1
|
Hiraga K, Hattori M, Satake Y, Tamakoshi D, Fukushima T, Uematsu T, Tsuboi T, Sato M, Yokoi K, Suzuki K, Arahata Y, Washimi Y, Hori A, Yamamoto M, Shimizu H, Wakai M, Tatebe H, Tokuda T, Nakamura A, Niida S, Katsuno M. Plasma biomarkers of neurodegeneration in patients and high risk subjects with Lewy body disease. NPJ Parkinsons Dis 2024; 10:135. [PMID: 39085262 PMCID: PMC11292020 DOI: 10.1038/s41531-024-00745-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 06/27/2024] [Indexed: 08/02/2024] Open
Abstract
Comorbid Alzheimer's disease (AD) neuropathology is common in Lewy body disease (LBD); however, AD comorbidity in the prodromal phase of LBD remains unclear. This study investigated AD comorbidity in the prodromal and symptomatic phases of LBD by analyzing plasma biomarkers in patients with Parkinson's disease (PD) and dementia with Lewy bodies (DLB) and individuals at risk of LBD (NaT-PROBE cohort). Patients with PD (PD group, n = 84) and DLB (DLB group, n = 16) and individuals with LBD with ≥ 2 (high-risk group, n = 82) and without (low-risk group, n = 37) prodromal symptoms were enrolled. Plasma amyloid-beta (Aβ) composite was measured using immunoprecipitation-mass spectrometry assays. Plasma phosphorylated tau 181 (p-tau181), neurofilament light chain (NfL), and alpha-synuclein (aSyn) were measured using a single-molecule array. Plasma p-tau181 levels were higher in the PD and DLB groups than in the low-risk group. Aβ composite level was higher in the DLB group than in the high-risk group. AD-related biomarker levels were not elevated in the high-risk group. NfL levels were higher in the high-risk, PD, and DLB groups than in the low-risk group. In the PD group, Aβ composite was associated with cognitive function, p-tau181 with motor function and non-motor symptoms, and NfL with cognitive and motor functions and non-motor symptoms. In the high-risk group, NfL was associated with metaiodobenzylguanidine scintigraphy abnormalities. The PD and DLB groups exhibited comorbid AD neuropathology, though not in the prodromal phase. Elevated plasma NfL levels, even without elevated AD-related plasma biomarker levels, may indicate aSyn-induced neurodegeneration in the LBD prodromal phase.
Collapse
Affiliation(s)
- Keita Hiraga
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Makoto Hattori
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Yuki Satake
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
- Department of Neurology, Daido Hospital, Nagoya, Japan
| | - Daigo Tamakoshi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Taiki Fukushima
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Uematsu
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Takashi Tsuboi
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Maki Sato
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| | - Katsunori Yokoi
- Department of Neurology, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Keisuke Suzuki
- Innovation Center for Translational Research, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yutaka Arahata
- Department of Neurology, National Hospital for Geriatric Medicine, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Yukihiko Washimi
- Department of Comprehensive Care and Research on Memory Disorders, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | | | | | | | - Masakazu Wakai
- Chutoen General Medical Center, Kakegawa, Shizuoka, Japan
| | - Harutsugu Tatebe
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Takahiko Tokuda
- Department of Functional Brain Imaging, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Akinori Nakamura
- Department of Biomarker Research, Center for Development of Advanced Medicine for Dementia, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Shumpei Niida
- Core Facility Administration, Research Institute, National Center for Geriatrics and Gerontology, Obu, Aichi, Japan
| | - Masahisa Katsuno
- Department of Neurology, Nagoya University Graduate School of Medicine, Nagoya, Japan.
- Department of Clinical Research Education, Nagoya University Graduate School of Medicine, Nagoya, Japan.
| |
Collapse
|
2
|
Wei J, Wang M, Guo Y, Liu Y, Dong X. Sleep structure assessed by objective measurement in patients with mild cognitive impairment: A meta-analysis. Sleep Med 2024; 113:397-405. [PMID: 38134714 DOI: 10.1016/j.sleep.2023.12.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/07/2023] [Accepted: 12/15/2023] [Indexed: 12/24/2023]
Abstract
OBJECTIVES A meta-analysis was used to explore the characteristic changes in objective sleep structure of patients with mild cognitive impairment (MCI) compared with cognitively healthy older adults. MATERIALS AND METHODS PubMed, EMBAS, Cochrane Library, Scopus, and Web of Science were searched until November 2023. A literature quality evaluation was performed according to the Newcastle-Ottawa Scale, and a meta-analysis was performed by RevMan 5.3 software. RESULTS Fifteen studies with 771 participants were finally included. Compared with normal control groups, patients with MCI had a decreased total sleep time by 34.44 min, reduction in sleep efficiency by 7.96 %, increased waking after sleep onset by 19.61 min, and increased sleep latency by 6.97 min. Ten included studies showed that the patients with MCI had increased N1 sleep by 2.72 % and decreased N3 sleep by 0.78 %; however, there was no significant difference between the MCI and control groups in percentage of N2 sleep. Moreover, Twelve included studies reported the MCI groups had shorter REM sleep of 2.69 %. CONCLUSION Our results provide evidence of abnormal sleep architecture in patients with MCI. As a "plastic state," abnormal sleep architecture may be a promising therapeutic target for slowing cognitive decline and dementia prevention.
Collapse
Affiliation(s)
- Jianing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Min Wang
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yuanli Guo
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Yanjin Liu
- Department of Nursing, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Xiaofang Dong
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| |
Collapse
|
3
|
Zhou L, Huang B, Wang J, Chau SW, Chan JW, Zhang J, Yu MW, Tsang JC, Li SX, Mok VC, Wing YK, Liu Y. Early- and late-onset of isolated rapid eye movement sleep behavior disorder: A retrospective cohort study. Sleep Med 2023; 105:1-8. [PMID: 36934616 DOI: 10.1016/j.sleep.2023.03.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/12/2023] [Accepted: 03/05/2023] [Indexed: 03/09/2023]
Abstract
OBJECTIVE Age at onset of neurodegenerative disease has significant implications in differentiating disease profiles. We aimed to determine whether age at onset could identify clinical and neurodegenerative profiles in patients with isolated/idiopathic rapid eye movement sleep behavior disorder (iRBD) - a prodromal stage of α-synucleinopathies. METHODS In this retrospective cohort study, the time of the first episode of dream-enactment behaviors that the patient/bed-partners recalled at the time of the patient's first visit to sleep clinic was collected. The distribution of age at onset was examined and patients were dichotomized into early- and late-onset groups based on the intersection point of underlying two Gaussian distributions of onset age. RESULTS A total of 241 patients were included. The intersection of underlying two Gaussian models of onset age was 64.6 years, yielding 168 early- (median onset age: 58.0 years, range: 38.0-64.0) and 73 late-onset patients (median onset age: 70.0 years, range: 65.0-82.0). Among them, 154 of early- and 68 late-onset patients were followed-up. Late-onset patients had milder RBD symptoms, but worse sleep, cognition, olfactory and motor functions, and a higher risk of phenoconversion (adjusted hazard ratio (aHR) = 2.2, 95% confidence interval (CI) = 1.2-3.9), especially to probable dementia with Lewy bodies (DLB) (aHR = 8.9, 95% CI = 3.0-26.2), than early-onset patients. CONCLUSIONS Late-onset iRBD was associated with a higher level of neurodegenerative markers and a quicker phenoconversion, especially to probable DLB. Age at onset of iRBD could help identify clinical features and predict prognosis of iRBD.
Collapse
Affiliation(s)
- Li Zhou
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Bei Huang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jing Wang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Steven Wh Chau
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Joey Wy Chan
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jihui Zhang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China; Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mandy Wm Yu
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jessie Cc Tsang
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Shirley Xin Li
- Department of Psychology, The University of Hong Kong, Pokfulam, Hong Kong SAR, China; The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Pokfulam, Hong Kong SAR, China
| | - Vincent Ct Mok
- Department of Medicine and Therapeutics, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China
| | - Yun Kwok Wing
- Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Yaping Liu
- Center for Sleep and Circadian Medicine, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China; Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China; Li Chiu Kong Family Sleep Assessment Unit, Department of Psychiatry, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
4
|
Ryoo HG, Byun JI, Choi H, Jung KY. Deep learning signature of brain [ 18F]FDG PET associated with cognitive outcome of rapid eye movement sleep behavior disorder. Sci Rep 2022; 12:19259. [PMID: 36357491 PMCID: PMC9649732 DOI: 10.1038/s41598-022-23347-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 10/30/2022] [Indexed: 11/12/2022] Open
Abstract
An objective biomarker to predict the outcome of isolated rapid eye movement sleep behavior disorder (iRBD) is crucial for the management. This study aimed to investigate cognitive signature of brain [18F]FDG PET based on deep learning (DL) for evaluating patients with iRBD. Fifty iRBD patients, 19 with mild cognitive impairment (MCI) (RBD-MCI) and 31 without MCI (RBD-nonMCI), were prospectively enrolled. A DL model for the cognitive signature was trained by using Alzheimer's Disease Neuroimaging Initiative database and transferred to baseline [18F]FDG PET from the iRBD cohort. The results showed that the DL-based cognitive dysfunction score was significantly higher in RBD-MCI than in RBD-nonMCI. The AUC of ROC curve for differentiating RBD-MCI from RBD-nonMCI was 0.70 (95% CI 0.56-0.82). The baseline DL-based cognitive dysfunction score was significantly higher in iRBD patients who showed a decrease in CERAD scores during 2 years than in those who did not. Brain metabolic features related to cognitive dysfunction-related regions of individual iRBD patients mainly included posterior cortical regions. This work demonstrates that the cognitive signature based on DL could be used to objectively evaluate cognitive function in iRBD. We suggest that this approach could be extended to an objective biomarker predicting cognitive decline and neurodegeneration in iRBD.
Collapse
Affiliation(s)
- Hyun Gee Ryoo
- grid.412484.f0000 0001 0302 820XDepartment of Nuclear Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.412480.b0000 0004 0647 3378Department of Nuclear Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Jung-Ick Byun
- grid.289247.20000 0001 2171 7818Department of Neurology, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hongyoon Choi
- grid.412484.f0000 0001 0302 820XDepartment of Nuclear Medicine, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Nuclear Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Ki-Young Jung
- grid.412484.f0000 0001 0302 820XDepartment of Neurology, Seoul National University Hospital, 101, Daehak-Ro, Jongno-Gu, Seoul, 03080 Republic of Korea ,grid.31501.360000 0004 0470 5905Neuroscience Research Institute, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
5
|
Valli M, Uribe C, Mihaescu A, Strafella AP. Neuroimaging of rapid eye movement sleep behavior disorder and its relation to Parkinson's disease. J Neurosci Res 2022; 100:1815-1833. [DOI: 10.1002/jnr.25099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/10/2022] [Accepted: 06/08/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Mikaeel Valli
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Carme Uribe
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Medical Psychology Unit, Department of Medicine, Institute of Neuroscience University of Barcelona Barcelona Spain
| | - Alexander Mihaescu
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
| | - Antonio P. Strafella
- Brain Health Imaging Centre, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health University of Toronto Toronto Ontario Canada
- Division of Brain, Imaging and Behaviour – Systems Neuroscience, Krembil Brain Institute, UHN University of Toronto Toronto Ontario Canada
- Institute of Medical Science University of Toronto Toronto Ontario Canada
- Edmond J. Safra Parkinson Disease Program & Morton and Gloria Shulman Movement Disorder Unit, Neurology Division, Department of Medicine, Toronto Western Hospital, UHN University of Toronto Toronto Ontario Canada
| |
Collapse
|
6
|
Jiménez-Jiménez FJ, Alonso-Navarro H, García-Martín E, Agúndez JAG. Neurochemical Features of Rem Sleep Behaviour Disorder. J Pers Med 2021; 11:jpm11090880. [PMID: 34575657 PMCID: PMC8468296 DOI: 10.3390/jpm11090880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 08/30/2021] [Accepted: 08/30/2021] [Indexed: 12/13/2022] Open
Abstract
Dopaminergic deficiency, shown by many studies using functional neuroimaging with Single Photon Emission Computerized Tomography (SPECT) and Positron Emission Tomography (PET), is the most consistent neurochemical feature of rapid eye movement (REM) sleep behaviour disorder (RBD) and, together with transcranial ultrasonography, and determination of alpha-synuclein in certain tissues, should be considered as a reliable marker for the phenoconversion of idiopathic RBD (iRBD) to a synucleopathy (Parkinson’s disease –PD- or Lewy body dementia -LBD). The possible role in the pathogenesis of RBD of other neurotransmitters such as noradrenaline, acetylcholine, and excitatory and inhibitory neurotransmitters; hormones such as melatonin, and proinflammatory factors have also been suggested by recent reports. In general, brain perfusion and brain glucose metabolism studies have shown patterns resembling partially those of PD and LBD. Finally, the results of structural and functional MRI suggest the presence of structural changes in deep gray matter nuclei, cortical gray matter atrophy, and alterations in the functional connectivity within the basal ganglia, the cortico-striatal, and the cortico-cortical networks, but they should be considered as preliminary.
Collapse
Affiliation(s)
- Félix Javier Jiménez-Jiménez
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
- Correspondence: or ; Tel.: +34-636968395; Fax: +34-913280704
| | - Hortensia Alonso-Navarro
- Section of Neurology, Hospital Universitario del Sureste, Arganda del Rey, C/Marroquina 14, 3 B, E28030 Madrid, Spain;
| | - Elena García-Martín
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| | - José A. G. Agúndez
- UNEx, ARADyAL, Instituto de Salud Carlos III, University Institute of Molecular Pathology, E10071 Cáceres, Spain; (E.G.-M.); (J.A.G.A.)
| |
Collapse
|