1
|
Zambrano K, Barba D, Castillo K, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. A new hope: Mitochondria, a critical factor in the war against prions. Mitochondrion 2022; 65:113-123. [PMID: 35623560 DOI: 10.1016/j.mito.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 03/28/2022] [Accepted: 05/22/2022] [Indexed: 11/17/2022]
Abstract
Prion diseases encompass a group of incurable neurodegenerative disorders that occur due to the misfolding and aggregation of infectious proteins. The most well-known prion diseases are Creutzfeldt-Jakob disease (CJD), bovine spongiform encephalopathy (also known as mad cow disease), and kuru. It is estimated that around 1-2 persons per million worldwide are affected annually by prion disorders. Infectious prion proteins propagate in the brain, clustering in the cells and rapidly inducing tissue degeneration and death. Prion disease alters cell metabolism and energy production damaging mitochondrial function and dynamics leading to a fast accumulation of damage. Dysfunction of mitochondria could be considered as an early precursor and central element in the pathogenesis of prion diseases such as in sporadic CJD. Preserving mitochondria function may help to resist the rapid spread and damage of prion proteins and even clearance. In the war against prions and other degenerative diseases, studying how to preserve the function of mitochondria by using antioxidants and even replacing them with artificial mitochondrial transfer/transplant (AMT/T) may bring a new hope and lead to an increase in patients' survival. In this perspective review, we provide key insights about the relationship between the progression of prion disease and mitochondria, in which understanding how protecting mitochondria function and viability by using antioxidants or AMT/T may help to develop novel therapeutic interventions.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador
| | - Andrés Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina iBioMed, 17-12-841, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador.
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, 17-12-841, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador.
| |
Collapse
|
2
|
Zambrano K, Barba D, Castillo K, Noboa L, Argueta-Zamora D, Robayo P, Arizaga E, Caicedo A, Gavilanes AWD. Fighting Parkinson's disease: the return of the mitochondria. Mitochondrion 2022; 64:34-44. [PMID: 35218960 DOI: 10.1016/j.mito.2022.02.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/04/2022] [Accepted: 02/14/2022] [Indexed: 12/18/2022]
Abstract
Parkinson's disease (PD) is the most common neurodegenerative movement disorder, worldwide. PD neuro-energetically affects the extrapyramidal system, by the progressive loss of striatal dopaminergic neurons in the substantia nigra pars compacta, leading to motor impairment. During the progression of PD, there will be an increase in mitochondrial dysfunction, reactive oxygen species (ROS), stress and accumulation of α-synuclein in neurons. This results in mitochondrial mutations altering their function and fission-fusion mechanisms and central nervous system (CNS) degeneration. Intracellular mitochondrial dysfunction has been studied for a long time in PD due to the decline of mitochondrial dynamics inside neurons. Mitochondrial damage-associated molecular patterns (DAMPs) have been known to contribute to several CNS pathologies especially PD pathogenesis. New and exciting evidence regarding the exchange of mitochondria between healthy to damaged cells in the central nervous system (CNS) and the therapeutic use of the artificial mitochondrial transfer/transplant (AMT) marked a return of this organelle to develop innovative therapeutic procedures for PD. The focus of this review aims to shed light on the role of mitochondria, both intra and extracellularly in PD, and how AMT could be used to generate new potential therapies in the fight against PD. Moreover, we suggest that mitochondrial therapy could work as a preventative measure, motivating the field to move towards this goal.
Collapse
Affiliation(s)
- Kevin Zambrano
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; Instituto de Neurociencias, Universidad San Francisco de Quito USFQ, Quito, Ecuador
| | - Diego Barba
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; Mito-Act Research Consortium, Quito, Ecuador
| | - Karina Castillo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Luis Noboa
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | | | - Paola Robayo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| | - Eduardo Arizaga
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador
| | - Andres Caicedo
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador; School for Mental Health and Neuroscience (MHeNs), Maastricht University, Maastricht, The Netherlands; Mito-Act Research Consortium, Quito, Ecuador; 7 Sistemas Médicos SIME, Universidad San Francisco de Quito, Quito, Ecuador
| | - Antonio W D Gavilanes
- Universidad San Francisco de Quito USFQ, Colegio de Ciencias de la Salud, Escuela de Medicina, Quito, Ecuador; Universidad San Francisco de Quito USFQ, Instituto de Investigaciones en Biomedicina, Quito, Ecuador
| |
Collapse
|
3
|
Emerging methods for and novel insights gained by absolute quantification of mitochondrial DNA copy number and its clinical applications. Pharmacol Ther 2021; 232:107995. [PMID: 34592204 DOI: 10.1016/j.pharmthera.2021.107995] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 08/26/2021] [Accepted: 09/01/2021] [Indexed: 02/07/2023]
Abstract
The past thirty years have seen a surge in interest in pathophysiological roles of mitochondria, and the accurate quantification of mitochondrial DNA copy number (mCN) in cells and tissue samples is a fundamental aspect of assessing changes in mitochondrial health and biogenesis. Quantification of mCN between studies is surprisingly variable due to a combination of physiological variability and diverse protocols being used to measure this endpoint. The advent of novel methods to quantify nucleic acids like digital polymerase chain reaction (dPCR) and high throughput sequencing offer the ability to measure absolute values of mCN. We conducted an in-depth survey of articles published between 1969 -- 2020 to create an overview of mCN values, to assess consensus values of tissue-specific mCN, and to evaluate consistency between methods of assessing mCN. We identify best practices for methods used to assess mCN, and we address the impact of using specific loci on the mitochondrial genome to determine mCN. Current data suggest that clinical measurement of mCN can provide diagnostic and prognostic value in a range of diseases and health conditions, with emphasis on cancer and cardiovascular disease, and the advent of means to measure absolute mCN should improve future clinical applications of mCN measurements.
Collapse
|
4
|
Lowes H, Kurzawa-Akanbi M, Pyle A, Hudson G. Post-mortem ventricular cerebrospinal fluid cell-free-mtDNA in neurodegenerative disease. Sci Rep 2020; 10:15253. [PMID: 32943697 PMCID: PMC7499424 DOI: 10.1038/s41598-020-72190-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 08/11/2020] [Indexed: 12/14/2022] Open
Abstract
Cell-free mitochondrial DNA (cfmtDNA) is detectable in almost all human body fluids and has been associated with the onset and progression of several complex traits. In-life assessments indicate that reduced cfmtDNA is a feature of neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease and multiple sclerosis. However, whether this feature is conserved across all neurodegenerative diseases and how it relates to the neurodegenerative processes remains unclear. In this study, we assessed the levels of ventricular cerebrospinal fluid-cfmtDNA (vCSF-cfmtDNA) in a diverse group of neurodegenerative diseases (NDDs) to determine if the in-life observations of reduced cfmtDNA seen in lumbar CSF translated to the post-mortem ventricular CSF. To investigate further, we compared vCSF-cfmtDNA levels to known protein markers of neurodegeneration, synaptic vesicles and mitochondrial integrity. Our data indicate that reduced vCSF-cfmtDNA is a feature specific to Parkinson's and appears consistent throughout the disease course. Interestingly, we observed increased vCSF-cfmtDNA in the more neuropathologically severe NDD cases, but no association to protein markers of neurodegeneration, suggesting that vCSF-cfmtDNA release is more complex than mere cellular debris produced following neuronal death. We conclude that vCSF-cfmtDNA is reduced in PD, but not other NDDs, and appears to correlate to pathology. Although its utility as a prognostic biomarker is limited, our data indicate that higher levels of vCSF-cfmtDNA is associated with more severe clinical presentations; suggesting that it is associated with the neurodegenerative process. However, as vCSF-cfmtDNA does not appear to correlate to established indicators of neurodegeneration or indeed indicators of mitochondrial mass, further work to elucidate its exact role is needed.
Collapse
Affiliation(s)
- Hannah Lowes
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Marzena Kurzawa-Akanbi
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Angela Pyle
- Clinical and Translational Research Institute, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Gavin Hudson
- Biosciences Institute, 4th Floor Cookson Building, Medical School, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
- Wellcome Centre for Mitochondrial Research, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|