1
|
Orlandi R, Mariotto S, Gobbin F, Rossi F, Camera V, Calabrese M, Calabria F, Gajofatto A. Brain Volume Measures in Adults with MOG-Antibody-Associated Disease: A Longitudinal Multicenter Study. J Clin Med 2025; 14:2445. [PMID: 40217895 PMCID: PMC11989929 DOI: 10.3390/jcm14072445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Little is known about the impact of myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) on brain atrophy. This multicenter longitudinal study compares brain MRI volumes and T2 lesion volume between MOGAD patients, relapsing-remitting MS (RRMS) patients and a healthy control (HC) group with brain MRI scans available from an online repository. Methods: In total, 16 adult MOGAD patients (9 F) were age- and sex-matched with 44 RRMS patients (17 F) recruited in Verona MS Center and 14 HC subjects. The availability of two brain MRI scans performed 18 ± 6 months apart was mandatory for each patient. Annual percentage brain volume change (PBVC/y), baseline global brain, white matter (WM), gray matter (GM) regional brain volumes and T2 lesion volume were compared between groups. Results: PBVC/y was lower in MOGAD than in RRMS patients (p = 0.014) and lower in HC subjects than in MS patients (p = 0.005). Overall, MOGAD showed higher mean global brain (p = 0.012) and WM volume (p = 0.024) but lower median T2 lesion volume at timepoint 1 (p < 0.001); T2 lesion volume increased over time in the RRMS (p < 0.001) but not in the MOGAD cohort (p = 0.262). Conclusions: The structural brain MRI features of MOGAD show higher global brain and WM volumes and lower brain volume loss over time compared to RRMS, suggesting different underlining pathogenetic mechanisms.
Collapse
Affiliation(s)
- Riccardo Orlandi
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| | - Sara Mariotto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| | - Francesca Gobbin
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| | - Francesca Rossi
- Neurology Unit, Mater Salutis Hospital, 37045 Legnago, Italy;
| | - Valentina Camera
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| | - Massimiliano Calabrese
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| | - Francesca Calabria
- Neurology Unit, Ospedale Borgo Trento, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Alberto Gajofatto
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Piazzale L.A. Scuro 10, 37134 Verona, Italy; (S.M.); (F.G.); (V.C.); (M.C.); (A.G.)
| |
Collapse
|
2
|
Chen Q, Trang H, Schindler P, Oertel FC, Hartung T, Mewes D, Chien C, Hetzer S, Anderhalten L, Sy M, Finke C, Schmitz-Hübsch T, Brandt AU, Paul F. Neurite orientation dispersion and density imaging in myelin oligodendrocyte glycoprotein antibody-associated disease and neuromyelitis optica spectrum disorders. Mult Scler Relat Disord 2025; 95:106324. [PMID: 39955814 DOI: 10.1016/j.msard.2025.106324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 02/02/2025] [Accepted: 02/06/2025] [Indexed: 02/18/2025]
Abstract
BACKGROUND Aquaporin-4 antibody positive (AQP4+) neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) are two distinct antibody-mediated neuroinflammatory diseases. Diffusion Tensor Imaging (DTI) and Neurite Orientation Dispersion and Density Imaging (NODDI) are advanced diffusion-weighted MRI models providing quantitative metrics sensitive to cerebral microstructural changes. This study aims to differentiate brain tissue damage in NMOSD and MOGAD from controls and investigate its association with clinical disability, using NODDI and DTI-derived measures, including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD) and radial diffusivity. METHODS This study included 31 AQP4+ NMOSD, 21 MOGAD patients and 45 healthy controls. Clinical information included disease duration, Expanded Disability Status Scale (EDSS), Timed 25 Foot Walk test (T25FW), Nine-Hole Peg Test (9HPT), Symbol Digit Modalities Test (SDMT) and monocular 100 % high contrast visual acuity (HCVA). All participants underwent MRI scanning with multi-shell diffusion-weighted imaging, T2w fluid-attenuated inversion recovery and T1w magnetization prepared-rapid acquisition gradient echo sequences to obtain manually segmented T2-hyperintense white matter lesions (WML) and normal-appearing brain tissue (NABT) masks, including white matter (NAWM), cortical and deep gray matter (NACGM, NADGM). DTI and NODDI metrics were compared between groups using region-of-interest (ROI) analysis and tract-based spatial statistics. Tissue-weighted means were obtained for the NODDI metrics (weighted neurite density index, wNDI; weighted orientation dispersion index, wODI). Group differences in ROI analyses were assessed using age and sex adjusted linear regression models, followed by post-hoc comparisons with estimated marginal means. Stepwise multivariable linear regression models were used to evaluate the association between MRI biomarkers and clinical outcomes. RESULTS NMOSD patients had higher T2 lesion volume (1120.5 mm3 vs. 374.6 mm3, p<.001) and number (median 22 vs. 6, p<.001) than MOGAD patients. Both NMOSD and MOGAD lesions displayed lower wNDI and higher isotropic volume fraction (ISOVF) compared to microvascular lesions in controls (p<.05). In NACGM, NMOSD patients showed higher wODI but lower ISOVF compared to HC (p=.029). MOGAD patients had lower wNDI in NACGM compared to NMOSD (p=.012). Tract-based spatial statistics revealed damage to specific white matter abnormalities in NMOSD, with higher AD, ODI and ISOVF compared to controls, particularly in the corpus callosum and corticospinal tract. Clinical associations in NMOSD included higher EDSS with higher NAWM ISOVF (R2=0.46, p=.006), higher 9HPT with lower intralesional FA and higher NAWM MD (R2=0.54, p=.022), lower SDMT with lower intralesional FA and higher NACGM ISOVF (R2=0.54, p=.013), worse visual acuity with higher NAWM wODI. In MOGAD, higher EDSS was associated with lower NAWM FA (R2=0.29, p=.022), slower T25FW with higher NADGM ISOVF (R2=0.48, p<.001), lower SDMT with higher NAWM ISOVF (R2=0.62, p=.005) and worse visual acuity with higher NADGM MD. CONCLUSION NODDI and DTI measures are sensitive to pathological alterations in myelin and axon integrity, as water diffusion is less restricted in demyelinated tissue. Compared to MOGAD, patients with NMOSD tend to exhibit more extensive chronic white matter damage, demyelination or axonal injury. NODDI demonstrates greater sensitivity and specificity to alterations in NACGM compared to DTI. Given their association with clinical disability, NODDI metrics appear to be valuable neuroimaging biomarkers for assessing microstructural damage in clinical research.
Collapse
Affiliation(s)
- Qianlan Chen
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Henri Trang
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Patrick Schindler
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Frederike Cosima Oertel
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tim Hartung
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Darius Mewes
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Berlin Institute of Health at Charité - Universitätsmedizin Berlin, Biomedical Innovation Academy, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Department of Psychiatry and Neurosciences, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Stefan Hetzer
- Berlin Center for Advanced Neuroimaging, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Lina Anderhalten
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Michael Sy
- Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA 92697, USA
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Tanja Schmitz-Hübsch
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Alexander U Brandt
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Department of Neurology, University of California Irvine, 208 Sprague Hall, Mail Code 4032, Irvine, CA 92697, USA
| | - Friedemann Paul
- Experimental and Clinical Research Center, a cooperation between Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Berlin, Germany; Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany; Department of Neurology, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany; Neuroscience Clinical Research Center, Charité - Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.
| |
Collapse
|
3
|
Durand-Dubief F, Shor N, Audoin B, Bourre B, Cohen M, Kremer S, Maillart E, Papeix C, Ruet A, Savatovsky J, Tourdias T, Ayrignac X, Ciron J, Collongues N, Laplaud D, Michel L, Deschamps R, Thouvenot E, Zephir H, Marignier R, Cotton F. MRI management of NMOSD and MOGAD: Proposals from the French Expert Group NOMADMUS. J Neuroradiol 2025; 52:101235. [PMID: 39626832 DOI: 10.1016/j.neurad.2024.101235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/23/2024] [Accepted: 11/23/2024] [Indexed: 12/15/2024]
Abstract
BACKGROUND Currently, there are no available recommendations or guidelines on how to perform MRI monitoring in the management of neuromyelitis optica spectrum disorder (NMOSD) and myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD). The issue is to determine a valuable MRI monitoring protocol to be applied in the management of NMOSD and MOGAD, as previously proposed for the monitoring of multiple sclerosis. OBJECTIVES The objectives of this work are to establish proposals for a standardized and feasible MRI acquisition protocol, and to propose control time points for systematic MRI monitoring in the management of NMOSD and MOGAD. METHODS A steering committee composed of 7 neurologists and 5 neuroradiologists, experts in NMOSD and MOGAD from the French group NOMADMUS, defined 8 proposals based on their expertise and a review from the literature. These proposals were then submitted to a Rating Group composed of French NMOSD / MOGAD experts. RESULTS In the management of NMOSD and MOGAD, a consensus has been reached to perform systematic MRI of the brain, optic nerve and spinal cord, including cauda equina nerve roots, at the time of diagnosis, both without and after gadolinium administration. Moreover, it has been agreed to perform a systematic MRI scan 6 months after diagnosis, focusing on the area of interest, both without and after gadolinium administration. For long-term follow-up of NMOSD and MOGAD, and in the absence of clinical activity, it has been agreed to perform gadolinium-free MRI of the brain (+/- optic nerves) and spinal cord, every 36 months. Ideally, these MRI scans should be performed on the same MRI system, preferably a 3T MRI system for brain and optic nerve MRI, and at least a 1.5T MRI system for spinal cord MRI. CONCLUSIONS This expert consensus approach provides physicians with proposals for the MRI management of NMOSD and MOGAD.
Collapse
Affiliation(s)
- Françoise Durand-Dubief
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France.
| | - Natalia Shor
- Service de Neuroradiologie, Hôpital de la Pitie-Salpetrière, AP-HP, Paris, France
| | - Bertrand Audoin
- Service de Neurologie, Maladies Inflammatoires du Cerveau et de la Moelle Épinière (MICeME), Hôpital de la Timone, AP-HM, Marseille CEDEX 5, France
| | - Bertrand Bourre
- Service de Neurologie, Centre Hospitalier Universitaire Rouen, Rouen F-76000, France
| | - Mickael Cohen
- CRC-SEP, Neurologie Pasteur 2, CHU de Nice, Nice, France; Université Cote d'Azur, UMR2CA (URRIS), Nice, France
| | - Stéphane Kremer
- Service d'imagerie 2, Hôpital de Hautepierre, Hôpitaux Universitaires de Strasbourg, Strasbourg, France; Engineering Science, Computer Science and Imaging Laboratory (ICube), Integrative Multimodal Imaging in Healthcare, UMR 7357, University of Strasbourg-CNRS, Strasbourg, France
| | - Elisabeth Maillart
- Service de Neurologie, Hôpital de la Pitie-Salpetrière, Centre de Références des Maladies Inflammatoires Rares du Cerveau Et de la Moelle épinière, AP-HP, Paris, France
| | - Caroline Papeix
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Aurélie Ruet
- Service de Neurologie et Maladies inflammatoires du Système nerveux Central, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France; Université de Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Julien Savatovsky
- Service d'Imagerie Médicale, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Thomas Tourdias
- Neuroimagerie Diagnostique et Thérapeutique, Centre Hospitalier Universitaire de Bordeaux, Bordeaux F-33000, France; Université Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux F-3300, France
| | - Xavier Ayrignac
- Université de Montpellier, Montpellier, France; Département de Neurologie, CRC-SEP, CRMR LEUKOFRANCE, Hôpital Gui de Chauliac, Centre Hospitalier Universitaire de Montpellier, France
| | - Jonathan Ciron
- Service de Neurologie, CRC-SEP, Centre Hospitalier Universitaire de Toulouse, France
| | - Nicolas Collongues
- Service de Neurologie, Centre Hospitalier Universitaire de Strasbourg, Strasbourg, France; Center for Clinical Investigation, INSERM U1434, Strasbourg, France; Department of Pharmacology, Addictology, Toxicology, and Therapeutics, Strasbourg University, Strasbourg, France
| | - David Laplaud
- Center for Research in Transplantation and Translational Immunology, Nantes Université, INSERM, CHU de Nantes, UMR 1064, CIC INSERM 1413, Service de Neurologie, Nantes F-44000, France
| | - Laure Michel
- Service de Neurologie, Centre Hospitalier Universitaire de Rennes, Rennes, France; Clinical Neuroscience Centre, University Hospital, Rennes University, CIC_P1414 INSERM, Rennes, France
| | - Romain Deschamps
- Service de Neurologie, Hôpital Fondation Adolphe de Rothschild, Paris, France
| | - Eric Thouvenot
- Service de Neurologie, Centre Hospitalier Universitaire de Nîmes, Nîmes, France; Institut de Génomique Fonctionnelle, Université Montpellier, CNRS INSERM, Montpellier, France
| | - Hélène Zephir
- CCMR MIRCEM, Université de Lille INSERM U1172, CHU de Lille, Lille, France; CCMR MIRCEM, CHU de Lille, Lille, France
| | - Romain Marignier
- Service de Sclérose en Plaques, Pathologies de la substance blanche et Neuroinflammation, Hôpital Neurologique, Hospices Civils de Lyon, Bron, France
| | - François Cotton
- Service de Radiologie, Centre Hospitalier Lyon-Sud, Hospices Civils de Lyon, Pierre-Bénite, France; Creatis LRMN, CNRS UMR 5220, Université Claude Bernard Lyon 1, INSERM U630, Lyon, France
| |
Collapse
|
4
|
Geraldes R, Arrambide G, Banwell B, Rovira À, Cortese R, Lassmann H, Messina S, Rocca MA, Waters P, Chard D, Gasperini C, Hacohen Y, Mariano R, Paul F, DeLuca GC, Enzinger C, Kappos L, Leite MI, Sastre-Garriga J, Yousry T, Ciccarelli O, Filippi M, Barkhof F, Palace J. The influence of MOGAD on diagnosis of multiple sclerosis using MRI. Nat Rev Neurol 2024; 20:620-635. [PMID: 39227463 DOI: 10.1038/s41582-024-01005-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/26/2024] [Indexed: 09/05/2024]
Abstract
Myelin oligodendrocyte glycoprotein (MOG) antibody-associated disease (MOGAD) is an immune-mediated demyelinating disease that is challenging to differentiate from multiple sclerosis (MS), as the clinical phenotypes overlap, and people with MOGAD can fulfil the current MRI-based diagnostic criteria for MS. In addition, the MOG antibody assays that are an essential component of MOGAD diagnosis are not standardized. Accurate diagnosis of MOGAD is crucial because the treatments and long-term prognosis differ from those for MS. This Expert Recommendation summarizes the outcomes from a Magnetic Resonance Imaging in MS workshop held in Oxford, UK in May 2022, in which MS and MOGAD experts reflected on the pathology and clinical features of these disorders, the contributions of MRI to their diagnosis and the clinical use of the MOG antibody assay. We also critically reviewed the literature to assess the validity of distinctive imaging features in the current MS and MOGAD criteria. We conclude that dedicated orbital and spinal cord imaging (with axial slices) can inform MOGAD diagnosis and also illuminate differential diagnoses. We provide practical guidance to neurologists and neuroradiologists on how to navigate the current MOGAD and MS criteria. We suggest a strategy that includes useful imaging discriminators on standard clinical MRI and discuss imaging features detected by non-conventional MRI sequences that demonstrate promise in differentiating these two disorders.
Collapse
Affiliation(s)
- Ruth Geraldes
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK.
| | - Georgina Arrambide
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Brenda Banwell
- Division of Child Neurology, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Àlex Rovira
- Section of Neuroradiology, Department of Radiology, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | - Rosa Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| | - Hans Lassmann
- Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Silvia Messina
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
- Wexham Park Hospital, Frimley Health Foundation Trust, Slough, UK
| | - Mara Assunta Rocca
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Patrick Waters
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Declan Chard
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
- National Institute for Health Research (NIHR) University College London Hospitals (CLH) Biomedical Research Centre, London, UK
| | - Claudio Gasperini
- Multiple Sclerosis Centre, Department of Neurosciences, San Camillo-Forlanini Hospital, Rome, Italy
| | - Yael Hacohen
- Department of Paediatric Neurology, Great Ormond Street Hospital for Children, London, UK
| | - Romina Mariano
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Gabriele C DeLuca
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Christian Enzinger
- Department of Neurology, Medical University of Graz, Graz, Austria
- Division of Neuroradiology, Vascular and Interventional Radiology, Medical University of Graz, Graz, Austria
| | - Ludwig Kappos
- Research Center for Clinical Neuroimmunology and Neuroscience, University Hospital and University, Basel, Switzerland
| | - M Isabel Leite
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK
| | - Jaume Sastre-Garriga
- Neurology-Neuroimmunology Department, Multiple Sclerosis Centre of Catalonia (Cemcat), Vall d'Hebron Barcelona Hospital Campus, Barcelona, Spain
| | - Tarek Yousry
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, UK
| | - Olga Ciccarelli
- Department of Neuroinflammation, Queen Square MS Centre, UCL Queen Square Institute of Neurology, London, UK
- University College London Hospitals (UCLH) National Institute for Health and Research (NIHR) Biomedical Research Centre (BRC), London, UK
| | - Massimo Filippi
- Neuroimaging Research Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Vita-Salute San Raffaele University, Milan, Italy
- Neurology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Frederik Barkhof
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, Vrije Universiteit, Amsterdam, The Netherlands
- Queen Square Institute of Neurology and Centre for Medical Image Computing, University College London, London, UK
| | - Jacqueline Palace
- NMO Service, Department of Neurology, Oxford University Hospitals, Oxford, UK.
- Nuffield Department of Clinical Neurosciences, Oxford University, Oxford, UK.
| |
Collapse
|
5
|
Cagol A, Tsagkas C, Granziera C. Advanced Brain Imaging in Central Nervous System Demyelinating Diseases. Neuroimaging Clin N Am 2024; 34:335-357. [PMID: 38942520 DOI: 10.1016/j.nic.2024.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
In recent decades, advances in neuroimaging have profoundly transformed our comprehension of central nervous system demyelinating diseases. Remarkable technological progress has enabled the integration of cutting-edge acquisition and postprocessing techniques, proving instrumental in characterizing subtle focal changes, diffuse microstructural alterations, and macroscopic pathologic processes. This review delves into state-of-the-art modalities applied to multiple sclerosis, neuromyelitis optica spectrum disorders, and myelin oligodendrocyte glycoprotein antibody-associated disease. Furthermore, it explores how this dynamic landscape holds significant promise for the development of effective and personalized clinical management strategies, encompassing support for differential diagnosis, prognosis, monitoring treatment response, and patient stratification.
Collapse
Affiliation(s)
- Alessandro Cagol
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland; Department of Health Sciences, University of Genova, Via A. Pastore, 1 16132 Genova, Italy. https://twitter.com/CagolAlessandr0
| | - Charidimos Tsagkas
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Translational Neuroradiology Section, National Institute of Neurological Disorders and Stroke, National Institutes of Health (NIH), 10 Center Drive, Bethesda, MD 20892, USA
| | - Cristina Granziera
- Translational Imaging in Neurology (ThINk) Basel, Department of Biomedical Engineering, University Hospital Basel and University of Basel, Hegenheimermattweg 167b, 4123 Allschwil, Switzerland; Department of Neurology, University Hospital Basel, Petersgraben 4, 4031 Basel, Switzerland; Research Center for Clinical Neuroimmunology and Neuroscience Basel (RC2NB), University Hospital Basel and University of Basel, Spitalstrasse 2, 4031 Basel, Switzerland.
| |
Collapse
|
6
|
Lorefice L, Cortese R. Brain and spinal cord atrophy in NMOSD and MOGAD: Current evidence and future perspectives. Mult Scler Relat Disord 2024; 85:105559. [PMID: 38554671 DOI: 10.1016/j.msard.2024.105559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/26/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024]
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a severe form of inflammation of the central nervous system (CNS) including acute myelitis, optic neuritis and brain syndrome. Currently, the classification of NMOSD relies on serologic testing, distinguishing between seropositive or seronegative anti-aquaporin-4 antibody (AQP4) status. However, the situation has recently grown more intricate with the identification of patients exhibiting the NMOSD phenotype and myelin oligodendrocyte glycoprotein antibodies (MOGAD). NMOSD is primarily recognized as a relapsing disorder; MOGAD can manifest with either a monophasic or relapsing course. Significant symptomatic inflammatory CNS injuries with stability in clinical findings outside the acute phase are reported in both diseases. Nevertheless, recent studies have proposed the existence of a subclinical pathological process, revealing longitudinal changes in brain and spinal cord atrophy. Within this context, we summarise key studies investigating brain and spinal cord measurements in adult NMOSD and MOGAD. We also explore their relationship with clinical aspects, highlight differences from multiple sclerosis (MS), and address future challenges. This exploration is crucial for determining the presence of chronic damage processes, enabling the customization of therapeutic interventions irrespective of the acute phase of the disease.
Collapse
Affiliation(s)
- L Lorefice
- Department of Medical Sciences and Public Health, Multiple Sclerosis Center, Binaghi Hospital, ASL Cagliari, University of Cagliari, Via Is Guadazzonis 2, Cagliari 09126, Italy.
| | - R Cortese
- Department of Medicine, Surgery and Neuroscience, University of Siena, Siena, Italy
| |
Collapse
|
7
|
Oertel FC, Hastermann M, Paul F. Delimiting MOGAD as a disease entity using translational imaging. Front Neurol 2023; 14:1216477. [PMID: 38333186 PMCID: PMC10851159 DOI: 10.3389/fneur.2023.1216477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 08/23/2023] [Indexed: 02/10/2024] Open
Abstract
The first formal consensus diagnostic criteria for myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) were recently proposed. Yet, the distinction of MOGAD-defining characteristics from characteristics of its important differential diagnoses such as multiple sclerosis (MS) and aquaporin-4 antibody seropositive neuromyelitis optica spectrum disorder (NMOSD) is still obstructed. In preclinical research, MOG antibody-based animal models were used for decades to derive knowledge about MS. In clinical research, people with MOGAD have been combined into cohorts with other diagnoses. Thus, it remains unclear to which extent the generated knowledge is specifically applicable to MOGAD. Translational research can contribute to identifying MOGAD characteristic features by establishing imaging methods and outcome parameters on proven pathophysiological grounds. This article reviews suitable animal models for translational MOGAD research and the current state and prospect of translational imaging in MOGAD.
Collapse
Affiliation(s)
- Frederike Cosima Oertel
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Maria Hastermann
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück-Centrum für Molekulare Medizin, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Neuroscience Clinical Research Center, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Department of Neurology, Freie Universität Berlin and Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
8
|
Fadda G, Cardenas de la Parra A, O'Mahony J, Waters P, Yeh EA, Bar-Or A, Marrie RA, Narayanan S, Arnold DL, Collins DL, Banwell B. Deviation From Normative Whole Brain and Deep Gray Matter Growth in Children With MOGAD, MS, and Monophasic Seronegative Demyelination. Neurology 2023; 101:e425-e437. [PMID: 37258297 PMCID: PMC10435061 DOI: 10.1212/wnl.0000000000207429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 04/04/2023] [Indexed: 06/02/2023] Open
Abstract
BACKGROUND AND OBJECTIVES Pediatric-acquired demyelination of the CNS associated with antibodies directed against myelin oligodendrocyte glycoprotein (MOG; MOG antibody-associated disease [MOGAD]) occurs as a monophasic or relapsing disease and with variable but often extensive T2 lesions in the brain. The impact of MOGAD on brain growth during maturation is unknown. We quantified the effect of pediatric MOGAD on brain growth trajectories and compared this with the growth trajectories of age-matched and sex-matched healthy children and children with multiple sclerosis (MS, a chronic relapsing disease known to lead to failure of normal brain growth and to loss of brain volume) and monophasic seronegative demyelination. METHODS We included children enrolled at incident attack in the prospective longitudinal Canadian Pediatric Demyelinating Disease Study who were recruited at the 3 largest enrollment sites, underwent research brain MRI scans, and were tested for serum MOG-IgG. Children seropositive for MOG-IgG were diagnosed with MOGAD. MS was diagnosed per the 2017 McDonald criteria. Monophasic seronegative demyelination was confirmed in children with no clinical or MRI evidence of recurrent demyelination and negative results for MOG-IgG and aquaporin-4-IgG. Whole and regional brain volumes were computed through symmetric nonlinear registration to templates. We computed age-normalized and sex-normalized z scores for brain volume using a normative dataset of 813 brain MRI scans obtained from typically developing children and used mixed-effect models to assess potential deviation from brain growth trajectories. RESULTS We assessed brain volumes of 46 children with MOGAD, 26 with MS, and 51 with monophasic seronegative demyelinating syndrome. Children with MOGAD exhibited delayed (p < 0.001) age-expected and sex-expected growth of thalamus, caudate, and globus pallidus, normalized for the whole brain volume. Divergence from expected growth was particularly pronounced in the first year postonset and was detected even in children with monophasic MOGAD. Thalamic volume abnormalities were less pronounced in children with MOGAD compared with those in children with MS. DISCUSSION The onset of MOGAD during childhood adversely affects the expected trajectory of growth of deep gray matter structures, with accelerated changes in the months after an acute attack. Further studies are required to better determine the relative impact of monophasic vs relapsing MOGAD and whether relapsing MOGAD with attacks isolated to the optic nerves or spinal cord affects brain volume over time.
Collapse
Affiliation(s)
- Giulia Fadda
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Alonso Cardenas de la Parra
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Julia O'Mahony
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Patrick Waters
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - E Ann Yeh
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Amit Bar-Or
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Ruth Ann Marrie
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Sridar Narayanan
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Douglas L Arnold
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - D Louis Collins
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania
| | - Brenda Banwell
- From the Department of Medicine (G.F), University of Ottawa, Ottawa Hospital Research Institute; Montreal Neurological Institute (A.C.P., S.N., D.L.A., D.L.C.), McGill University, Quebec; Department of Community Health Sciences (J.O.M., R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; Nuffield Department of Clinical Neurosciences (P.W.), John Radcliffe Hospital, University of Oxford, United Kingdom; Department of Pediatrics (E.A.Y.), University of Toronto, Ontario, Canada; Center for Neuroinflammation and Neurotherapeutics (A.B.-O.), and Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia; Department of Internal Medicine (R.A.M.), Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada; and Division of Child Neurology (B.B.), Department of Neurology, The Children's Hospital of Philadelphia, Perelman School of Medicine, University of Pennsylvania.
| |
Collapse
|
9
|
Fragoso DC, Salles LMODP, Pereira SLA, Callegaro D, Sato DK, Rimkus CDM. AQP4-IgG NMOSD, MOGAD, and double-seronegative NMOSD: is it possible to depict the antibody subtype using magnetic resonance imaging? ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:533-543. [PMID: 37379865 DOI: 10.1055/s-0043-1768669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
BACKGROUND There is clinical and radiological overlap among demyelinating diseases. However, their pathophysiological mechanisms are different and carry distinct prognoses and treatment demands. OBJECTIVE To investigate magnetic resonance imaging (MRI) features of patients with myelin-oligodendrocyte glycoprotein associated disease (MOGAD), antibody against aquaporin-4(AQP-4)-immunoglobulin G-positive neuromyelitis optica spectrum disorder (AQP4-IgG NMOSD), and double-seronegative patients. METHODS A cross-sectional retrospective study was performed to analyze the topography and morphology of central nervous system (CNS) lesions. Two neuroradiologists consensually analyzed the brain, orbit, and spinal cord images. RESULTS In total, 68 patients were enrolled in the study (25 with AQP4-IgG-positive NMOSD, 28 with MOGAD, and 15 double-seronegative patients). There were differences in clinical presentation among the groups. The MOGAD group had less brain involvement (39.2%) than the NMOSD group (p = 0.002), mostly in the subcortical/juxtacortical, the midbrain, the middle cerebellar peduncle, and the cerebellum. Double-seronegative patients had more brain involvement (80%) with larger and tumefactive lesion morphology. In addition, double-seronegative patients showed the longest optic neuritis (p = 0.006), which was more prevalent in the intracranial optic nerve compartment. AQP4-IgG-positive NMOSD optic neuritis had a predominant optic-chiasm location, and brain lesions mainly affected hypothalamic regions and the postrema area (MOGAD versus AQP4-IgG-positive NMOSD, p= 0 .013). Furthermore, this group had more spinal cord lesions (78.3%), and bright spotty lesions were a paramount finding to differentiate it from MOGAD (p = 0.003). CONCLUSION The pooled analysis of lesion topography, morphology, and signal intensity provides critical information to help clinicians form a timely differential diagnosis.
Collapse
Affiliation(s)
- Diego Cardoso Fragoso
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Radiologia, São Paulo SP, Brazil
| | | | | | - Dagoberto Callegaro
- Universidade de São Paulo, Faculdade de Medicina, Departamento de Neurologia, São Paulo SP, Brazil
| | - Douglas Kazutoshi Sato
- Pontifícia Universidade Católica do Rio Grande do Sul, Instituto do Cérebro do Rio Grande do Sul (InsCer), Porto Alegre RS, Brazil
| | | |
Collapse
|
10
|
Ashtari F, Manouchehri N, Shaygannejad V, Barekatain M, Adibi I, Afshari-Safavi A, Ramezani N, Ghalamkari A, Barzegar M. Assessment of intelligence quotient in patients with neuromyelitis optica spectrum disease and multiple sclerosis. Mult Scler Relat Disord 2023; 70:104492. [PMID: 36587484 DOI: 10.1016/j.msard.2022.104492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/30/2022]
Abstract
BACKGROUND Cognitive impairment is common in people living with neuromyelitis optica spectrum disease (NMOSD) and multiple sclerosis (MS). However, there is little published data on intelligence quotient (IQ) in NMOSD patients. Therefore, we performed the present study to compare IQ scores across NMOSD, MS, and control groups. METHOD In this cross-sectional study, 49 NMOSD (30 with positive aquaporin4 antibody), 41 MS, and 20 control individuals were recruited. The IQ score for each person was measured using Wechsler Adult Intelligence Scale-Revised (WAIS-R). Participants were reported on eleven scores of subsets, verbal IQ (VIQ), performance IQ (PIQ), and full score IQ (FSIQ). RESULT The scores of FSIQ, VIQ, PIQ, vocabulary, similarities, and digit-symbol in NMOSD and MS individuals were lower than the control group. Relative to control, NMOSD patients reported a lower score of information. We found no difference between NMOSD and MS groups, except in vocabulary and similarities. No significant difference between seropositive and seronegative NMOSD groups was observed except for the information and block design. In NMOSD group, a greater EDSS score was associated with decreased scores of FSIQ, VIQ, and PIQ. Being employed and being married were associated with greater scores of VIQ and PIQ, respectively. In both NMOSD and MS groups, advanced education was associated with increased scores of FSIQ and VIQ. CONCLUSION Our study showed decreased IQ scores in NMOSD and MS. Further studies are required to examine intellectual quotient in people with NMOSD and MS.
Collapse
Affiliation(s)
- Fereshteh Ashtari
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Navid Manouchehri
- Department of Neurology, University of Texas Southwestern Medical Center at Dallas, TX, USA
| | - Vahid Shaygannejad
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Majid Barekatain
- Psychosomatic Research Center, Department of Psychiatry, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Iman Adibi
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Alireza Afshari-Safavi
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran; Department of Biostatistics and Epidemiology, Faculty of Health, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Neda Ramezani
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Arshia Ghalamkari
- Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahdi Barzegar
- Department of Neurology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran; Isfahan Neurosciences Research Center, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
11
|
Lotan I, Billiet T, Ribbens A, Van Hecke W, Huang B, Kister I, Lotan E. Volumetric brain changes in MOGAD: A cross-sectional and longitudinal comparative analysis. Mult Scler Relat Disord 2023; 69:104436. [PMID: 36512956 DOI: 10.1016/j.msard.2022.104436] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/02/2022] [Accepted: 11/25/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Relatively little is known about how global and regional brain volumes changes in myelin oligodendrocyte glycoprotein antibody-associated disease (MOGAD) compare with Multiple Sclerosis (MS), Neuromyelitis optica spectrum disorder (NMOSD), and healthy controls (HC). OBJECTIVE To compare global and regional brain volumes in MOGAD, MS, NMOSD, and HC cross-sectionally as well as longitudinally in a subset of patients. METHODS We retrospectively reviewed all adult MOGAD and NMOSD patients with brain MRI performed in stable remission and compared them with MS patients and HC. Volumetric parameters were assessed using the FDA-approved icobrain software. adjusted for age and sex. RESULTS Twenty-four MOGAD, 47 NMOSD, 40 MS patients, and 37 HC were included in the cross-sectional analyses. Relative to HC, the age-adjusted whole brain (WB) volume was significantly lower in patients with MOGAD (p=0.0002), NMOSD (p=0.042), and MS (p=0.01). Longitudinal analysis of a subset of 8 MOGAD, 22 NMOSD, and 34 MS patients showed a reduction in the WB and cortical gray matter (CGM) volumes over time in all three disease groups, without statistically significant differences between groups. The MOGAD group had a greater loss of thalamic volume compared to MS (p=0.028) and NMOSD (p=0.023) and a greater loss of hippocampal volumes compared to MS (p=0.007). CONCLUSIONS Age-adjusted WB volume loss was evident in all neuroinflammatory conditions relative to HC in cross-sectional comparisons. In longitudinal analyses, MOGAD patients had a higher thalamic atrophy rate relative to MS and NMOSD, and a higher hippocampal atrophy rate relative to MS. Larger studies are needed to validate these findings and to investigate their clinical implications.
Collapse
Affiliation(s)
- Itay Lotan
- Department of Neurology, Division of Neuroimmunology and Neuroinfectious Disease, Massachusetts General Hospital and Harvard Medical School, Boston, USA; Multiple Sclerosis Comprehensive Care Center, New York University Grossman School of Medicine, New York, NY, USA.
| | | | | | | | - Benny Huang
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| | - Ilya Kister
- Multiple Sclerosis Comprehensive Care Center, New York University Grossman School of Medicine, New York, NY, USA
| | - Eyal Lotan
- Department of Radiology, New York University Langone Medical Center, New York, NY, USA
| |
Collapse
|
12
|
Rechtman A, Brill L, Zveik O, Uliel B, Haham N, Bick AS, Levin N, Vaknin-Dembinsky A. Volumetric Brain Loss Correlates With a Relapsing MOGAD Disease Course. Front Neurol 2022; 13:867190. [PMID: 35401390 PMCID: PMC8987978 DOI: 10.3389/fneur.2022.867190] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 02/24/2022] [Indexed: 11/13/2022] Open
Abstract
Background Myelin oligodendrocyte glycoprotein antibody disorders (MOGAD) have evolved as a distinct group of inflammatory, demyelinating diseases of the CNS. MOGAD can present with a monophasic or relapsing disease course with distinct clinical manifestations.However, data on the disease course and disability outcomes of these patients are scarce. We aim to compare brain volumetric changes for MOGAD patients with different disease phenotypes and HCs. Methods Brain magnetic resonance imaging (MRI) scans and clinical data were obtained for 22 MOGAD patients and 22 HCs. Volumetric brain information was determined using volBrain and MDbrain platforms. Results We found decreased brain volume in MOGAD patients compared to HCs, as identified in volume of total brain, gray matter, white matter and deep gray matter (DGM) structures. In addition, we found significantly different volumetric changes between patients with relapsing and monophasic disease course, with significantly decreased volume of total brain and DGM, cerebellum and hippocampus in relapsing patients during the first year of diagnosis. A significant negative correlation was found between EDSS and volume of thalamus. Conclusions Brain MRI analyses revealed volumetric differences between MOGAD patients and HCs, and between patients with different disease phenotypes. Decreased gray matter volume during the first year of diagnosis, especially in the cerebrum and hippocampus of MOGAD patients was associated with relapsing disease course.
Collapse
Affiliation(s)
- Ariel Rechtman
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Livnat Brill
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Omri Zveik
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Benjamin Uliel
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nitzan Haham
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Atira S. Bick
- Functional Imaging Unit, Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Netta Levin
- Functional Imaging Unit, Department of Neurology, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Adi Vaknin-Dembinsky
- Department of Neurology and Laboratory of Neuroimmunology and the Agnes-Ginges Center for Neurogenetics, Hadassah-Medical Center, Ein–Kerem, Faculty of Medicine, Hebrew University of Jerusalem, Jerusalem, Israel
- *Correspondence: Adi Vaknin-Dembinsky
| |
Collapse
|
13
|
Li Y, Liu X, Wang J, Pan C, Tang Z. Clinical Features and Imaging Findings of Myelin Oligodendrocyte Glycoprotein-IgG-Associated Disorder (MOGAD). Front Aging Neurosci 2022; 14:850743. [PMID: 35370624 PMCID: PMC8965323 DOI: 10.3389/fnagi.2022.850743] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/08/2022] [Indexed: 01/14/2023] Open
Abstract
Myelin oligodendrocyte glycoprotein-IgG-associated disorder (MOGAD) is a nervous system (NS) demyelination disease and a newly recognized distinct disease complicated with various diseases or symptoms; however, MOGAD was once considered a subset of neuromyelitis optica spectrum disorder (NMOSD). The detection of MOG-IgG has been greatly improved by the cell-based assay test method. In one study, 31% of NMOSD patients with negative aquaporin-4 (AQP-4) antibody were MOG-IgG positive. MOGAD occurs in approximately the fourth decade of a person’s life without a markedly female predominance. Usually, optic neuritis (ON), myelitis or acute disseminated encephalomyelitis (ADEM) encephalitis are the typical symptoms of MOGAD. MOG-IgG have been found in patients with peripheral neuropathy, teratoma, COVID-19 pneumonia, etc. Some studies have revealed the presence of brainstem lesions, encephalopathy or cortical encephalitis. Attention should be given to screening patients with atypical symptoms. Compared to NMOSD, MOGAD generally responds well to immunotherapy and has a good functional prognosis. Approximately 44-83% of patients undergo relapsing episodes within 8 months, which mostly involve the optic nerve, and persistently observed MOG-IgG and severe clinical performance may indicate a polyphasic course of illness. Currently, there is a lack of clinical randomized controlled trials on the treatment and prognosis of MOGAD. The purpose of this review is to discuss the clinical manifestations, imaging features, outcomes and prognosis of MOGAD.
Collapse
|
14
|
Bartels F, Lu A, Oertel FC, Finke C, Paul F, Chien C. Clinical and neuroimaging findings in MOGAD-MRI and OCT. Clin Exp Immunol 2021; 206:266-281. [PMID: 34152000 PMCID: PMC8561692 DOI: 10.1111/cei.13641] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/16/2022] Open
Abstract
Myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGAD) are rare in both children and adults, and have been recently suggested to be an autoimmune neuroinflammatory group of disorders that are different from aquaporin-4 autoantibody-associated neuromyelitis optica spectrum disorder and from classic multiple sclerosis. In-vivo imaging of the MOGAD patient central nervous system has shown some distinguishing features when evaluating magnetic resonance imaging of the brain, spinal cord and optic nerves, as well as retinal imaging using optical coherence tomography. In this review, we discuss key clinical and neuroimaging characteristics of paediatric and adult MOGAD. We describe how these imaging techniques may be used to study this group of disorders and discuss how image analysis methods have led to recent insights for consideration in future studies.
Collapse
Affiliation(s)
- Frederik Bartels
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Angelo Lu
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Frederike Cosima Oertel
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Carsten Finke
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Berlin School of Mind and BrainBerlin Institute of Health at Charité – Universitätsmedizin Berlin andHumboldt‐Universität zu BerlinBerlinGermany
| | - Friedemann Paul
- Department of NeurologyCharité – Universitätsmedizin BerlinCorporate Member of Freie Universität Berlin and Humboldt‐Universität zu BerlinBerlinGermany
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| | - Claudia Chien
- Humboldt‐Universität zu Berlin and Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Experimental and Clinical Research CenterCharité –Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinBerlinGermany
- NeuroCure Clinical Research CenterCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
- Department for Psychiatry and NeurosciencesCharité – Universitätsmedizin Berlin, Corporate Member of Freie Universität BerlinHumboldt‐Universität zu BerlinBerlinGermany
| |
Collapse
|
15
|
Lin TY, Chien C, Lu A, Paul F, Zimmermann HG. Retinal optical coherence tomography and magnetic resonance imaging in neuromyelitis optica spectrum disorders and MOG-antibody associated disorders: an updated review. Expert Rev Neurother 2021; 21:1101-1123. [PMID: 34551653 DOI: 10.1080/14737175.2021.1982697] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Neuromyelitis optica spectrum disorders (NMOSD) and myelin oligodendrocyte glycoprotein IgG antibody-associated disorders (MOGAD) comprise two groups of rare neuroinflammatory diseases that cause attack-related damage to the central nervous system (CNS). Clinical attacks are often characterized by optic neuritis, transverse myelitis, and to a lesser extent, brainstem encephalitis/area postrema syndrome. Retinal optical coherence tomography (OCT) is a non-invasive technique that allows for in vivo thickness quantification of the retinal layers. Apart from OCT, magnetic resonance imaging (MRI) plays an increasingly important role in NMOSD and MOGAD diagnosis based on the current international diagnostic criteria. Retinal OCT and brain/spinal cord/optic nerve MRI can help to distinguish NMOSD and MOGAD from other neuroinflammatory diseases, particularly from multiple sclerosis, and to monitor disease-associated CNS-damage. AREAS COVERED This article summarizes the current status of imaging research in NMOSD and MOGAD, and reviews the clinical relevance of OCT, MRI and other relevant imaging techniques for differential diagnosis, screening and monitoring of the disease course. EXPERT OPINION Retinal OCT and MRI can visualize and quantify CNS damage in vivo, improving our understanding of NMOSD and MOGAD pathology. Further efforts on the standardization of these imaging techniques are essential for implementation into clinical practice and as outcome parameters in clinical trials.
Collapse
Affiliation(s)
- Ting-Yi Lin
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Psychiatry and Psychotherapy, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Angelo Lu
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,Department of Neurology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Hanna G Zimmermann
- Experimental and Clinical Research Center, Max-Delbrück Center for Molecular Medicine and Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany.,NeuroCure Clinical Research Center, Charité - Universitätsmedizin Berlin, Corporate Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
16
|
Clarke L, Arnett S, Lilley K, Liao J, Bhuta S, Broadley SA. Magnetic resonance imaging in neuromyelitis optica spectrum disorder. Clin Exp Immunol 2021; 206:251-265. [PMID: 34080180 DOI: 10.1111/cei.13630] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/19/2021] [Accepted: 05/20/2021] [Indexed: 12/30/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is an inflammatory disease of the central nervous system (CNS) associated with antibodies to aquaporin-4 (AQP4), which has distinct clinical, radiological and pathological features, but also has some overlap with multiple sclerosis and myelin oligodendrocyte glycoprotein (MOG) antibody associated disease. Early recognition of NMOSD is important because of differing responses to both acute and preventive therapy. Magnetic resonance (MR) imaging has proved essential in this process. Key MR imaging clues to the diagnosis of NMOSD are longitudinally extensive lesions of the optic nerve (more than half the length) and spinal cord (three or more vertebral segments), bilateral optic nerve lesions and lesions of the optic chiasm, area postrema, floor of the IV ventricle, periaqueductal grey matter, hypothalamus and walls of the III ventricle. Other NMOSD-specific lesions are denoted by their unique morphology: heterogeneous lesions of the corpus callosum, 'cloud-like' gadolinium (Gd)-enhancing white matter lesions and 'bright spotty' lesions of the spinal cord. Other lesions described in NMOSD, including linear periventricular peri-ependymal lesions and patch subcortical white matter lesions, may be less specific. The use of advanced MR imaging techniques is yielding further useful information regarding focal degeneration of the thalamus and optic radiation in NMOSD and suggests that paramagnetic rim patterns and changes in normal appearing white matter are specific to MS. MR imaging is crucial in the early recognition of NMOSD and in directing testing for AQP4 antibodies and guiding immediate acute treatment decisions. Increasingly, MR imaging is playing a role in diagnosing seronegative cases of NMOSD.
Collapse
Affiliation(s)
- Laura Clarke
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Princess Alexandra Hospital, Brisbane, QLD, Australia
| | - Simon Arnett
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Kate Lilley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Jacky Liao
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia
| | - Sandeep Bhuta
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Radiology, Gold Coast University Hospital, Southport, QLD, Australia
| | - Simon A Broadley
- Menzies Health Institute Queensland, Gold Coast Campus, Griffith University, Nathan, QLD, Australia.,Department of Neurology, Gold Coast University Hospital, Southport, QLD, Australia
| |
Collapse
|
17
|
Solomon JM, Paul F, Chien C, Oh J, Rotstein DL. A window into the future? MRI for evaluation of neuromyelitis optica spectrum disorder throughout the disease course. Ther Adv Neurol Disord 2021; 14:17562864211014389. [PMID: 34035837 PMCID: PMC8111516 DOI: 10.1177/17562864211014389] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Accepted: 04/12/2021] [Indexed: 12/12/2022] Open
Abstract
Neuromyelitis optica spectrum disorder (NMOSD) is a relapsing, inflammatory disease of the central nervous system marked by relapses often associated with poor recovery and long-term disability. Magnetic resonance imaging (MRI) is recognized as an important tool for timely diagnosis of NMOSD as, in combination with serologic testing, it aids in distinguishing NMOSD from possible mimics. Although the role of MRI for disease monitoring after diagnosis is not as well established, MRI may provide important prognostic information and help differentiate between relapses and pseudorelapses. Increasing evidence of subclinical disease activity and the emergence of newly approved, highly effective immunotherapies for NMOSD adjure us to re-evaluate MRI as a tool to guide optimal treatment selection and escalation throughout the disease course. In this article we review the role of MRI in NMOSD diagnosis, prognostication, disease monitoring, and treatment selection.
Collapse
Affiliation(s)
- Jacqueline M. Solomon
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Friedemann Paul
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Claudia Chien
- Experimental and Clinical Research Center, Max Delbrueck Center for Molecular Medicine and Charité Universitaetsmedizin Berlin, Berlin, Germany
- NeuroCure Clinical Research Center, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Department of Psychiatry and Psychotherapy, Charité Universitaetsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Jiwon Oh
- University of Toronto, Department of Medicine, Toronto, ON, Canada
- St. Michael’s Hospital, Toronto, ON, Canada
| | - Dalia L. Rotstein
- St. Michael’s Hospital, 30 Bond Street, Shuter 3-018, Toronto, ON, M5B 1W8, Canada
| |
Collapse
|
18
|
Schmetzer O, Lakin E, Roediger B, Duchow A, Asseyer S, Paul F, Siebert N. Anti-aquaporin 4 IgG Is Not Associated With Any Clinical Disease Characteristics in Neuromyelitis Optica Spectrum Disorder. Front Neurol 2021; 12:635419. [PMID: 33776892 PMCID: PMC7994757 DOI: 10.3389/fneur.2021.635419] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Background: Neuromyelitis optica spectrum disorder (NMOSD) is a clinically defined, inflammatory central nervous system (CNS) disease of unknown cause, associated with humoral autoimmune findings such as anti-aquaporin 4 (AQP4)-IgG. Recent clinical trials showed a benefit of anti-B cell and anti-complement-antibodies in NMOSD, suggesting relevance of anti-AQP4-IgG in disease pathogenesis. Objective: AQP4-IgG in NMOSD is clearly defined, yet up to 40% of the patients are negative for AQP4-IgG. This may indicate that AQP4-IgG is not disease-driving in NMOSD or defines a distinct patient endotype. Methods: We established a biobank of 63 clinically well-characterized NMOSD patients with an extensive annotation of 351 symptoms, patient characteristics, laboratory results and clinical scores. We used phylogenetic clustering, heatmaps, principal component and longitudinal causal interference analyses to test for the relevance of anti-AQP4-IgG. Results: Anti-AQP4-IgG was undetectable in 29 (46%) of the 63 NMOSD patients. Within anti-AQP4-IgG-positive patients, anti-AQP4-IgG titers did not correlate with clinical disease activity. Comparing anti-AQP4-IgG-positive vs. -negative patients did not delineate any clinically defined subgroup. However, anti-AQP4-IgG positive patients had a significantly (p = 0.022) higher rate of additional autoimmune diagnoses. Conclusion: Our results challenge the assumption that anti-AQP4-IgG alone plays a disease-driving role in NMOSD. Anti-AQP4-IgG might represent an epiphenomenon associated with NMOSD, may represent one of several immune mechanisms that collectively contribute to the pathogenesis of this disease or indeed, anti-AQP4-IgG might be the relevant factor in only a subgroup of patients.
Collapse
Affiliation(s)
- Oliver Schmetzer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Elisa Lakin
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Ben Roediger
- Novartis Institutes for Biomedical Research - Autoimmunity, Transplantation and Inflammation, Basel, Switzerland
| | - Ankelien Duchow
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Susanna Asseyer
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Friedemann Paul
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Nadja Siebert
- Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Charité – Universitätsmedizin Berlin, Berlin, Germany
- Berlin Institute of Health, NeuroCure Clinical Research Center (NCRC) and Experimental and Clinical Research Center (ECRC), Max Delbrück Center for Molecular Medicine (MDC), Berlin, Germany
- Department of Neurology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|