33978513 DOI: 10.1177/15459683211011214] [Citation(s) in RCA: 80] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The relationship of poststroke spasticity and motor recovery can be confusing. "True" motor recovery refers to return of motor behaviors to prestroke state with the same end-effectors and temporo-spatial pattern. This requires neural recovery and repair, and presumably occurs mainly in the acute and subacute stages. However, according to the International Classification of Functioning, Disability and Health, motor recovery after stroke is also defined as "improvement in performance of functional tasks," i.e., functional recovery, which is mainly mediated by compensatory mechanisms. Therefore, stroke survivors can execute motor tasks in spite of disordered motor control and the presence of spasticity. Spasticity interferes with execution of normal motor behaviors ("true" motor recovery), throughout the evolution of stroke from acute to chronic stages. Spasticity reduction does not affect functional recovery in the acute and subacute stages; however, appropriate management of spasticity could lead to improvement of motor function, that is, functional recovery, during the chronic stage of stroke. We assert that spasticity results from upregulation of medial cortico-reticulo-spinal pathways that are disinhibited due to damage of the motor cortex or corticobulbar pathways. Spasticity emerges as a manifestation of maladaptive plasticity in the early stages of recovery and can persist into the chronic stage. It coexists and shares similar pathophysiological processes with related motor impairments, such as abnormal force control, muscle coactivation and motor synergies, and diffuse interlimb muscle activation. Accordingly, we propose a new definition of spasticity to better account for its pathophysiology and the complex nuances of different definitions of motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA
| | - Gerard E Francisco
- University of Texas Health Science Center-Houston, TX, USA.,TIRR Memorial Hermann, Houston, TX, USA.,World Federation of NeuroRehabilitation, North Shields, UK
| | | |
Collapse
|
12
|
Geed S, Grainger M, Harris-Love ML, Lum PS, Dromerick AW. Shoulder position and handedness differentially affect excitability and intracortical inhibition of hand muscles. Exp Brain Res 2021; 239:1517-1530. [PMID: 33751158 PMCID: PMC8317198 DOI: 10.1007/s00221-021-06077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/03/2021] [Indexed: 10/22/2022]
Abstract
Individuals with stroke show distinct differences in hand function impairment when the shoulder is in adduction, within the workspace compared to when the shoulder is abducted, away from the body. To better understand how shoulder position affects hand control, we tested the corticomotor excitability and intracortical control of intrinsic and extrinsic hand muscles important for grasp in twelve healthy individuals. Motor evoked potentials (MEP) using single and paired-pulse transcranial magnetic stimulation were elicited in extensor digitorum communis (EDC), flexor digitorum superficialis (FDS), first dorsal interosseous (FDI), and abductor pollicis brevis (APB). The shoulder was fully supported in horizontal adduction (ADD) or abduction (ABD). Separate mixed-effect models were fit to the MEP parameters using shoulder position (or upper-extremity [UE] side) as fixed and participants as random effects. In the non-dominant UE, EDC showed significantly greater MEPs in shoulder ABD than ADD. In contrast, the dominant side EDC showed significantly greater MEPs in ADD compared to ABD; %facilitation of EDC on dominant side showed significant stimulus intensity x position interaction, EDC excitability was significantly greater in ADD at 150% of the resting threshold. Intrinsic hand muscles of the dominant UE received significantly more intracortical inhibition (SICI) when the shoulder was in ADD compared to ABD; there was no position-dependent modulation of SICI on the non-dominant side. Our findings suggest that these resting-state changes in hand muscle excitabilities reflect the natural statistics of UE movements, which in turn may arise from as well as shape the nature of shoulder-hand coupling underlying UE behaviors.
Collapse
Affiliation(s)
- Shashwati Geed
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA.
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA.
| | - Megan Grainger
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Michelle L Harris-Love
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| | - Peter S Lum
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
- Department of Bioengineering, The Catholic University of America, Washington, DC, USA
| | - Alexander W Dromerick
- Center for Brain Plasticity and Recovery, Department of Rehabilitation Medicine, Georgetown University Medical Center, Washington, DC, USA
- Neuroscience Research Center, MedStar National Rehabilitation Hospital, 102 Irving St. NW, 1060, Washington, DC, 0010, USA
| |
Collapse
|
13
|
Rahimi M, Swann Z, Honeycutt CF. Does exposure to startle impact voluntary reaching movements in individuals with severe-to-moderate stroke? Exp Brain Res 2021; 239:745-753. [PMID: 33392695 PMCID: PMC7943527 DOI: 10.1007/s00221-020-06005-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 12/04/2020] [Indexed: 12/26/2022]
Abstract
When movements of individuals with stroke (iwS) are elicited by startling acoustic stimulus (SAS), reaching movements are faster, further, and directed away from the body. However, these startle-evoked movements also elicit task-inappropriate flexor activity, raising concerns that chronic exposure to startle might also induce heightened flexor activity during voluntarily elicited movement. The objective of this study is to evaluate the impact of startle exposure on voluntary movements during point-to-point reaching in individuals with moderate and severe stroke. We hypothesize that startle exposure will increase task-inappropriate activity in flexor muscles, which will be associated with worse voluntarily initiated reaching performance (e.g. decreased distance, displacement, and final accuracy). Eleven individuals with moderate-to-severe stroke (UEFM = 8–41/66 and MAS = 0–4/4) performed voluntary point-to-point reaching with 1/3 of trials elicited by an SAS. We used electromyography to measure activity in brachioradialis (BR), biceps (BIC), triceps lateral head (TRI), pectoralis (PEC), anterior deltoid (AD), and posterior deltoid (PD). Conversely to our hypothesis, exposure to startle did not increase abnormal flexion but rather antagonist activity in the elbow flexors and shoulder horizontal adductors decreased, suggesting that abnormal flexor/extensor co-contraction was reduced. This reduction of flexion led to increased reaching distance (18.2% farther), movement onset (8.6% faster), and final accuracy (16.1% more accurate) by the end of the session. This study offers the first evidence that exposure to startle in iwS does not negatively impact voluntary movement; moreover, exposure may improve volitionally activated reaching movements by decreasing abnormal flexion activity.
Collapse
Affiliation(s)
- Marziye Rahimi
- Ira A. Fulton Schools of Engineering, Arizona State University, 699 S Mill Ave, Tempe, AZ, 85281, USA. .,Arizona State University, Mailcode 9709, 611 E Orange St, Tempe, AZ, 85281, USA.
| | - Zoe Swann
- School of Life Sciences, Arizona State University, 427 E Tyler Mall, Tempe, AZ, 85281, USA
| | - Claire F Honeycutt
- School of Biological and Health Science Engineering, Arizona State University, 501 E Tyler Mall, Tempe, AZ, 85287, USA
| |
Collapse
|
14
|
Linking Motoneuron PIC Location to Motor Function in Closed-Loop Motor Unit System Including Afferent Feedback: A Computational Investigation. eNeuro 2020; 7:ENEURO.0014-20.2020. [PMID: 32269036 PMCID: PMC7218009 DOI: 10.1523/eneuro.0014-20.2020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 03/03/2020] [Accepted: 03/16/2020] [Indexed: 11/21/2022] Open
Abstract
The goal of this study is to investigate how the activation location of persistent inward current (PIC) over motoneuron dendrites is linked to motor output in the closed-loop motor unit. Here, a physiologically realistic model of a motor unit including afferent inputs from muscle spindles was comprehensively analyzed under intracellular stimulation at the soma and synaptic inputs over the dendrites during isometric contractions over a full physiological range of muscle lengths. The motor output of the motor unit model was operationally assessed by evaluating the rate of force development, the degree of force potentiation and the capability of self-sustaining force production. Simulations of the model motor unit demonstrated a tendency for a faster rate of force development, a greater degree of force potentiation, and greater capacity for self-sustaining force production under both somatic and dendritic stimulation of the motoneuron as the PIC channels were positioned farther from the soma along the path of motoneuron dendrites. Interestingly, these effects of PIC activation location on force generation significantly differed among different states of muscle length. The rate of force development and the degree of force potentiation were systematically modulated by the variation of PIC channel location for shorter-than-optimal muscles but not for optimal and longer-than-optimal muscles. Similarly, the warm-up behavior of the motor unit depended on the interplay between PIC channel location and muscle length variation. These results suggest that the location of PIC activation over motoneuron dendrites may be distinctively reflected in the motor performance during shortening muscle contractions.
Collapse
|
15
|
Hassan A, Thompson CK, Negro F, Cummings M, Powers RK, Heckman CJ, Dewald JPA, McPherson LM. Impact of parameter selection on estimates of motoneuron excitability using paired motor unit analysis. J Neural Eng 2020; 17:016063. [PMID: 31801123 DOI: 10.1088/1741-2552/ab5eda] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
OBJECTIVE Noninvasive estimation of motoneuron excitability in human motoneurons is achieved through a paired motor unit analysis (ΔF) that quantifies hysteresis in the instantaneous firing rates at motor unit recruitment and de-recruitment. The ΔF technique provides insight into the magnitude of neuromodulatory synaptic input and persistent inward currents (PICs). While the ΔF technique is commonly used for estimating motoneuron excitability during voluntary contractions, computational parameters used for the technique vary across studies. A systematic investigation into the relationship between these parameters and ΔF values is necessary. APPROACH We assessed the sensitivity of the ΔF technique with several criteria commonly used in selecting motor unit pairs for analysis and methods used for smoothing the instantaneous motor unit firing rates. Using high-density surface EMG and convolutive blind source separation, we obtained a large number of motor unit pairs (5409) from the triceps brachii of ten healthy individuals during triangular isometric contractions. MAIN RESULTS We found an exponential plateau relationship between ΔF and the recruitment time difference between the motor unit pairs and an exponential decay relationship between ΔF and the de-recruitment time difference between the motor unit pairs, with the plateaus occurring at approximately 1 s and 1.5 s, respectively. Reduction or removal of the minimum threshold for rate-rate correlation of the two units did not affect ΔF values or variance. Removing motor unit pairs in which the firing rate of the control unit was saturated had no significant effect on ΔF. Smoothing the filter selection had no substantial effect on ΔF values and ΔF variance; however, filter selection affected the minimum recruitment and de-recruitment time differences. SIGNIFICANCE Our results offer recommendations for standardized parameters for the ΔF approach and facilitate the interpretation of findings from studies that implement the ΔF analysis but use different computational parameters.
Collapse
Affiliation(s)
- Altamash Hassan
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States of America. Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States of America
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Beauchamp JA, Patterson JR, Heckman CJ, Dewald JPA. Experimentally Modifiable Parameters and Their Relation to the Tonic Vibration Reflex in Chronic Hemiparetic Stroke. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2019:2302-2306. [PMID: 31946360 DOI: 10.1109/embc.2019.8857014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The tonic vibration reflex (TVR), a reflexive muscle contraction resulting from muscle or tendon vibration, is a useful tool in assessing spinal motoneuron excitability, particularly in hyperexcitable conditions, such as in chronic hemiparetic stroke. The influence of experimental parameters, for example the type of vibratory stimulus and limb configuration, and their interactions on the TVR response in chronic stroke is unknown, yet this knowledge is crucial for designing experiments with reliable TVR responses. Therefore, we conducted a screening experiment of six potential driving factors affecting the TVR response, with a D-optimal split plot fractional design matrix consisting of thirty-two combinations for each of the four participants with chronic hemiparetic stroke. Our results suggest that pre-vibration muscle activation level, vibration frequency, and stimulus application force, are all significant contributors to the TVR response in chronic hemiparetic stroke, along with an interaction between elbow flexion angle and muscle activity level. This investigation highlights the sensitivity of the TVR response in chronic hemiparetic stroke and motivates future designed experiments in understanding this reflex as it relates to motoneuron excitability.
Collapse
|
17
|
Sinha N, Dewald JPA, Heckman CJ, Yang Y. Cross-Frequency Coupling in Descending Motor Pathways: Theory and Simulation. Front Syst Neurosci 2020; 13:86. [PMID: 31992973 PMCID: PMC6971171 DOI: 10.3389/fnsys.2019.00086] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Accepted: 12/18/2019] [Indexed: 11/22/2022] Open
Abstract
Coupling of neural oscillations is essential for the transmission of cortical motor commands to motoneuron pools through direct and indirect descending motor pathways. Most studies focus on iso-frequency coupling between brain and muscle activities, i.e., cortico-muscular coherence, which is thought to reflect motor command transmission in the mono-synaptic corticospinal pathway. Compared to this direct pathway, indirect corticobulbospinal motor pathways involve multiple intermediate synaptic connections via spinal interneurons. Neuronal processing of synaptic inputs can lead to modulation of inter-spike intervals which produces cross-frequency coupling. This theoretical study aims to evaluate the effect of the number of synaptic layers in descending pathways on the expression of cross-frequency coupling between supraspinal input and the cumulative output of the motoneuron pool using a computer simulation. We simulated descending pathways as various layers of interneurons with a terminal motoneuron pool using Hogdkin–Huxley styled neuron models. Both cross- and iso-frequency coupling between the supraspinal input and the motorneuron pool output were computed using a novel generalized coherence measure, i.e., n:m coherence. We found that the iso-frequency coupling is only dominant in the mono-synaptic corticospinal tract, while the cross-frequency coupling is dominant in multi-synaptic indirect motor pathways. Furthermore, simulations incorporating both mono-synaptic direct and multi-synaptic indirect descending pathways showed that increased reliance on a multi-synaptic indirect pathway over a mono-synaptic direct pathway enhances the dominance of cross-frequency coupling between the supraspinal input and the motorneuron pool output. These results provide the theoretical basis for future human subject study quantitatively assessing motor command transmission in indirect vs. direct pathways and its changes after neurological disorders such as unilateral brain injury.
Collapse
Affiliation(s)
- Nirvik Sinha
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, India
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Biomedical Engineering, Robert R. McCormick School of Engineering and Applied Science, Northwestern University, Evanston, IL, United States
| | - Charles J Heckman
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States.,Department of Physiology, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| | - Yuan Yang
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
18
|
Cai NM, Drogos JM, Dewald JPA, Gurari N. Individuals With Hemiparetic Stroke Accurately Match Torques They Generate About Each Elbow Joint. Front Neurosci 2019; 13:1293. [PMID: 31849597 PMCID: PMC6892973 DOI: 10.3389/fnins.2019.01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Accepted: 11/14/2019] [Indexed: 01/25/2023] Open
Abstract
Background: Successful execution of a task as simple as drinking from a cup and as complicated as cutting food with a fork and knife requires accurate perception of the torques that one generates in each arm. Prior studies have shown that individuals with hemiparetic stroke inaccurately judge their self-generated torques during bimanual tasks; yet, it remains unclear whether these individuals inaccurately judge their self-generated torques during unimanual tasks. Objective: The goal of this work was to determine whether stroke affected how accurately individuals with stroke perceive their self-generated torques during a single-arm task. Methods: Fifteen individuals with hemiparetic stroke and fifteen individuals without neurological impairments partook in this study. Participants generated a target torque about their testing elbow while receiving visual feedback, relaxed, and then matched the target torque about the same elbow without receiving feedback. This task was performed for two target torques (5 Nm, 25% of maximum voluntary torque), two movement directions (flexion, extension), and two arms (left, right). Results: Clinical assessments indicate that eleven participants with stroke had kinaesthetic deficits and two had altered pressure sense; their motor impairments spanned from mild to severe. These participants matched torques at each elbow, for each target torque and movement direction, with a similar accuracy and precision to controls, regardless of the arm tested (p > 0.050). Conclusions: These results indicate that an individual with sensorimotor deficits post-hemiparetic stroke may accurately judge the torques that they generate within each arm. Therefore, while survivors of a hemiparetic stroke may have deficits in accurately judging the torques they generate during bimanual tasks, such deficits do not appear to occur during unimanual tasks.
Collapse
Affiliation(s)
- Ninghe M. Cai
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Justin M. Drogos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| | - Julius P. A. Dewald
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
- Department of Biomedical Engineering, Northwestern University, Chicago, IL, United States
| | - Netta Gurari
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, United States
| |
Collapse
|
19
|
Runnalls KD, Ortega-Auriol P, McMorland AJC, Anson G, Byblow WD. Effects of arm weight support on neuromuscular activation during reaching in chronic stroke patients. Exp Brain Res 2019; 237:3391-3408. [PMID: 31728596 DOI: 10.1007/s00221-019-05687-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/07/2019] [Indexed: 12/14/2022]
Abstract
To better understand how arm weight support (WS) can be used to alleviate upper limb impairment after stroke, we investigated the effects of WS on muscle activity, muscle synergy expression, and corticomotor excitability (CME) in 13 chronic stroke patients and 6 age-similar healthy controls. For patients, lesion location and corticospinal tract integrity were assessed using magnetic resonance imaging. Upper limb impairment was assessed using the Fugl-Meyer upper extremity assessment with patients categorised as either mild or moderate-severe. Three levels of WS were examined: low = 0, medium = 50 and high = 100% of full support. Surface EMG was recorded from 8 upper limb muscles, and muscle synergies were decomposed using non-negative matrix factorisation from data obtained during reaching movements to an array of 14 targets using the paretic or dominant arm. Interactions between impairment level and WS were found for the number of targets hit, and EMG measures. Overall, greater WS resulted in lower EMG levels, although the degree of modulation between WS levels was less for patients with moderate-severe compared to mild impairment. Healthy controls expressed more synergies than patients with moderate-severe impairment. Healthy controls and patients with mild impairment showed more synergies with high compared to low weight support. Transcranial magnetic stimulation was used to elicit motor-evoked potentials (MEPs) to which stimulus-response curves were fitted as a measure of corticomotor excitability (CME). The effect of WS on CME varied between muscles and across impairment level. These preliminary findings demonstrate that WS has direct and indirect effects on muscle activity, synergies, and CME and warrants further study in order to reduce upper limb impairment after stroke.
Collapse
Affiliation(s)
- Keith D Runnalls
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Pablo Ortega-Auriol
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Angus J C McMorland
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Greg Anson
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, New Zealand
| | - Winston D Byblow
- Movement Neuroscience Laboratory, Department of Exercise Sciences, University of Auckland, Auckland, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, New Zealand.
| |
Collapse
|
20
|
Murphy S, Durand M, Negro F, Farina D, Hunter S, Schmit B, Gutterman D, Hyngstrom A. The Relationship Between Blood Flow and Motor Unit Firing Rates in Response to Fatiguing Exercise Post-stroke. Front Physiol 2019; 10:545. [PMID: 31133877 PMCID: PMC6524339 DOI: 10.3389/fphys.2019.00545] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/17/2019] [Indexed: 11/22/2022] Open
Abstract
We quantified the relationship between the change in post-contraction blood flow with motor unit firing rates and metrics of fatigue during intermittent, sub-maximal fatiguing contractions of the knee extensor muscles after stroke. Ten chronic stroke survivors (>1-year post-stroke) and nine controls participated. Throughout fatiguing contractions, the discharge timings of individual motor units were identified by decomposition of high-density surface EMG signals. After five consecutive contractions, a blood flow measurement through the femoral artery was obtained using an ultrasound machine and probe designed for vascular measurements. There was a greater increase of motor unit firing rates from the beginning of the fatigue protocol to the end of the fatigue protocol for the control group compared to the stroke group (14.97 ± 3.78% vs. 1.99 ± 11.90%, p = 0.023). While blood flow increased with fatigue for both groups (p = 0.003), the magnitude of post-contraction blood flow was significantly greater for the control group compared to the stroke group (p = 0.004). We found that despite the lower magnitude of muscle perfusion through the femoral artery in the stroke group, blood flow has a greater impact on peripheral fatigue for the control group; however, we observed a significant correlation between change in blood flow and motor unit firing rate modulation (r2 = 0.654, p = 0.004) during fatigue in the stroke group and not the control group (r2 = 0.024, p < 0.768). Taken together, this data showed a disruption between motor unit firing rates and post-contraction blood flow in the stroke group, suggesting that there may be a disruption to common inputs to both the reticular system and the corticospinal tract. This study provides novel insights in the relationship between the hyperemic response to exercise and motor unit firing behavior for post-stroke force production and may provide new approaches for recovery by improving both blood flow and muscle activation simultaneously.
Collapse
Affiliation(s)
- Spencer Murphy
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - Matthew Durand
- Department of Physical Medicine and Rehabilitation, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Francesco Negro
- Department of Clinical and Experimental Sciences, Università degli studi di Brescia, Brescia, Italy
| | - Dario Farina
- Department of Bioengineering, Imperial College London, London, United Kingdom
| | - Sandra Hunter
- Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| | - Brian Schmit
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States
| | - David Gutterman
- Cardiovascular Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Allison Hyngstrom
- Integrative Neural Engineering and Rehabilitation Laboratory, Department of Biomedical Engineering, Marquette University, Milwaukee, WI, United States.,Department of Physical Therapy, Marquette University, Milwaukee, WI, United States
| |
Collapse
|
21
|
Li S, Chen YT, Francisco GE, Zhou P, Rymer WZ. A Unifying Pathophysiological Account for Post-stroke Spasticity and Disordered Motor Control. Front Neurol 2019; 10:468. [PMID: 31133971 PMCID: PMC6524557 DOI: 10.3389/fneur.2019.00468] [Citation(s) in RCA: 91] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 04/17/2019] [Indexed: 11/18/2022] Open
Abstract
Cortical and subcortical plastic reorganization occurs in the course of motor recovery after stroke. It is largely accepted that plasticity of ipsilesional motor cortex primarily contributes to recovery of motor function, while the contributions of contralesional motor cortex are not completely understood. As a result of damages to motor cortex and its descending pathways and subsequent unmasking of inhibition, there is evidence of upregulation of reticulospinal tract (RST) excitability in the contralesional side. Both animal studies and human studies with stroke survivors suggest and support the role of RST hyperexcitability in post-stroke spasticity. Findings from animal studies demonstrate the compensatory role of RST hyperexcitability in recovery of motor function. In contrast, RST hyperexcitability appears to be related more to abnormal motor synergy and disordered motor control in stroke survivors. It does not contribute to recovery of normal motor function. Recent animal studies highlight laterality dominance of corticoreticular projections. In particular, there exists upregulation of ipsilateral corticoreticular projections from contralesional premotor cortex (PM) and supplementary motor area (SMA) to medial reticular nuclei. We revisit and revise the previous theoretical framework and propose a unifying account. This account highlights the importance of ipsilateral PM/SMA-cortico-reticulospinal tract hyperexcitability from the contralesional motor cortex as a result of disinhibition after stroke. This account provides a pathophysiological basis for post-stroke spasticity and related movement impairments, such as abnormal motor synergy and disordered motor control. However, further research is needed to examine this pathway in stroke survivors to better understand its potential roles, especially in muscle strength and motor recovery. This account could provide a pathophysiological target for developing neuromodulatory interventions to manage spasticity and thus possibly to facilitate motor recovery.
Collapse
Affiliation(s)
- Sheng Li
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Yen-Ting Chen
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Gerard E. Francisco
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | - Ping Zhou
- Department of Physical Medicine and Rehabilitation, McGovern Medical School, University of Texas Health Science Center – Houston and TIRR Memorial Hermann Hospital, Houston, TX, United States
| | | |
Collapse
|
22
|
Ovadia-Caro S, Khalil AA, Sehm B, Villringer A, Nikulin VV, Nazarova M. Predicting the Response to Non-invasive Brain Stimulation in Stroke. Front Neurol 2019; 10:302. [PMID: 31001190 PMCID: PMC6454031 DOI: 10.3389/fneur.2019.00302] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2018] [Accepted: 03/11/2019] [Indexed: 01/10/2023] Open
Affiliation(s)
- Smadar Ovadia-Caro
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ahmed A. Khalil
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Bernhard Sehm
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Arno Villringer
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
- Center for Stroke Research Berlin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Department of Cognitive Neurology, University Hospital Leipzig and Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | - Vadim V. Nikulin
- Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Neurophysics Group, Department of Neurology, Campus Benjamin Franklin, Charité-Universitätsmedizin Berlin, Berlin, Germany
- Bernstein Center for Computational Neuroscience, Berlin, Germany
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
| | - Maria Nazarova
- Center for Cognition and Decision Making, Institute for Cognitive Neuroscience, National Research University Higher School of Economics, Moscow, Russia
- Federal Center for Cerebrovascular Pathology and Stroke, The Ministry of Healthcare of the Russian Federation, Federal State Budget Institution, Moscow, Russia
| |
Collapse
|
23
|
McPherson LM, Dewald JPA. Differences between flexion and extension synergy-driven coupling at the elbow, wrist, and fingers of individuals with chronic hemiparetic stroke. Clin Neurophysiol 2019; 130:454-468. [PMID: 30771722 DOI: 10.1016/j.clinph.2019.01.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 01/04/2019] [Accepted: 01/09/2019] [Indexed: 12/21/2022]
Abstract
OBJECTIVE The flexion and extension synergies were quantified at the paretic elbow, forearm, wrist, and finger joints within the same group of participants for the first time. Differences in synergy expression at each of the four joints were examined, as were the ways these differences varied across the joints. METHODS Twelve post-stroke individuals with chronic moderate-to-severe hemiparesis and six age-matched controls participated. Participants generated isometric shoulder abduction (SABD) and shoulder adduction (SADD) at four submaximal levels to progressively elicit the flexion and extension synergies, respectively. Isometric joint torques and EMG were recorded from shoulder, elbow, forearm (radio-ulnar), wrist, and finger joints and muscles. RESULTS SABD elicited strong wrist and finger flexion torque that increased with shoulder torque level. SADD produced primarily wrist and finger flexion torque, but magnitudes at the wrist were less than during SABD. Findings contrasted with those at the elbow and forearm, where torques and EMG generated due to SABD and SADD were opposite in direction. CONCLUSIONS Flexion and extension synergy expression are more similar at the hand than at the shoulder and elbow. Specific bulbospinal pathways that may underlie flexion and extension synergy expression are discussed. SIGNIFICANCE Whole-limb behavior must be considered when examining paretic hand function in moderately-to-severely impaired individuals.
Collapse
Affiliation(s)
- Laura Miller McPherson
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Therapy, Nicole Wertheim College of Nursing and Health Sciences, Florida International University, Miami, FL, USA; Department of Biomedical Engineering, College of Engineering and Computing, Florida International University, Miami, FL, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL, USA; Department of Physical Medicine and Rehabilitation, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA.
| |
Collapse
|
24
|
McPherson JG, Stienen AHA, Schmit BD, Dewald JPA. Biomechanical parameters of the elbow stretch reflex in chronic hemiparetic stroke. Exp Brain Res 2018; 237:121-135. [PMID: 30353212 DOI: 10.1007/s00221-018-5389-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
We sought to determine the relative velocity sensitivity of stretch reflex threshold angle and reflex stiffness during stretches of the paretic elbow joint in individuals with chronic hemiparetic stroke, and to provide guidelines to streamline spasticity assessments. We applied ramp-and-hold elbow extension perturbations ranging from 15 to 150°/s over the full range of motion in 13 individuals with hemiparesis. After accounting for the effects of passive mechanical resistance, we modeled velocity-dependent reflex threshold angle and torque-angle slope to determine their correlation with overall resistance to movement. Reflex stiffness exhibited substantially greater velocity sensitivity than threshold angle, accounting for ~ 74% (vs. ~ 15%) of the overall velocity-dependent increases in movement resistance. Reflex stiffness is a sensitive descriptor of the overall velocity-dependence of movement resistance in spasticity. Clinical spasticity assessments can be streamlined using torque-angle slope, a measure of reflex stiffness, as their primary outcome measure, particularly at stretch velocities greater than 100°/s.
Collapse
Affiliation(s)
- Jacob G McPherson
- Department of Biomedical Engineering, Florida International University, 10555 W. Flagler St., EC #3171, Miami, FL, 33176, USA
| | - Arno H A Stienen
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA
| | - Brian D Schmit
- Department of Biomedical Engineering, Marquette University, P.O. Box 1881, Milwaukee, WI, 53201, USA
| | - Julius P A Dewald
- Department of Physical Therapy and Human Movement Sciences, Feinberg School of Medicine, Northwestern University, 645 N Michigan Ave, Suite 1100, Chicago, IL, 60611, USA.
| |
Collapse
|