1
|
Murray KE, Ravula AR, Stiritz VA, Cominski TP, Delic V, Marín de Evsikova C, Rama Rao KV, Chandra N, Beck KD, Pfister BJ, Citron BA. Sex and Genotype Affect Mouse Hippocampal Gene Expression in Response to Blast-Induced Traumatic Brain Injury. Mol Neurobiol 2025:10.1007/s12035-025-04879-5. [PMID: 40178780 DOI: 10.1007/s12035-025-04879-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 03/21/2025] [Indexed: 04/05/2025]
Abstract
Blast-induced traumatic brain injury (bTBI) has been identified as an increasingly prevalent cause of morbidity and mortality in both military and civilian populations over the past few decades. Functional outcomes following bTBI vary widely among individuals, and chronic neurodegenerative effects including cognitive impairments can develop without effective diagnosis and treatment. Genetic predispositions and sex differences may affect gene expression changes in response to bTBI and influence an individual's probability of sustaining long-term damage or exhibiting resilience and tissue repair. Male and female mice from eight genetically diverse and distinct strains (129S1/SvImJ, A/J, C57BL/6J, CAST/EiJ, NOD/ShiLtJ, NZO/HlLtJ, PWK/PhJ, WSB/EiJ) which encompassed 90% of the genetic variability in commercially available laboratory mice were exposed to a single bTBI (180 kPa) using a well-established shock tube system. Subacute changes in hippocampal gene expression due to blast exposure were assessed using RNA-seq at 1-month post-injury. We identified patterns of dysregulation in gene ontology terms and canonical pathways related to mitochondrial function, ribosomal structure, synaptic plasticity, protein degradation, and intracellular signaling that varied by sex and/or strain, including significant changes in genes encoding respiratory complex I of the electron transport chain in male WSB/EiJ mice and the glutamatergic synapse across more than half of our groups. This study represents a multi-level examination of how genetic variability may influence response to bTBI and provides a foundation for the identification of potential therapeutic targets that could be modulated to improve the health of Veterans and others with histories of blast exposures.
Collapse
Affiliation(s)
- Kathleen E Murray
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Arun Reddy Ravula
- Molecular Neurotherapeutics Laboratory, Department of Neuroscience, Mayo Clinic, Jacksonville, FL, USA
| | - Victoria A Stiritz
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
| | - Tara P Cominski
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- Division of Life Sciences, School of Arts and Sciences, Rutgers University, New Brunswick, NJ, USA
| | - Vedad Delic
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Caralina Marín de Evsikova
- Epigenetics and Functional Genomics Laboratory, Research & Development, U.S. Department of Veterans Affairs, Bay Pines VA Healthcare System, Bay Pines, FL, USA
- Department of Molecular Medicine, University of South Florida, Tampa, FL, USA
| | - Kakulavarapu V Rama Rao
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Namas Chandra
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Kevin D Beck
- Neurobehavioral Research Laboratory, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA
| | - Bryan J Pfister
- Center for Injury Biomechanics, Materials, and Medicine, Department of Biomedical Engineering, New Jersey Institute of Technology, Newark, NJ, USA
| | - Bruce A Citron
- Laboratory of Molecular Biology, Research & Development, U.S. Department of Veterans Affairs, VA New Jersey Health Care System, East Orange, NJ, USA.
- School of Graduate Studies, Rutgers Health, Newark, NJ, USA.
- Department of Pharmacology, Physiology & Neuroscience, Rutgers-New Jersey Medical School, Newark, NJ, 07101, USA.
| |
Collapse
|
2
|
Norris C, Murphy SF, VandeVord PJ. Acute astrocytic and neuronal regulation of glutamatergic protein expression following blast. Neurosci Lett 2025; 848:138108. [PMID: 39734031 DOI: 10.1016/j.neulet.2024.138108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/17/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Regulation of glutamate through glutamate-glutamine cycling is critical for mediating nervous system plasticity. Blast-induced traumatic brain injury (bTBI) has been linked to glutamate-dependent excitotoxicity, which may be potentiating chronic disorders such as post-traumatic epilepsy. The purpose of this study was to measure changes in the expression of astrocytic and neuronal proteins responsible for glutamatergic regulation at 4-, 12-, and 24 h in the cortex and hippocampus following single blast exposure in a rat model for bTBI. Animals were exposed to a blast with magnitudes ranging from 16 to 20 psi using an Advanced Blast Simulator, and western blotting was performed to compare changes in protein expression between blast and sham groups. Glial fibrillary acidic protein (GFAP) was increased at 24 h, consistent with astrocyte reactivity, yet no other proteins showed significant changes in expression at acute time points following blast (GS, GLT-1, GluN1, GluN2A, GluN2B). Therefore, these glutamate regulators likely do not play a major role in contributing to acute excitotoxicity or glial reactivity when analyzed by whole brain region. Investigation of substructural and subregional effects in future studies, particularly within the hippocampus (e.g., dentate gyrus, CA1, CA2, CA3), may reveal localized changes in expression and/or NMDAR subunit composition capable of potentiating bTBI molecular cascades. Nevertheless, alternative regulators are likely to demonstrate greater sensitivity as acute therapeutic targets contributing to bTBI pathophysiology following single blast exposure.
Collapse
Affiliation(s)
- Carly Norris
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA
| | - Susan F Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA
| | - Pamela J VandeVord
- School of Biomedical Engineering and Sciences, Virginia Tech, Blacksburg, VA, USA; Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, USA; Veterans Affairs Medical Center, Salem, VA, USA.
| |
Collapse
|
3
|
Cente M, Matyasova K, Csicsatkova N, Tomikova A, Porubska S, Niu Y, Majdan M, Filipcik P, Jurisica I. Traumatic MicroRNAs: Deconvolving the Signal After Severe Traumatic Brain Injury. Cell Mol Neurobiol 2023; 43:1061-1075. [PMID: 35852739 PMCID: PMC11414451 DOI: 10.1007/s10571-022-01254-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 07/02/2022] [Indexed: 11/03/2022]
Abstract
History of traumatic brain injury (TBI) represents a significant risk factor for development of dementia and neurodegenerative disorders in later life. While histopathological sequelae and neurological diagnostics of TBI are well defined, the molecular events linking the post-TBI signaling and neurodegenerative cascades remain unknown. It is not only due to the brain's inaccessibility to direct molecular analysis but also due to the lack of well-defined and highly informative peripheral biomarkers. MicroRNAs (miRNAs) in blood are promising candidates to address this gap. Using integrative bioinformatics pipeline including miRNA:target identification, pathway enrichment, and protein-protein interactions analysis we identified set of genes, interacting proteins, and pathways that are connected to previously reported peripheral miRNAs, deregulated following severe traumatic brain injury (sTBI) in humans. This meta-analysis revealed a spectrum of genes closely related to critical biological processes, such as neuroregeneration including axon guidance and neurite outgrowth, neurotransmission, inflammation, proliferation, apoptosis, cell adhesion, and response to DNA damage. More importantly, we have identified molecular pathways associated with neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, based on purely peripheral markers. The pathway signature after acute sTBI is similar to the one observed in chronic neurodegenerative conditions, which implicates a link between the post-sTBI signaling and neurodegeneration. Identified key hub interacting proteins represent a group of novel candidates for potential therapeutic targets or biomarkers.
Collapse
Affiliation(s)
- Martin Cente
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Katarina Matyasova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Nikoleta Csicsatkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Adela Tomikova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Sara Porubska
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia
| | - Yun Niu
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada
| | - Marek Majdan
- Department of Public Health, Faculty of Health Sciences and Social Work, Trnava University, Trnava, Slovakia
| | - Peter Filipcik
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia.
- Axon Neuroscience R&D Services SE, Bratislava, Slovakia.
| | - Igor Jurisica
- Institute of Neuroimmunology, Slovak Academy of Sciences, Dúbravská cesta 9, 845 10 Bratislava 45, Bratislava, Slovakia.
- Division of Orthopaedic Surgery, Schroeder Arthritis Institute, and Data Science Discovery Centre, Osteoarthritis Research Program, Krembil Research Institute, UHN, Toronto, Canada.
- Departments of Medical Biophysics and Computer Science, University of Toronto, Toronto, Canada.
- Data Science Discovery Centre for Chronic Diseases, Krembil Research Institute, University Health Network, 60 Leonard Avenue, 5KD-407, Toronto, ON, M5T 0S8, Canada.
| |
Collapse
|
4
|
Edwards KA, Leete JJ, Smith EG, Quick A, Modica CM, Wassermann EM, Polejaeva E, Dell KC, LoPresti M, Walker P, O'Brien M, Lai C, Qu BX, Devoto C, Carr W, Stone JR, Ahlers ST, Gill JM. Elevations in Tumor Necrosis Factor Alpha and Interleukin 6 From Neuronal-Derived Extracellular Vesicles in Repeated Low-Level Blast Exposed Personnel. Front Neurol 2022; 13:723923. [PMID: 35528741 PMCID: PMC9070565 DOI: 10.3389/fneur.2022.723923] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 02/03/2022] [Indexed: 11/13/2022] Open
Abstract
Objective The purpose of this pilot study was to determine if military service members with histories of hundreds to thousands of low-level blast exposures (i. e., experienced breachers) had different levels of serum and neuronal-derived extracellular vesicle (EV) concentrations of interleukin (IL)-6, IL-10, and tumor necrosis factor alpha (TNFα), compared to matched controls, and if these biomarkers related to neurobehavioral symptoms. Methods Participants were experienced breachers (n = 20) and matched controls without blast exposures (n = 14). Neuronal-derived EVs were isolated from serum and identified with mouse anti-human CD171. Serum and neuronal-derived EVs were analyzed for IL-6, IL-10, and TNFα using an ultra-sensitive assay. Results Serum TNFα concentrations were decreased in breachers when compared to control concentrations (p < 0.01). There were no differences in serum concentrations of IL-6, IL-10, or the IL-6/IL-10 ratio between breachers and controls (p's > 0.01). In neuronal-derived EVs, TNFα and IL-6 levels were increased in breachers compared to controls (p's < 0.01), and IL-10 levels were decreased in the breacher group compared to controls (p < 0.01). In breachers the IL-6/IL-10 ratio in neuronal-derived EVs was higher compared to controls, which correlated with higher total Rivermead Post-concussion Questionnaire (RPQ) scores (p's < 0.05). Conclusions These findings suggest that exposure of personnel to high numbers of low-level blast over a career may result in enduring central inflammation that is associated with chronic neurological symptoms. The data also suggest that peripheral markers of inflammation are not necessarily adequate surrogates for central neuroinflammation.
Collapse
Affiliation(s)
- Katie A Edwards
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Jacqueline J Leete
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Ethan G Smith
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Alycia Quick
- School of Psychology, University of Glasgow, Glasgow, United Kingdom
| | - Claire M Modica
- Naval Medical Research Center, Silver Spring, MD, United States
| | - Eric M Wassermann
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, United States
| | - Elena Polejaeva
- VA San Diego Healthcare System, San Diego, CA, United States
| | - Kristine C Dell
- Department of Psychology, Pennsylvania State University, University Park, PA, United States
| | - Matthew LoPresti
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Peter Walker
- Joint Artificial Intelligence Center, Arlington, VA, United States
| | - Meghan O'Brien
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Chen Lai
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States
| | - Bao-Xi Qu
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Christina Devoto
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - James R Stone
- Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA, United States
| | - Stephen T Ahlers
- Naval Medical Research Center, Operational and Undersea Medicine Directorate, Silver Spring, MD, United States
| | - Jessica M Gill
- Biomarkers of Trauma, National Institute of Nursing Research, National Institutes of Health, Bethesda, MD, United States.,Center for Neuroscience and Regenerative Medicine, Uniformed Services of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
5
|
Wang Z, Wilson CM, Ge Y, Nemes J, LaValle C, Boutté A, Carr W, Kamimori G, Haghighi F. DNA Methylation Patterns of Chronic Explosive Breaching in U.S. Military Warfighters. Front Neurol 2020; 11:1010. [PMID: 33192958 PMCID: PMC7645105 DOI: 10.3389/fneur.2020.01010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 07/31/2020] [Indexed: 02/01/2023] Open
Abstract
Background: Injuries from exposure to explosions rose dramatically during the Iraq and Afghanistan wars, which motivated investigation of blast-related neurotrauma. We have undertaken human studies involving military "breachers" -exposed to controlled, low-level blast during a 3-days explosive breaching course. Methods: We screened epigenetic profiles in peripheral blood samples from 59 subjects (in two separate U.S. Military training sessions) using Infinium MethylationEPIC BeadChips. Participants had varying numbers of exposures to blast over their military careers (empirically defined as high ≥ 40, and conversely, low < 39 breaching exposures). Daily self-reported physiological symptoms were recorded. Tinnitus, memory problems, headaches, and sleep disturbances are most frequently reported. Results: We identified 14 significantly differentially methylated regions (DMRs) within genes associated with cumulative blast exposure in participants with high relative to low cumulative blast exposure. Notably, NTSR1 and SPON1 were significantly differentially methylated in high relative to low blast exposed groups, suggesting that sleep dysregulation may be altered in response to chronic cumulative blast exposure. In comparing lifetime blast exposure at baseline (prior to exposure in current training), and top associated symptoms, we identified significant DMRs associated with tinnitus, sleep difficulties, and headache. Notably, we identified KCNN3, SOD3, MUC4, GALR1, and WDR45B, which are implicated in auditory function, as differentially methylated associated with self-reported tinnitus. These findings suggest neurobiological mechanisms behind auditory injuries in our military warfighters and are particularly relevant given tinnitus is not only a primary disability among veterans, but has also been demonstrated in active duty medical records for populations exposed to blast in training. Additionally, we found that differentially methylated regions associated with the genes CCDC68 and COMT track with sleep difficulties, and those within FMOD and TNXB track with pain and headache. Conclusion: Sleep disturbances, as well as tinnitus and chronic pain, are widely reported in U.S. military service members and veterans. As we have previously demonstrated, DNA methylation encapsulates lifetime exposure to blast. The current data support previous findings and recapitulate transcriptional regulatory alterations in genes involved in sleep, auditory function, and pain. These data uncovered novel epigenetic and transcriptional regulatory mechanism underlying the etiological basis of these symptoms.
Collapse
Affiliation(s)
- Zhaoyu Wang
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
| | - Caroline M. Wilson
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| | - Yongchao Ge
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Jeffrey Nemes
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christina LaValle
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Angela Boutté
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Gary Kamimori
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Fatemeh Haghighi
- James J. Peters VA Medical Center, Medical Epigenetics, Bronx, NY, United States
- Icahn School of Medicine at Mount Sinai, Nash Family Department of Neuroscience, New York, NY, United States
| |
Collapse
|
6
|
Meabon JS, Cook DG, Yagi M, Terry GE, Cross DJ, Muzi M, Pagulayan KF, Logsdon AF, Schindler AG, Ghai V, Wang K, Fallen S, Zhou Y, Kim TK, Lee I, Banks WA, Carlson ES, Mayer C, Hendrickson RC, Raskind MA, Marshall DA, Perl DP, Keene CD, Peskind ER. Chronic elevation of plasma vascular endothelial growth factor-A (VEGF-A) is associated with a history of blast exposure. J Neurol Sci 2020; 417:117049. [PMID: 32758764 PMCID: PMC7492467 DOI: 10.1016/j.jns.2020.117049] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 06/23/2020] [Accepted: 07/15/2020] [Indexed: 02/02/2023]
Abstract
Mounting evidence points to the significance of neurovascular-related dysfunction in veterans with blast-related mTBI, which is also associated with reduced [18F]-fluorodeoxyglucose (FDG) uptake. The goal of this study was to determine whether plasma VEGF-A is altered in veterans with blast-related mTBI and address whether VEGF-A levels correlate with FDG uptake in the cerebellum, a brain region that is vulnerable to blast-related injury 72 veterans with blast-related mTBI (mTBI) and 24 deployed control (DC) veterans with no lifetime history of TBI were studied. Plasma VEGF-A was significantly elevated in mTBIs compared to DCs. Plasma VEGF-A levels in mTBIs were significantly negatively correlated with FDG uptake in cerebellum. In addition, performance on a Stroop color/word interference task was inversely correlated with plasma VEGF-A levels in blast mTBI veterans. Finally, we observed aberrant perivascular VEGF-A immunoreactivity in postmortem cerebellar tissue and not cortical or hippocampal tissues from blast mTBI veterans. These findings add to the limited number of plasma proteins that are chronically elevated in veterans with a history of blast exposure associated with mTBI. It is likely the elevated VEGF-A levels are from peripheral sources. Nonetheless, increasing plasma VEGF-A concentrations correlated with chronically decreased cerebellar glucose metabolism and poorer performance on tasks involving cognitive inhibition and set shifting. These results strengthen an emerging view that cognitive complaints and functional brain deficits caused by blast exposure are associated with chronic blood-brain barrier injury and prolonged recovery in affected regions.
Collapse
Affiliation(s)
- James S Meabon
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - David G Cook
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA; Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Mayumi Yagi
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Garth E Terry
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Department of Radiology, University of Washington, Seattle, WA, USA
| | - Donna J Cross
- Department of Radiology, University of Utah, Salt Lake City, UT, USA
| | - Mark Muzi
- Department of Radiology, University of Washington, Seattle, WA, USA
| | - Kathleen F Pagulayan
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Aric F Logsdon
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Abigail G Schindler
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Vikas Ghai
- Institute for Systems Biology, Seattle, WA, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Yong Zhou
- Institute for Systems Biology, Seattle, WA, USA
| | | | - Inyoul Lee
- Institute for Systems Biology, Seattle, WA, USA
| | - William A Banks
- Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA; Department of Medicine, Division of Gerontology and Geriatric Medicine, University of Washington, Seattle, WA, USA
| | - Erik S Carlson
- Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA; Geriatric Research, Education, and Clinical Center (GRECC), Veterans Affairs Puget Sound Health Care System, Seattle, WA, USA
| | - Cynthia Mayer
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA
| | - Rebecca C Hendrickson
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | - Murray A Raskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA
| | | | - Daniel P Perl
- Department of Pathology, Center for Neuroscience and Regenerative Medicine, School of Medicine, Uniformed Services University, Bethesda, MD, USA
| | - C Dirk Keene
- Department of Pathology, University of Washington, Seattle, WA, USA
| | - Elaine R Peskind
- Veterans Affairs (VA) Northwest Mental Illness, Research, Education, and Clinical Center (MIRECC), Seattle, WA, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, Seattle, WA, USA.
| |
Collapse
|
7
|
Carr W, Kelley AL, Toolin CF, Weber NS. Association of MOS-Based Blast Exposure With Medical Outcomes. Front Neurol 2020; 11:619. [PMID: 32849167 PMCID: PMC7413071 DOI: 10.3389/fneur.2020.00619] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 05/27/2020] [Indexed: 12/25/2022] Open
Abstract
The study of effects associated with human exposure to repeated low-level blast during training or operations of select military occupational specialties (MOS) challenges medical science because acute negative effects that might follow such exposures cannot be expected to be clear or prevalent. Any gross effects from such occupational blast exposure on health or performance should be expected to have been already identified and addressed by affected military units through changes to their standard training protocols. Instead, effects, if any, should be expected to be incremental in nature and to vary among individuals of different susceptibilities and exposure histories. Despite the challenge, occupational blast-associated effects in humans are emerging in ongoing research. The purpose of the present study was to examine medical records for evidence of blast-associated effects that may have clinical significance in current standard of care. We hypothesized that populations exposed to blast by virtue of their military occupation would have poorer global medical outcomes than cohorts less likely to have been occupationally exposed. Records from a population of 50,254 service members in MOSs with a high likelihood of occupational blast exposure were compared to records from a matched cohort of 50,254 service members in MOSs with a lower likelihood of occupational blast exposure. These two groups were compared in hospitalizations, outpatient visits, pharmacy, and disability ratings. The clearest finding was higher risk among blast-exposed MOSs for ambulatory encounters for tinnitus, with adjusted risk ratios of 1.19 (CI 1.03–1.37), 1.21 (CI 1.16–1.26), and 1.31 (CI 1.18–1.45) across career time points. Other hypothesized effects (i.e., neurological outcomes) were smaller and were associated with acute exposure. This study documents that service members in occupations that likely include repeated exposure to blast are at some increased risk for neurosensory conditions that present in medical evaluations. Other hypothesized risks from occupational exposure may manifest as symptomology not visible in the medical system or current standard of care. Separate studies, observational and epidemiological, are underway to evaluate further the potential for occupational risk, but the evidence presented here may indicate near-term opportunities to guide efforts to reduce neurosensory risk among exposed service members.
Collapse
Affiliation(s)
- Walter Carr
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States.,Oak Ridge Institute for Science and Education, Oak Ridge, TN, United States
| | - Amanda L Kelley
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Christine F Toolin
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| | - Natalya S Weber
- Center for Military Psychiatry and Neuroscience, Walter Reed Army Institute of Research, Silver Spring, MD, United States
| |
Collapse
|