1
|
Chu T, Lee S, Jung IY, Song Y, Kim HA, Shin JW, Tak S. Task-residual effective connectivity of motor network in transient ischemic attack. Commun Biol 2023; 6:843. [PMID: 37580508 PMCID: PMC10425379 DOI: 10.1038/s42003-023-05212-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 08/03/2023] [Indexed: 08/16/2023] Open
Abstract
Transient ischemic attack (TIA) is a temporary episode of neurological dysfunction that results from focal brain ischemia. Although TIA symptoms are quickly resolved, patients with TIA have a high risk of stroke and persistent impairments in multiple domains of cognitive and motor functions. In this study, using spectral dynamic causal modeling, we investigate the changes in task-residual effective connectivity of patients with TIA during fist-closing movements. 28 healthy participants and 15 age-matched patients with TIA undergo functional magnetic resonance imaging at 7T. Here we show that during visually cued motor movement, patients with TIA have significantly higher effective connectivity toward the ipsilateral primary motor cortex and lower connectivity to the supplementary motor area than healthy controls. Our results imply that TIA patients have aberrant connections among motor regions, and these changes may reflect the decreased efficiency of primary motor function and disrupted control of voluntary movement in patients with TIA.
Collapse
Affiliation(s)
- Truc Chu
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Seonjin Lee
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Il-Young Jung
- Department of Rehabilitation Medicine, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea
| | - Youngkyu Song
- Bio-Chemical Analysis Team, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea
| | - Hyun-Ah Kim
- Department of Rehabilitation Medicine, Chungnam National University Hospital, Daejeon, 35015, Republic of Korea
| | - Jong Wook Shin
- Department of Neurology, Chungnam National University Sejong Hospital, Sejong, 30099, Republic of Korea.
| | - Sungho Tak
- Research Center for Bioconvergence Analysis, Korea Basic Science Institute, Cheongju, 28119, Republic of Korea.
- Graduate School of Analytical Science and Technology, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
2
|
Schaeffer MJ, Reaume N, Wang M, Aftab A, Pan A, Tariq S, Reid M, Smith EE, D'Esterre C, Barber PA. Visualization of atrophy of medial temporal lobes and the septal nuclei in patients with transient ischaemic attack and controls. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2023; 5:100177. [PMID: 37519344 PMCID: PMC10372167 DOI: 10.1016/j.cccb.2023.100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 06/28/2023] [Accepted: 07/06/2023] [Indexed: 08/01/2023]
Abstract
Introduction Transient ischaemic attack (TIA) is associated with increased risk of cognitive decline and dementia as early as one-year post-event. Regional brain atrophy measurements may predict future cognitive decline. Aims: 1) To determine whether Medial Temporal Atrophy (MTA) scores and interseptal distance (ISD) measurements are greater in patients with TIA compared to controls; and 2) To determine whether MTA and ISD predicts cognitive change one year after TIA. Methods Baseline demographic, vascular risk factors, structural imaging and cognitive tests scores were compared between 103 Patients with TIA and 103 age-and-sex-matched controls from the Predementia Neuroimaging of Transient Ischaemic Attack (PREVENT) Study. MTA was assessed using the Schelten's Scale, and ISD was calculated as the distance between the septal nucleus of each hemisphere. Multiple linear regression models were used to evaluate how MTA and ISD related to cognitive change after adjusting for covariates. Results Patients with TIA had larger ISD measurements (1.4 mm [SD=1.2] vs. 0.9 mm [SD=1.0]); p < 0.001) and higher right/left MTA scores (both p < 0.05) compared to controls. At baseline, controls performed significantly better on the RAVLT (total recall), BVMT (total and delayed recall) and the Trail Making Task (A and B) compared to patients with TIA. However, at one-year follow-up there was no evidence of decline in the patients with TIA compared with controls. Higher MTA and ISD scores were not associated with cognitive decline. Conclusions Patients with TIA had higher MTA scores and ISD measurements than controls, but neither were predictors of cognitive decline at one year. Future studies with longer follow-up periods will be required to determine whether higher MTA scores and ISD predict risk of cognitive decline in patients with TIA.
Collapse
Affiliation(s)
- Morgan J. Schaeffer
- Department of Psychology, University of Victoria, Victoria, British Columbia, Canada
| | - Noaah Reaume
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Meng Wang
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW Alberta, Calgary, Canada
| | - Arooj Aftab
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Alexander Pan
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Sana Tariq
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, Alberta, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Meaghan Reid
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, Alberta, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Eric E. Smith
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW Alberta, Calgary, Canada
- Department of Radiology, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, Alberta, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| | - Chris D'Esterre
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
| | - Philip A. Barber
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW Alberta, Calgary, Canada
- Department of Radiology, University of Calgary, 1403 29th Street NW, Calgary, Alberta, Canada
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 - 29 Street NW, Calgary, Alberta, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary, Alberta, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary, Alberta, Canada
| |
Collapse
|
3
|
Verhulst MMLH, Glimmerveen AB, van Heugten CM, Helmich RCG, Hofmeijer J. MRI factors associated with cognitive functioning after acute onset brain injury: Systematic review and meta-analysis. Neuroimage Clin 2023; 38:103415. [PMID: 37119695 PMCID: PMC10165272 DOI: 10.1016/j.nicl.2023.103415] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/22/2023] [Accepted: 04/19/2023] [Indexed: 05/01/2023]
Abstract
Impairments of memory, attention, and executive functioning are frequently reported after acute onset brain injury. MRI markers hold potential to contribute to identification of patients at risk for cognitive impairments and clarification of mechanisms. The aim of this systematic review was to summarize and value the evidence on MRI markers of memory, attention, and executive functioning after acute onset brain injury. We included ninety-eight studies, on six classes of MRI factors (location and severity of damage (n = 15), volume/atrophy (n = 36), signs of small vessel disease (n = 15), diffusion-weighted imaging measures (n = 36), resting-state functional MRI measures (n = 13), and arterial spin labeling measures (n = 1)). Three measures showed consistent results regarding their association with cognition. Smaller hippocampal volume was associated with worse memory in fourteen studies (pooled correlation 0.58 [95% CI: 0.46-0.68] for whole, 0.11 [95% CI: 0.04-0.19] for left, and 0.34 [95% CI: 0.17-0.49] for right hippocampus). Lower fractional anisotropy in cingulum and fornix was associated with worse memory in six and five studies (pooled correlation 0.20 [95% CI: 0.08-0.32] and 0.29 [95% CI: 0.20-0.37], respectively). Lower functional connectivity within the default-mode network was associated with worse cognition in four studies. In conclusion, hippocampal volume, fractional anisotropy in cingulum and fornix, and functional connectivity within the default-mode network showed consistent associations with cognitive performance in all types of acute onset brain injury. External validation and cut off values for predicting cognitive impairments are needed for clinical implementation.
Collapse
Affiliation(s)
- Marlous M L H Verhulst
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands.
| | - Astrid B Glimmerveen
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| | - Caroline M van Heugten
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University, Maastricht, The Netherlands; Limburg Brain Injury Center, Maastricht University, Maastricht, The Netherlands; Department of Neuropsychology and Psychopharmacology, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Rick C G Helmich
- Donders Institute for Brain, Cognition, and Behavior, Centre for Cognitive Neuroimaging, Radboud University Nijmegen, Nijmegen, The Netherlands; Department of Neurology, Centre of Expertise for Parkinson & Movement Disorders, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Jeannette Hofmeijer
- Clinical Neurophysiology, University of Twente, Enschede, The Netherlands; Department of Neurology, Rijnstate Hospital, Arnhem, The Netherlands
| |
Collapse
|
4
|
Syeda W, Ermine CM, Khilf MS, Wright D, Brait VH, Nithianantharajah J, Kolbe S, Johnston LA, Thompson LH, Brodtmann A. Long-term structural brain changes in adult rats after mild ischaemic stroke. Brain Commun 2022; 4:fcac185. [PMID: 35898722 PMCID: PMC9309495 DOI: 10.1093/braincomms/fcac185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 03/09/2022] [Accepted: 07/20/2022] [Indexed: 11/13/2022] Open
Abstract
Preclinical studies of remote degeneration have largely focused on brain changes over the first few days or weeks after stroke. Accumulating evidence suggests that neurodegeneration occurs in other brain regions remote to the site of infarction for months and even years following ischaemic stroke. Brain atrophy appears to be driven by both axonal degeneration and widespread brain inflammation. The evolution and duration of these changes are increasingly being described in human studies, using advanced brain imaging techniques. Here, we sought to investigate long-term structural brain changes in a model of mild focal ischaemic stroke following injection of endothlin-1 in adult Long–Evans rats (n = 14) compared with sham animals (n = 10), over a clinically relevant time-frame of 48 weeks. Serial structural and diffusion-weighted MRI data were used to assess dynamic volume and white matter trajectories. We observed dynamic regional brain volume changes over the 48 weeks, reflecting both normal changes with age in sham animals and neurodegeneration in regions connected to the infarct following ischaemia. Ipsilesional cortical volume loss peaked at 24 weeks but was less prominent at 36 and 48 weeks. We found significantly reduced fractional anisotropy in both ipsi- and contralesional motor cortex and cingulum bundle regions of infarcted rats (P < 0.05) from 4 to 36 weeks, suggesting ongoing white matter degeneration in tracts connected to but distant from the stroke. We conclude that there is evidence of significant cortical atrophy and white matter degeneration up to 48 weeks following infarct, consistent with enduring, pervasive stroke-related degeneration.
Collapse
Affiliation(s)
- Warda Syeda
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
- Melbourne Neuropsychiatry Centre, The University of Melbourne , Parkville, Victoria , Australia
| | - Charlotte M Ermine
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Mohamed Salah Khilf
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - David Wright
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Jess Nithianantharajah
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Scott Kolbe
- Department of Neuroscience, Monash University , Clayton , Australia
| | - Leigh A Johnston
- The Melbourne Brain Centre Imaging Unit, The University of Melbourne , Parkville, Victoria , Australia
- Department of Biomedical Engineering, The University of Melbourne , Parkville, Victoria , Australia
| | - Lachlan H Thompson
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health , Parkville, Victoria , Australia
| |
Collapse
|
5
|
Ganesh A, Barber PA. The Cognitive Sequelae of Transient Ischemic Attacks-Recent Insights and Future Directions. J Clin Med 2022; 11:2637. [PMID: 35566762 PMCID: PMC9104376 DOI: 10.3390/jcm11092637] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 02/05/2023] Open
Abstract
There is now considerable evidence that Transient Ischemic Attack (TIA) carries important sequelae beyond the risk of recurrent stroke, particularly with respect to peri-event and post-event cognitive dysfunction and subsequent cognitive decline. The occurrence of a TIA could provide an important window in understanding the relationship of early mixed vascular-neurodegenerative cognitive decline, and by virtue of their clinical relevance as a "warning" event, TIAs could also furnish the opportunity to act preventatively not only for stroke prevention but also for dementia prevention. In this review, we discuss the current state of the literature regarding the cognitive sequelae associated with TIA, reviewing important challenges in the field. In particular, we discuss definitional and methodological challenges in the study of TIA-related cognitive impairment, confounding factors in the cognitive evaluation of these patients, and provide an overview of the evidence on both transient and long-term cognitive impairment after TIA. We compile recent insights from clinical studies regarding the predictors and mediators of cognitive decline in these patients and highlight important future directions for work in this area.
Collapse
Affiliation(s)
- Aravind Ganesh
- Calgary Stroke Program, Departments of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada;
- Department of Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| | - Philip A. Barber
- Calgary Stroke Program, Departments of Clinical Neurosciences, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada;
- Department of Community Health Sciences, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Hotchkiss Brain Institute, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
- Department of Radiology, University of Calgary Cumming School of Medicine, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
6
|
Bu N, Churilov L, Khlif MS, Lemmens R, Wouters A, Fiebach JB, Chamorro A, Ringelstein EB, Norrving B, Laage R, Grond M, Wilms G, Brodtmann A, Thijs V. Early Brain Volume Changes After Stroke: Subgroup Analysis From the AXIS-2 Trial. Front Neurol 2022; 12:747343. [PMID: 35153972 PMCID: PMC8832974 DOI: 10.3389/fneur.2021.747343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background and PurposeThe evolution of total brain volume early after stroke is not well understood. We investigated the associations between age and imaging features and brain volume change in the first month after stroke.MethodsWe retrospectively studied patients with acute ischemic stroke enrolled in the AXIS-2 trial. Total brain volume change from hyperacute MRI data to the first month after stroke was assessed using unified segmentation in SPM12. We hypothesized that age, ischemic brain lesion size, and white matter (WM) changes were associated with larger brain volume change. Enlarged perivascular spaces (EPVSs) and white matter hyperintensities (WMHs) were rated visually and the presence of lacunes was assessed.ResultsWe enrolled 173 patients with a mean age of 67 ± 11 years, 44% were women. There was a median 6 ml decrease in volume (25th percentile −1 ml to 75th percentile 21 ml) over time, equivalent to a median 0.5% (interquartile range [IQR], −0.07%−1.4%), decrease in brain volume. Age was associated with larger brain volume loss (per 10 years of age, 5 ml 95% CI 2–8 ml). Baseline diffusion weighted imaging (DWI) lesion volume was not associated with greater volume loss per 10 ml of lesion volume, change by 0 ml (95% CI −0.1 to 0.1 ml). Increasing Fazekas scores of deep WMH were associated with greater tissue loss (5 ml, 95% CI 1–10 ml).ConclusionsTotal brain volume changes in a heterogenous fashion after stroke. Volume loss occurs over 1 month after stroke and is associated with age and deep WM disease. We did not find evidence that more severe strokes lead to increased early tissue loss.
Collapse
Affiliation(s)
- Ning Bu
- Department of Neurology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
- Stroke Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Leonid Churilov
- Department of Medicine and Neurology, Melbourne Brain Centre, University of Melbourne, Melbourne, VIC, Australia
- Department of Medicine, University of Melbourne, Melbourne, VIC, Australia
| | - Mohamed Salah Khlif
- Dementia Theme, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Robin Lemmens
- Department of Neurosciences, Experimental Neurology, KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Anke Wouters
- Department of Neurosciences, Experimental Neurology, KU Leuven – University of Leuven, Leuven, Belgium
- Laboratory of Neurobiology, VIB, Center for Brain & Disease Research, Leuven, Belgium
- Department of Neurology, University Hospitals Leuven, Leuven, Belgium
| | - Jochen B. Fiebach
- Center for Stroke Research, Charité University Medicine Berlin, Berlin, Germany
| | - Angel Chamorro
- Department of Neurology, University of Barcelona, Barcelona, Spain
| | | | - Bo Norrving
- Section of Neurology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Rico Laage
- Department of Clinical Research, Guided Development GmbH, Heidelberg, Germany
| | - Martin Grond
- Department of Neurology, Kreisklinikum Siegen, University of Marburg Germany, Marburg, Germany
| | - Guido Wilms
- Department of Radiology, University Hospitals of Leuven, Leuven, Belgium
| | - Amy Brodtmann
- Dementia Theme, The Florey Institute for Neuroscience and Mental Health, Parkville, VIC, Australia
| | - Vincent Thijs
- Stroke Division, The Florey Institute of Neuroscience and Mental Health, Parkville, VIC, Australia
- *Correspondence: Vincent Thijs
| |
Collapse
|
7
|
Lozada-Martínez I, Prada-Soto S, Moscote-Salazar L, Pacheco-Hernández A, Lester-Nahar B. Reader Response: Prediction of Long-term Cognitive Function After Minor Stroke Using Functional Connectivity. Neurology 2021. [DOI: 10.1212/wnl.0000000000012670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
|
8
|
Quantifying changes over 1 year in motor and cognitive skill after transient ischemic attack (TIA) using robotics. Sci Rep 2021; 11:17011. [PMID: 34426586 PMCID: PMC8382836 DOI: 10.1038/s41598-021-96177-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 07/29/2021] [Indexed: 12/01/2022] Open
Abstract
Recent work has highlighted that people who have had TIA may have abnormal motor and cognitive function. We aimed to quantify deficits in a cohort of individuals who had TIA and measured changes in their abilities to perform behavioural tasks over 1 year of follow-up using the Kinarm Exoskeleton robot. We additionally considered performance and change over time in an active control cohort of migraineurs. Individuals who had TIA or migraine completed 8 behavioural tasks that assessed cognition as well as motor and sensory functionality in the arm. Participants in the TIA cohort were assessed at 2, 6, 12, and 52 weeks after symptom resolution. Migraineurs were assessed at 2 and 52 weeks after symptom resolution. We measured overall performance on each task using an aggregate metric called Task Score and quantified any significant change in performance including the potential influence of learning. We recruited 48 individuals to the TIA cohort and 28 individuals to the migraine cohort. Individuals in both groups displayed impairments on robotic tasks within 2 weeks of symptom cessation and also at approximately 1 year after symptom cessation, most commonly in tests of cognitive-motor integration. Up to 51.3% of people in the TIA cohort demonstrated an impairment on a given task within 2-weeks of symptom resolution, and up to 27.3% had an impairment after 1 year. In the migraine group, these numbers were 37.5% and 31.6%, respectively. We identified that up to 18% of participants in the TIA group, and up to 10% in the migraine group, displayed impairments that persisted for up to 1 year after symptom resolution. Finally, we determined that a subset of both cohorts (25-30%) experienced statistically significant deteriorations in performance after 1 year. People who have experienced transient neurological symptoms, such as those that arise from TIA or migraine, may continue to experience lasting neurological impairments. Most individuals had relatively stable task performance over time, with some impairments persisting for up to 1 year. However, some individuals demonstrated substantial changes in performance, which highlights the heterogeneity of these neurological disorders. These findings demonstrate the need to consider factors that contribute to lasting neurological impairment, approaches that could be developed to alleviate the lasting effects of TIA or migraine, and the need to consider individual neurological status, even following transient neurological symptoms.
Collapse
|
9
|
Barber P, Nestor SM, Wang M, Wu P, Ursenbach J, Munir A, Gupta R, Tariq SS, Smith E, Frayne R, Black SE, Sajobi T, Coutts S. Hippocampal atrophy and cognitive function in transient ischemic attack and minor stroke patients over three years. CEREBRAL CIRCULATION - COGNITION AND BEHAVIOR 2021; 2:100019. [PMID: 36324718 PMCID: PMC9616379 DOI: 10.1016/j.cccb.2021.100019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 06/17/2021] [Accepted: 06/20/2021] [Indexed: 06/16/2023]
Abstract
Introduction Transient ischemic attack (TIA) and minor ischemic stroke (IS) is associated with a increased risk of late life dementia. In this study we aim to study the extent to which the rates of hippocampal atrophy in TIA/IS differ from healthy controls, and how they are correlated to neuropsychological measurements. Methods TIA or minor stroke patients were tested with a neuropsychological battery including tests of executive function, and verbal and non-verbal memory at three time points out to 3 years. Annualized rates of hippocampal atrophy in TIA/IS patients were compared to controls. A linear-mixed regression model was used to assess the difference in rates of hippocampal atrophy after adjusting for time and demographic characteristics. Results TIA/IS patients demonstrated a higher hippocampal atrophy rate than healthy controls over a 3-year interval: the annual percentage change of the left hippocampal volume was 2.5% (78 mm3 per year (SD 60)) for TIA/IS patients compared to 0.9% (29 mm3 per year (SD 32)) for controls (p < 0.01); and the annual percentage change of the right hippocampal volume was 2.5% (80 mm3 per year (SD 46)) for TIA/IS patients compared to 0.5% (17 mm3 per year (SD 33)) for controls (P < 0.01). Patients with higher annual hippocampal atrophy were more likely to report higher TMT B times, but lower ROC total score, lower California Verbal Learning Test-II total recall, and lower ROC Figure recall scores longitudinally. Conclusion TIA/IS patients experience a higher rate of hippocampal atrophy independent of TIA/IS recurrence that are associated with changes in episodic memory and executive function over 3 years.
Collapse
Affiliation(s)
- Philip Barber
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Canada
| | - Sean M. Nestor
- Hurvitz Brain Sciences Program, Sunnybrook Health Science Centre, University of Toronto, ON, Canada
- Department of Psychiatry, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Meng Wang
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Canada
| | - Pauline Wu
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
| | - Jake Ursenbach
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | - Amlish Munir
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | - Rani Gupta
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | - Sah Sana Tariq
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | - Eric Smith
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | - Richard Frayne
- Seaman Family MR Center, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
- Department of Clinical Neurosciences, University of Calgary, 1403 29th Street NW, Calgary, Canada
- Department of Radiology, University of Calgary, 1403 29th Street NW, Calgary, Canada
| | - Sandra E. Black
- Hurvitz Brain Sciences Program, Sunnybrook Health Science Centre, University of Toronto, ON, Canada
| | - Tolupe Sajobi
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Department of Community Health Sciences, University of Calgary, 3280 Hospital Drive NW, Calgary, Canada
| | - Shelagh Coutts
- Calgary Stroke Program, Department of Clinical Neurosciences, Foothills Medical Centre, 1403 29th Street NW, Calgary AB, Canada
- Cumming School of Medicine, Hotchkiss Brain Institute, 3330 Hospital Drive NW, Calgary AB, Canada
| | | |
Collapse
|
10
|
Nicolas K, Goodin P, Visser MM, Michie PT, Bivard A, Levi C, Parsons MW, Karayanidis F. Altered Functional Connectivity and Cognition Persists 4 Years After a Transient Ischemic Attack or Minor Stroke. Front Neurol 2021; 12:612177. [PMID: 34163417 PMCID: PMC8215289 DOI: 10.3389/fneur.2021.612177] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/30/2021] [Indexed: 11/25/2022] Open
Abstract
Background and Purpose: Altered executive functions and resting-state functional connectivity (rsFC) are common following a minor stroke or transient ischemic attack (TIA). However, the long-term persistence of these abnormalities is not well-studied. We investigated whether there were cognitive and rsFC differences between (a) controls and minor cerebrovascular event (CVE) patients and (b) between CVE patients with and without an imaging confirmed infarct (i.e., minor stroke and TIA, respectively) at an average of 3.8 years following their event. Methods: Structural and resting-state imaging and cognitive assessments including the Montreal Cognitive Assessment, the Trail Making Task and the National Institute of Health (NIH) Cognition Toolbox were conducted on 42 patients (minor stroke = 17, TIA = 25) and 20 healthy controls (total N = 62). Results: Controls performed better than patients on two measures of executive functioning (both p < 0.046) and had reduced rsFC between the frontoparietal and default mode networks (FPN and DMN, respectively; p = 0.035). No cognitive differences were found between minor stroke and TIA patients, however, rsFC differences were found within the FPN and the DMN (both p < 0.013). Specifically, increased connectivity within the FPN was associated with faster performance in the minor stroke group but not the TIA group (p = 0.047). Conclusions: These findings suggest that transient or relatively minor cerebrovascular events are associated with persistent disruption of functional connectivity of neural networks and cognitive performance. These findings suggest a need for novel interventions beyond secondary prevention to reduce the risk of persistent cognitive deficits.
Collapse
Affiliation(s)
- Korinne Nicolas
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia
| | - Peter Goodin
- Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Milanka M Visser
- Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Patricia T Michie
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew Bivard
- Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Christopher Levi
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Sydney Partnership for Health, Education, Research and Enterprise, Sydney, NSW, Australia
| | - Mark W Parsons
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia.,Melbourne Brain Centre, Royal Melbourne Hospital, University of Melbourne, Parkville, VIC, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
11
|
Schaeffer MJ, Chan L, Barber PA. The neuroimaging of neurodegenerative and vascular disease in the secondary prevention of cognitive decline. Neural Regen Res 2021; 16:1490-1499. [PMID: 33433462 PMCID: PMC8323688 DOI: 10.4103/1673-5374.303011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Structural brain changes indicative of dementia occur up to 20 years before the onset of clinical symptoms. Efforts to modify the disease process after the onset of cognitive symptoms have been unsuccessful in recent years. Thus, future trials must begin during the preclinical phases of the disease before symptom onset. Age related cognitive decline is often the result of two coexisting brain pathologies: Alzheimer’s disease (amyloid, tau, and neurodegeneration) and vascular disease. This review article highlights some of the common neuroimaging techniques used to visualize the accumulation of neurodegenerative and vascular pathologies during the preclinical stages of dementia such as structural magnetic resonance imaging, positron emission tomography, and white matter hyperintensities. We also describe some emerging neuroimaging techniques such as arterial spin labeling, diffusion tensor imaging, and quantitative susceptibility mapping. Recent literature suggests that structural imaging may be the most sensitive and cost-effective marker to detect cognitive decline, while molecular positron emission tomography is primarily useful for detecting disease specific pathology later in the disease process. Currently, the presence of vascular disease on magnetic resonance imaging provides a potential target for optimizing vascular risk reduction strategies, and the presence of vascular disease may be useful when combined with molecular and metabolic markers of neurodegeneration for identifying the risk of cognitive impairment.
Collapse
Affiliation(s)
- Morgan J Schaeffer
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Leona Chan
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Philip A Barber
- Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
12
|
Rezaei S, Asgari Mobarake K, Saberi A. BDNF (rs6265) Val < Met polymorphism can buffer cognitive functions against post stroke CT/MRI pathological findings. APPLIED NEUROPSYCHOLOGY-ADULT 2020; 29:971-982. [PMID: 33073590 DOI: 10.1080/23279095.2020.1830774] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Brain lesions following stroke have been shown prevalently in CT/MRI, and it was confirmed that lesions usually are accompanied by cognitive deficits. Although previous studies have emphasized that BDNF Val66Met polymorphism had a substantial role in neurogenesis and synaptic plasticity, it remains unclear to what extent an interaction may be appeared between neuroimaging findings and Val66Met variants on different cognitive functions following stroke. In a case-control study the carriers of at least one Val allele (n = 56), were compared with the carriers of Met/Met homozygotes (n = 156) in order to find possible neuroimaging factors in relation to cognitive functions in a sample from the north of Iran. The third edition of Addenbrooke's Cognitive Examination (ACE-III) was used to determine the cognitive functions. There were interactive effects among Val66Met genotypes with dominant hemisphere lesions [F = 6.97, ή2 = 0.03, p = 0.009], cerebral atrophy [F = 5.43, ή2 = 0.03, p = 0.011] and number of lesions [F = 4.32, ή2 = 0.04, p = 0.014], for visuospatial skills, memory, and attention functions respectively; implying that the effect of dominant hemisphere lesions, cerebral atrophy, and multiple lesions on cognitive functions have been modulated by Met/Met homozygosity. The destructive effect of Val/Met homozygosity on cognitive functions was shown to be exacerbated by dominant hemispheric lesions, cerebral atrophy, and multiple lesions following stroke. The findings of present research support our hypothesis that interaction of Val66Met variants with cerebral lesions is associated with cognitive dysfunctions in post stroke conditions; particularly through Met/Met homozygosity which act as a buffer mechanism against some CT/MRI pathological findings.
Collapse
Affiliation(s)
- Sajjad Rezaei
- Department of Psychology, University of Guilan, Rasht, Iran
| | | | - Alia Saberi
- Neuroscience Research Center, Department of Neurology, School of Medicine, PourSina Hospital, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
13
|
Nicolas K, Levi C, Evans TJ, Michie PT, Magin P, Quain D, Bivard A, Karayanidis F. Cognition in the First Year After a Minor Stroke, Transient Ischemic Attack, or Mimic Event and the Role of Vascular Risk Factors. Front Neurol 2020; 11:216. [PMID: 32373041 PMCID: PMC7186464 DOI: 10.3389/fneur.2020.00216] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 03/09/2020] [Indexed: 11/17/2022] Open
Abstract
Background: Cognitive impairment following a minor stroke or transient ischemic attack (TIA) is common; however, due to diagnostic difficulties, the prevalence and underlying cause of impairment remain poorly defined. We compared cognition in patients after a minor stroke, TIA, or mimic event at three time points in the first year following the event. We examine whether cognitive impairment occurs following these events and whether this impairment differs based on the event type. Further, we measure whether these findings persist after controlling for age, education, and the presence of vascular risk factors and whether the presence of vascular risk factors, independent of event etiology, is associated with cognitive impairment. Lastly, we investigate whether increased stroke risk, as assessed by the ABCD2, is associated with reduced cognition. Methods: Medical information, a cognitive screening test, and a measure of executive functioning were collected from 613 patients (123 minor stroke, 175 TIA, and 315 mimics) using phone interviews at three time points in the first year following the event. Linear mixed models were used to determine the effect of event type, vascular risk factors, and predicted stroke risk on cognitive performance while controlling for confounders. Results: There was no relationship between event type and performance on either cognitive measure. When all confounders are controlled for, performance on the cognitive screening test was uniquely accounted for by the presence of heart failure, myocardial infarction, angina, and hypertension (all p < 0.047), whereas the measure of executive functioning was uniquely accounted for by the presence of hypertension and angina (all p < 0.032). Increased stroke risk also predicted performance on the cognitive screening test and the measure of executive functioning (all p < 0.002). Conclusions: Our findings indicate that cognitive impairment following a minor stroke or TIA may be attributed to the high prevalence of chronic vascular risk factors in these patients. This highlights the importance of long-term management of vascular risk factors beyond event recovery to reduce the risk of cognitive impairment. Increased stroke risk (i.e., ABCD2 score) was also associated with reduced cognition, suggesting that it may be helpful in signaling the need for further cognitive evaluation and intervention post-event.
Collapse
Affiliation(s)
- Korinne Nicolas
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
| | - Christopher Levi
- Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia.,University of New South Wales, Sydney, NSW, Australia.,Sydney Partnership for Health, Education, Research and Enterprise, Sydney, NSW, Australia
| | - Tiffany-Jane Evans
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia
| | - Patricia T Michie
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Parker Magin
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
| | - Debbie Quain
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Andrew Bivard
- Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia.,Melbourne Brain Center, Royal Melbourne Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Frini Karayanidis
- Functional Neuroimaging Laboratory, School of Psychology, University of Newcastle, Newcastle, NSW, Australia.,Brain and Mental Program, Hunter Medical Research Institute, Newcastle, NSW, Australia.,Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Newcastle, NSW, Australia
| |
Collapse
|