1
|
Ye M, Cao Z, Zhu Z, Chen S, Zhou J, Yang H, Li X, Chen Q, Luan W, Li M, Tian C, Sun T, Shi F, Zhang X, Zhang B. Integrating quantitative DCE-MRI parameters and radiomic features for improved IDH mutation prediction in gliomas. Front Oncol 2025; 15:1530144. [PMID: 40134593 PMCID: PMC11932857 DOI: 10.3389/fonc.2025.1530144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/17/2025] [Indexed: 03/27/2025] Open
Abstract
Objectives To develop and validate a multiparametric prognostic model, incorporating dynamic contrast-enhanced (DCE) quantitative parameters and multi-modality radiomic features, for the accurate identification of isocitrate dehydrogenase 1 (IDH1) mutation status from glioma patients. Methods A total of 152 glioma patient data with confirmed IDH1 mutation status were retrospectively collected. A segmentation neural network was used to measure MRI quantitative parameters compared with the empirically oriented ROI selection. Radiomic features, extracted from conventional MR images (T1CE, T2W, and ADC), and DCE quantitative parameter images were combined with MRI quantitative parameters in our research to predict IDH1 mutation status. We constructed and analyzed Clinical Models 1-2 (corresponding to manual and automatic MRI quantitative parameters), Radiomic Feature Models 1-3 (corresponding to structural MRI, DCE, and multi-modality respectively), and a Multivariable Combined Model. We tried different usual classifiers and selected logistic regression according to AUC. Fivefold cross-validation was applied for validation. Results The Multivariable Combined Model showed the best prediction performance (AUC, 0.915; 95% CI: 0.87, 0.96) in the validation cohort. The Multivariable Combined Model performed better than Clinical Model 1 and Radiomic Feature Model 1 (DeLong all p < 0.05), and Radiomic Feature Model 3 performed better than Radiomic Feature Model 1 (DeLong p < 0.05). Conclusions Compared with the conventional MRI Radiomics and Clinical Models, the Multivariable Combined Model, mainly based on DCE quantitative parameters and multi-modality Radiomics features, is the most promising and deserves attention in the current study.
Collapse
Affiliation(s)
- Meiping Ye
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zehong Cao
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Zhengyang Zhu
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Zhou
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Department of Radiology, Nanjing Drum Tower Hospital Clinical College of Nanjing Medical University, Nanjing, China
| | - Huiquan Yang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Li
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qian Chen
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Wei Luan
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ming Li
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chuanshuai Tian
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Tianyang Sun
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Feng Shi
- Department of Research and Development, United Imaging Intelligence, Shanghai, China
| | - Xin Zhang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Bing Zhang
- Department of Radiology, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
- Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China
- Medical Imaging Center, Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| |
Collapse
|
2
|
Villanueva-Meyer JE, Bakas S, Tiwari P, Lupo JM, Calabrese E, Davatzikos C, Bi WL, Ismail M, Akbari H, Lohmann P, Booth TC, Wiestler B, Aerts HJWL, Rasool G, Tonn JC, Nowosielski M, Jain R, Colen RR, Pati S, Baid U, Vollmuth P, Macdonald D, Vogelbaum MA, Chang SM, Huang RY, Galldiks N. Artificial Intelligence for Response Assessment in Neuro Oncology (AI-RANO), part 1: review of current advancements. Lancet Oncol 2024; 25:e581-e588. [PMID: 39481414 PMCID: PMC12045294 DOI: 10.1016/s1470-2045(24)00316-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/21/2024] [Accepted: 05/23/2024] [Indexed: 11/02/2024]
Abstract
The development, application, and benchmarking of artificial intelligence (AI) tools to improve diagnosis, prognostication, and therapy in neuro-oncology are increasing at a rapid pace. This Policy Review provides an overview and critical assessment of the work to date in this field, focusing on diagnostic AI models of key genomic markers, predictive AI models of response before and after therapy, and differentiation of true disease progression from treatment-related changes, which is a considerable challenge based on current clinical care in neuro-oncology. Furthermore, promising future directions, including the use of AI for automated response assessment in neuro-oncology, are discussed.
Collapse
Affiliation(s)
- Javier E Villanueva-Meyer
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA; Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA.
| | - Spyridon Bakas
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Radiology & Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Biostatistics & Health Data Science, Indiana University School of Medicine, Indianapolis, IN, USA; Department of Neurological Surgery, Indiana University School of Medicine, Indianapolis, IN, USA; Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN, USA; Department of Computer Science, Luddy School of Informatics, Computing, and Engineering, Indiana University, Indianapolis, IN, USA
| | - Pallavi Tiwari
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Janine M Lupo
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Evan Calabrese
- Duke University Center for Artificial Intelligence in Radiology, Department of Radiology, Duke University, Durham, NC, USA
| | - Christos Davatzikos
- Center for Artificial Intelligence and Data Science for Integrated Diagnostics (AI2D) and Center for Biomedical Image Computing and Analytics (CBICA), University of Pennsylvania, Philadelphia, PA, USA; Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Wenya Linda Bi
- Department of Neurosurgery, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Marwa Ismail
- Department of Radiology and Biomedical Engineering, University of Wisconsin, Madison, WI, USA
| | - Hamed Akbari
- Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA; Department of Bioengineering, Santa Clara University, Santa Clara, CA, USA
| | - Philipp Lohmann
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Thomas C Booth
- Department of Neuroradiology, Ruskin Wing, King's College Hospital NHS Foundation Trust, London, UK; School of Biomedical Engineering & Imaging Sciences, King's College London, London, UK; London Regional Cancer Program, London, UK
| | - Benedikt Wiestler
- Department of Neuroradiology, University Hospital, Technical University of Munich, Munich, Germany
| | - Hugo J W L Aerts
- Artificial Intelligence in Medicine (AIM) Program, Mass General Brigham, Harvard Medical School, Boston, MA, USA; Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Ghulam Rasool
- Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig Maximilians University, Munich, Germany and German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Martha Nowosielski
- Department of Neurology, Medical University Innsbruck, Innsbruck, Austria
| | - Rajan Jain
- Department of Radiology and Department of Neurosurgery, New York University Langone Health, New York, NY, USA
| | - Rivka R Colen
- Radiology and Nuclear Medicine, CARIM & GROW, Maastricht University, Maastricht, Netherlands
| | - Sarthak Pati
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Ujjwal Baid
- Division of Computational Pathology, Department of Pathology & Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Philipp Vollmuth
- Department of Neuroradiology, Heidelberg University Hospital, Heidelberg, Germany
| | - David Macdonald
- Department of Neuro-Oncology, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Michael A Vogelbaum
- Department of Neurosurgery, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA; Department of Machine Learning, H Lee Moffitt Cancer Center & Research Institute, Tampa, FL, USA
| | - Susan M Chang
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women's Hospital, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Norbert Galldiks
- Institute of Neuroscience and Medicine (INM-4), Research Center Juelich (FZJ), Juelich, Germany; Department of Neurology, Faculty of Medicine and University Hospital Cologne, Cologne, Germany
| |
Collapse
|
3
|
Singh G, Singh A, Bae J, Manjila S, Spektor V, Prasanna P, Lignelli A. -New frontiers in domain-inspired radiomics and radiogenomics: increasing role of molecular diagnostics in CNS tumor classification and grading following WHO CNS-5 updates. Cancer Imaging 2024; 24:133. [PMID: 39375809 PMCID: PMC11460168 DOI: 10.1186/s40644-024-00769-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 08/31/2024] [Indexed: 10/09/2024] Open
Abstract
Gliomas and Glioblastomas represent a significant portion of central nervous system (CNS) tumors associated with high mortality rates and variable prognosis. In 2021, the World Health Organization (WHO) updated its Glioma classification criteria, most notably incorporating molecular markers including CDKN2A/B homozygous deletion, TERT promoter mutation, EGFR amplification, + 7/-10 chromosome copy number changes, and others into the grading and classification of adult and pediatric Gliomas. The inclusion of these markers and the corresponding introduction of new Glioma subtypes has allowed for more specific tailoring of clinical interventions and has inspired a new wave of Radiogenomic studies seeking to leverage medical imaging information to explore the diagnostic and prognostic implications of these new biomarkers. Radiomics, deep learning, and combined approaches have enabled the development of powerful computational tools for MRI analysis correlating imaging characteristics with various molecular biomarkers integrated into the updated WHO CNS-5 guidelines. Recent studies have leveraged these methods to accurately classify Gliomas in accordance with these updated molecular-based criteria based solely on non-invasive MRI, demonstrating the great promise of Radiogenomic tools. In this review, we explore the relative benefits and drawbacks of these computational frameworks and highlight the technical and clinical innovations presented by recent studies in the landscape of fast evolving molecular-based Glioma subtyping. Furthermore, the potential benefits and challenges of incorporating these tools into routine radiological workflows, aiming to enhance patient care and optimize clinical outcomes in the evolving field of CNS tumor management, have been highlighted.
Collapse
Affiliation(s)
- Gagandeep Singh
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA.
| | - Annie Singh
- Atal Bihari Vajpayee Institute of Medical Sciences, New Delhi, India
| | - Joseph Bae
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Sunil Manjila
- Department of Neurological Surgery, Garden City Hospital, Garden City, MI, USA
| | - Vadim Spektor
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| | - Prateek Prasanna
- Department of Biomedical Informatics, Stony Brook University, Stony Brook, USA
| | - Angela Lignelli
- Neuroradiology Division, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Skouras P, Markouli M, Kalamatianos T, Stranjalis G, Korkolopoulou P, Piperi C. Advances on Liquid Biopsy Analysis for Glioma Diagnosis. Biomedicines 2023; 11:2371. [PMID: 37760812 PMCID: PMC10525418 DOI: 10.3390/biomedicines11092371] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/16/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
Gliomas comprise the most frequent primary central nervous system (CNS) tumors, characterized by remarkable genetic and epigenetic heterogeneity, difficulty in monitoring, and increased relapse and mortality rates. Tissue biopsy is an established method of tumor cell collection and analysis that enables diagnosis, classification of different tumor types, and prediction of prognosis upon confirmation of tumor's location for surgical removal. However, it is an invasive and often challenging procedure that cannot be used for frequent patient screening, detection of mutations, disease monitoring, or resistance to therapy. To this end, the minimally invasive procedure of liquid biopsy has emerged, allowing effortless tumor sampling and enabling continuous monitoring. It is considered a novel preferable way to obtain faster data on potential tumor risk, personalized diagnosis, prognosis, and recurrence evaluation. The purpose of this review is to describe the advances on liquid biopsy for glioma diagnosis and management, indicating several biomarkers that can be utilized to analyze tumor characteristics, such as cell-free DNA (cfDNA), cell-free RNA (cfRNA), circulating proteins, circulating tumor cells (CTCs), and exosomes. It further addresses the benefit of combining liquid biopsy with radiogenomics to facilitate early and accurate diagnoses, enable precise prognostic assessments, and facilitate real-time disease monitoring, aiming towards more optimal treatment decisions.
Collapse
Affiliation(s)
- Panagiotis Skouras
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Mariam Markouli
- Department of Medicine, Boston Medical Center, Boston University School of Medicine, Boston, MA 02118, USA;
| | - Theodosis Kalamatianos
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - George Stranjalis
- 1st Department of Neurosurgery, Evangelismos Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece; (T.K.); (G.S.)
| | - Penelope Korkolopoulou
- Department of Pathology, Medical School, National and Kapodistrian University of Athens, 75 M. Asias Street, 11527 Athens, Greece;
| | - Christina Piperi
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| |
Collapse
|
5
|
Li C, Li W, Liu C, Zheng H, Cai J, Wang S. Artificial intelligence in multi-parametric magnetic resonance imaging: A review. Med Phys 2022; 49:e1024-e1054. [PMID: 35980348 DOI: 10.1002/mp.15936] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/06/2022] Open
Abstract
Multi-parametric magnetic resonance imaging (mpMRI) is an indispensable tool in the clinical workflow for the diagnosis and treatment planning of various diseases. Machine learning-based artificial intelligence (AI) methods, especially those adopting the deep learning technique, have been extensively employed to perform mpMRI image classification, segmentation, registration, detection, reconstruction, and super-resolution. The current availability of increasing computational power and fast-improving AI algorithms have empowered numerous computer-based systems for applying mpMRI to disease diagnosis, imaging-guided radiotherapy, patient risk and overall survival time prediction, and the development of advanced quantitative imaging technology for magnetic resonance fingerprinting. However, the wide application of these developed systems in the clinic is still limited by a number of factors, including robustness, reliability, and interpretability. This survey aims to provide an overview for new researchers in the field as well as radiologists with the hope that they can understand the general concepts, main application scenarios, and remaining challenges of AI in mpMRI. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Cheng Li
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Wen Li
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chenyang Liu
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Jing Cai
- Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Shanshan Wang
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.,Peng Cheng Laboratory, Shenzhen, 518066, China.,Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, 510080, China
| |
Collapse
|
6
|
A Survey of Radiomics in Precision Diagnosis and Treatment of Adult Gliomas. J Clin Med 2022; 11:jcm11133802. [PMID: 35807084 PMCID: PMC9267404 DOI: 10.3390/jcm11133802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/18/2022] [Accepted: 06/29/2022] [Indexed: 02/04/2023] Open
Abstract
Glioma is the most common primary malignant tumor of the adult central nervous system (CNS), which mostly shows invasive growth. In most cases, surgery is often difficult to completely remove, and the recurrence rate and mortality of patients are high. With the continuous development of molecular genetics and the great progress of molecular biology technology, more and more molecular biomarkers have been proved to have important guiding significance in the individualized diagnosis, treatment, and prognosis evaluation of glioma. With the updates of the World Health Organization (WHO) classification of tumors of the CNS in 2021, the diagnosis and treatment of glioma has entered the era of precision medicine in the true sense. Due to its ability to non-invasively achieve accurate identification of glioma from other intracranial tumors, and to predict the grade, genotyping, treatment response, and prognosis of glioma, which provides a scientific basis for the clinical application of individualized diagnosis and treatment model of glioma, radiomics has become a research hotspot in the field of precision medicine. This paper reviewed the research related to radiomics of adult gliomas published in recent years and summarized the research proceedings of radiomics in differential diagnosis, preoperative grading and genotyping, treatment and efficacy evaluation, and survival prediction of adult gliomas.
Collapse
|
7
|
Balana C, Castañer S, Carrato C, Moran T, Lopez-Paradís A, Domenech M, Hernandez A, Puig J. Preoperative Diagnosis and Molecular Characterization of Gliomas With Liquid Biopsy and Radiogenomics. Front Neurol 2022; 13:865171. [PMID: 35693015 PMCID: PMC9177999 DOI: 10.3389/fneur.2022.865171] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022] Open
Abstract
Gliomas are a heterogenous group of central nervous system tumors with different outcomes and different therapeutic needs. Glioblastoma, the most common subtype in adults, has a very poor prognosis and disabling consequences. The World Health Organization (WHO) classification specifies that the typing and grading of gliomas should include molecular markers. The molecular characterization of gliomas has implications for prognosis, treatment planning, and prediction of treatment response. At present, gliomas are diagnosed via tumor resection or biopsy, which are always invasive and frequently risky methods. In recent years, however, substantial advances have been made in developing different methods for the molecular characterization of tumors through the analysis of products shed in body fluids. Known as liquid biopsies, these analyses can potentially provide diagnostic and prognostic information, guidance on choice of treatment, and real-time information on tumor status. In addition, magnetic resonance imaging (MRI) is another good source of tumor data; radiomics and radiogenomics can link the imaging phenotypes to gene expression patterns and provide insights to tumor biology and underlying molecular signatures. Machine and deep learning and computational techniques can also use quantitative imaging features to non-invasively detect genetic mutations. The key molecular information obtained with liquid biopsies and radiogenomics can be useful not only in the diagnosis of gliomas but can also help predict response to specific treatments and provide guidelines for personalized medicine. In this article, we review the available data on the molecular characterization of gliomas using the non-invasive methods of liquid biopsy and MRI and suggest that these tools could be used in the future for the preoperative diagnosis of gliomas.
Collapse
Affiliation(s)
- Carmen Balana
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
- *Correspondence: Carmen Balana
| | - Sara Castañer
- Diagnostic Imaging Institute (IDI), Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Cristina Carrato
- Department of Pathology, Hospital Universitari Germans Trias I Pujol, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Teresa Moran
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Assumpció Lopez-Paradís
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Marta Domenech
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Ainhoa Hernandez
- Medical Oncology Service, Institut Català d'Oncologia Badalona (ICO), Badalona Applied Research Group in Oncology (B-ARGO Group), Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| | - Josep Puig
- Department of Radiology IDI [Girona Biomedical Research Institute] IDIBGI, Hospital Universitari Dr Josep Trueta, Girona, Spain
- Department of Medical Sciences, School of Medicine, University of Girona, Girona, Spain
- Comparative Medicine and Bioimage of Catalonia, Institut Investigació Germans Trias i Pujol (IGTP), Barcelona, Spain
| |
Collapse
|
8
|
Radiomics-Based Method for Predicting the Glioma Subtype as Defined by Tumor Grade, IDH Mutation, and 1p/19q Codeletion. Cancers (Basel) 2022; 14:cancers14071778. [PMID: 35406550 PMCID: PMC8997070 DOI: 10.3390/cancers14071778] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 02/01/2023] Open
Abstract
Gliomas are among the most common types of central nervous system (CNS) tumors. A prompt diagnosis of the glioma subtype is crucial to estimate the prognosis and personalize the treatment strategy. The objective of this study was to develop a radiomics pipeline based on the clinical Magnetic Resonance Imaging (MRI) scans to noninvasively predict the glioma subtype, as defined based on the tumor grade, isocitrate dehydrogenase (IDH) mutation status, and 1p/19q codeletion status. A total of 212 patients from the public retrospective The Cancer Genome Atlas Low Grade Glioma (TCGA-LGG) and The Cancer Genome Atlas Glioblastoma Multiforme (TCGA-GBM) datasets were used for the experiments and analyses. Different settings in the radiomics pipeline were investigated to improve the classification, including the Z-score normalization, the feature extraction strategy, the image filter applied to the MRI images, the introduction of clinical information, ComBat harmonization, the classifier chain strategy, etc. Based on numerous experiments, we finally reached an optimal pipeline for classifying the glioma tumors. We then tested this final radiomics pipeline on the hold-out test data with 51 randomly sampled random seeds for reliable and robust conclusions. The results showed that, after tuning the radiomics pipeline, the mean AUC improved from 0.8935 (±0.0351) to 0.9319 (±0.0386), from 0.8676 (±0.0421) to 0.9283 (±0.0333), and from 0.6473 (±0.1074) to 0.8196 (±0.0702) in the test data for predicting the tumor grade, IDH mutation, and 1p/19q codeletion status, respectively. The mean accuracy for predicting the five glioma subtypes also improved from 0.5772 (±0.0816) to 0.6716 (±0.0655). Finally, we analyzed the characteristics of the radiomic features that best distinguished the glioma grade, the IDH mutation, and the 1p/19q codeletion status, respectively. Apart from the promising prediction of the glioma subtype, this study also provides a better understanding of the radiomics model development and interpretability. The results in this paper are replicable with our python codes publicly available in github.
Collapse
|
9
|
Yan J, Zhang S, Sun Q, Wang W, Duan W, Wang L, Ding T, Pei D, Sun C, Wang W, Liu Z, Hong X, Wang X, Guo Y, Li W, Cheng J, Liu X, Li ZC, Zhang Z. Predicting 1p/19q co-deletion status from magnetic resonance imaging using deep learning in adult-type diffuse lower-grade gliomas: a discovery and validation study. J Transl Med 2022; 102:154-159. [PMID: 34782727 DOI: 10.1038/s41374-021-00692-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 10/15/2021] [Accepted: 10/18/2021] [Indexed: 11/08/2022] Open
Abstract
Determination of 1p/19q co-deletion status is important for the classification, prognostication, and personalized therapy in diffuse lower-grade gliomas (LGG). We developed and validated a deep learning imaging signature (DLIS) from preoperative magnetic resonance imaging (MRI) for predicting the 1p/19q status in patients with LGG. The DLIS was constructed on a training dataset (n = 330) and validated on both an internal validation dataset (n = 123) and a public TCIA dataset (n = 102). The receiver operating characteristic (ROC) analysis and precision recall curves (PRC) were used to measure the classification performance. The area under ROC curves (AUC) of the DLIS was 0.999 for training dataset, 0.986 for validation dataset, and 0.983 for testing dataset. The F1-score of the prediction model was 0.992 for training dataset, 0.940 for validation dataset, and 0.925 for testing dataset. Our data suggests that DLIS could be used to predict the 1p/19q status from preoperative imaging in patients with LGG. The imaging-based deep learning has the potential to be a noninvasive tool predictive of molecular markers in adult diffuse gliomas.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Shenghai Zhang
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Qiuchang Sun
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Weiwei Wang
- Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenchao Duan
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Li Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Tianqing Ding
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Dongling Pei
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chen Sun
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wenqing Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhen Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xuanke Hong
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiangxiang Wang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yu Guo
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Wencai Li
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zhi-Cheng Li
- Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Zhenyu Zhang
- Glioma Multidisciplinary Research Group, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
10
|
Haubold J, Hosch R, Parmar V, Glas M, Guberina N, Catalano OA, Pierscianek D, Wrede K, Deuschl C, Forsting M, Nensa F, Flaschel N, Umutlu L. Fully Automated MR Based Virtual Biopsy of Cerebral Gliomas. Cancers (Basel) 2021; 13:cancers13246186. [PMID: 34944806 PMCID: PMC8699054 DOI: 10.3390/cancers13246186] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/16/2022] Open
Abstract
OBJECTIVE The aim of this study was to investigate the diagnostic accuracy of a radiomics analysis based on a fully automated segmentation and a simplified and robust MR imaging protocol to provide a comprehensive analysis of the genetic profile and grading of cerebral gliomas for everyday clinical use. METHODS MRI examinations of 217 therapy-naïve patients with cerebral gliomas, each comprising a non-contrast T1-weighted, FLAIR and contrast-enhanced T1-weighted sequence, were included in the study. In addition, clinical and laboratory parameters were incorporated into the analysis. The BraTS 2019 pretrained DeepMedic network was used for automated segmentation. The segmentations generated by DeepMedic were evaluated with 200 manual segmentations with a DICE score of 0.8082 ± 0.1321. Subsequently, the radiomics signatures were utilized to predict the genetic profile of ATRX, IDH1/2, MGMT and 1p19q co-deletion, as well as differentiating low-grade glioma from high-grade glioma. RESULTS The network provided an AUC (validation/test) for the differentiation between low-grade gliomas vs. high-grade gliomas of 0.981 ± 0.015/0.885 ± 0.02. The best results were achieved for the prediction of the ATRX expression loss with AUCs of 0.979 ± 0.028/0.923 ± 0.045, followed by 0.929 ± 0.042/0.861 ± 0.023 for the prediction of IDH1/2. The prediction of 1p19q and MGMT achieved moderate results, with AUCs of 0.999 ± 0.005/0.711 ± 0.128 for 1p19q and 0.854 ± 0.046/0.742 ± 0.050 for MGMT. CONCLUSION This fully automated approach utilizing simplified MR protocols to predict the genetic profile and grading of cerebral gliomas provides an easy and efficient method for non-invasive tumor decoding.
Collapse
Affiliation(s)
- Johannes Haubold
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
- Correspondence: ; Tel.: +49-201-723-84528; Fax: +49-201-723-1548
| | - René Hosch
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Vicky Parmar
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Martin Glas
- Department of Neurology, Division of Clinical Neurooncology, University Hospital Essen, D-45147 Essen, Germany;
| | - Nika Guberina
- Department of Radiotherapy, University Hospital Essen, D-45147 Essen, Germany;
| | - Onofrio Antonio Catalano
- Department of Radiology, Division of Abdominal Imaging, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard University Medical School, Boston 02114, MA, USA;
| | - Daniela Pierscianek
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, D-45147 Essen, Germany; (D.P.); (K.W.)
| | - Cornelius Deuschl
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Felix Nensa
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Nils Flaschel
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, D-45147 Essen, Germany; (R.H.); (V.P.); (C.D.); (M.F.); (F.N.); (N.F.); (L.U.)
| |
Collapse
|
11
|
Kinoshita M, Kanemura Y, Narita Y, Kishima H. Reverse Engineering Glioma Radiomics to Conventional Neuroimaging. Neurol Med Chir (Tokyo) 2021; 61:505-514. [PMID: 34373429 PMCID: PMC8443974 DOI: 10.2176/nmc.ra.2021-0133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel radiological research field pursuing comprehensive quantitative image, namely “Radiomics,” gained traction along with the advancement of computational technology and artificial intelligence. This novel concept for analyzing medical images brought extensive interest to the neuro-oncology and neuroradiology research community to build a diagnostic workflow to detect clinically relevant genetic alteration of gliomas noninvasively. Although quite a few promising results were published regarding MRI-based diagnosis of isocitrate dehydrogenase (IDH) mutation in gliomas, it has become clear that an ample amount of effort is still needed to render this technology clinically applicable. At the same time, many significant insights were discovered through this research project, some of which could be “reverse engineered” to improve conventional non-radiomic MR image acquisition. In this review article, the authors aim to discuss the recent advancements and encountering issues of radiomics, how we can apply the knowledge provided by radiomics to standard clinical images, and further expected technological advances in the realm of radiomics and glioma.
Collapse
Affiliation(s)
- Manabu Kinoshita
- Department of Neurosurgery, Asahikawa Medical University.,Department of Neurosurgery, Osaka University Graduate School of Medicine.,Department of Neurosurgery, Osaka International Cancer Institute
| | - Yonehiro Kanemura
- Department of Biomedical Research and Innovation, Institute for Clinical Research, National Hospital Organization Osaka National Hospital
| | - Yoshitaka Narita
- Department of Neurosurgery and Neuro-Oncology, National Cancer Center Hospital
| | - Haruhiko Kishima
- Department of Neurosurgery, Osaka University Graduate School of Medicine
| |
Collapse
|
12
|
Yan J, Zhang B, Zhang S, Cheng J, Liu X, Wang W, Dong Y, Zhang L, Mo X, Chen Q, Fang J, Wang F, Tian J, Zhang S, Zhang Z. Quantitative MRI-based radiomics for noninvasively predicting molecular subtypes and survival in glioma patients. NPJ Precis Oncol 2021; 5:72. [PMID: 34312469 PMCID: PMC8313682 DOI: 10.1038/s41698-021-00205-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 05/13/2021] [Indexed: 12/24/2022] Open
Abstract
Gliomas can be classified into five molecular groups based on the status of IDH mutation, 1p/19q codeletion, and TERT promoter mutation, whereas they need to be obtained by biopsy or surgery. Thus, we aimed to use MRI-based radiomics to noninvasively predict the molecular groups and assess their prognostic value. We retrospectively identified 357 patients with gliomas and extracted radiomic features from their preoperative MRI images. Single-layered radiomic signatures were generated using a single MR sequence using Bayesian-regularization neural networks. Image fusion models were built by combing the significant radiomic signatures. By separately predicting the molecular markers, the predictive molecular groups were obtained. Prognostic nomograms were developed based on the predictive molecular groups and clinicopathologic data to predict progression-free survival (PFS) and overall survival (OS). The results showed that the image fusion model incorporating radiomic signatures from contrast-enhanced T1-weighted imaging (cT1WI) and apparent diffusion coefficient (ADC) achieved an AUC of 0.884 and 0.669 for predicting IDH and TERT status, respectively. cT1WI-based radiomic signature alone yielded favorable performance in predicting 1p/19q status (AUC = 0.815). The predictive molecular groups were comparable to actual ones in predicting PFS (C-index: 0.709 vs. 0.722, P = 0.241) and OS (C-index: 0.703 vs. 0.751, P = 0.359). Subgroup analyses by grades showed similar findings. The prognostic nomograms based on grades and the predictive molecular groups yielded a C-index of 0.736 and 0.735 in predicting PFS and OS, respectively. Accordingly, MRI-based radiomics may be useful for noninvasively detecting molecular groups and predicting survival in gliomas regardless of grades.
Collapse
Affiliation(s)
- Jing Yan
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Shuaitong Zhang
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China.,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China.,School of Engineering Medicine, Beihang University, Beijing, China
| | - Jingliang Cheng
- Department of MRI, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xianzhi Liu
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weiwei Wang
- Department of Pathology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yuhao Dong
- Department of Catheterization Lab, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, China
| | - Lu Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Xiaokai Mo
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Qiuying Chen
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jin Fang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Fei Wang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China
| | - Jie Tian
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, China. .,CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, Beijing, China. .,School of Engineering Medicine, Beihang University, Beijing, China. .,Engineering Research Center of Molecular and Neuro Imaging of Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shanxi, China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong, China.
| | - Zhenyu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
13
|
Casale R, Lavrova E, Sanduleanu S, Woodruff HC, Lambin P. Development and external validation of a non-invasive molecular status predictor of chromosome 1p/19q co-deletion based on MRI radiomics analysis of Low Grade Glioma patients. Eur J Radiol 2021; 139:109678. [PMID: 33848780 DOI: 10.1016/j.ejrad.2021.109678] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/04/2021] [Accepted: 03/21/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE The 1p/19q co-deletion status has been demonstrated to be a prognostic biomarker in lower grade glioma (LGG). The objective of this study was to build a magnetic resonance (MRI)-derived radiomics model to predict the 1p/19q co-deletion status. METHOD 209 pathology-confirmed LGG patients from 2 different datasets from The Cancer Imaging Archive were retrospectively reviewed; one dataset with 159 patients as the training and discovery dataset and the other one with 50 patients as validation dataset. Radiomics features were extracted from T2- and T1-weighted post-contrast MRI resampled data using linear and cubic interpolation methods. For each of the voxel resampling methods a three-step approach was used for feature selection and a random forest (RF) classifier was trained on the training dataset. Model performance was evaluated on training and validation datasets and clinical utility indexes (CUIs) were computed. The distributions and intercorrelation for selected features were analyzed. RESULTS Seven radiomics features were selected from the cubic interpolated features and five from the linear interpolated features on the training dataset. The RF classifier showed similar performance for cubic and linear interpolation methods in the training dataset with accuracies of 0.81 (0.75-0.86) and 0.76 (0.71-0.82) respectively; in the validation dataset the accuracy dropped to 0.72 (0.6-0.82) using cubic interpolation and 0.72 (0.6-0.84) using linear resampling. CUIs showed the model achieved satisfactory negative values (0.605 using cubic interpolation and 0.569 for linear interpolation). CONCLUSIONS MRI has the potential for predicting the 1p/19q status in LGGs. Both cubic and linear interpolation methods showed similar performance in external validation.
Collapse
Affiliation(s)
- Roberto Casale
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands.
| | - Elizaveta Lavrova
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands
| | - Sebastian Sanduleanu
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands
| | - Henry C Woodruff
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| | - Philippe Lambin
- The D-Lab, Department of Precision Medicine, GROW- School for Oncology, Maastricht University Maastricht, the Netherlands; Department of Radiology and Nuclear Medicine, GROW - School for Oncology, Maastricht University Medical Centre+, Maastricht, the Netherlands
| |
Collapse
|
14
|
Kong Z, Zhang Y, Liu D, Liu P, Shi Y, Wang Y, Zhao D, Cheng X, Wang Y, Ma W. Role of traditional CHO PET parameters in distinguishing IDH, TERT and MGMT alterations in primary diffuse gliomas. Ann Nucl Med 2021; 35:493-503. [PMID: 33532992 DOI: 10.1007/s12149-021-01589-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 01/20/2021] [Indexed: 12/26/2022]
Abstract
OBJECTIVE Isocitrate dehydrogenase (IDH) mutation, telomerase reverse transcriptase (TERT) promoter mutation and O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation status are diagnostic, prognostic, predictive and therapeutic biomarkers for primary diffuse gliomas, and this study aimed to explore the relationship between choline (CHO) positron emission tomography (PET) parameters and these molecular alterations. METHODS Twenty-eight patients who were histopathologically diagnosed with primary diffuse glioma and underwent presurgical CHO PET/CT were retrospectively analyzed, and IDH, TERT and MGMT alterations were examined. The volume of interest (VOI) was semiautomatically defined based on standardized uptake value (SUV) thresholds, and 5 traditional CHO parameters, namely, SUVmax, SUVmean, metabolic tumor volume (MTV), total lesion CHO uptake (TLC) and tumor-to-normal contralateral cortex activity ratio (T/N ratio), were calculated. Wilcoxon rank-sum tests and receiver operating characteristic (ROC) curves were applied to evaluate the differences and performances of the CHO parameters, and their capability to stratify patient prognosis was also evaluated. RESULTS All 5 parameters were significantly higher in IDH-wildtype gliomas than in IDH-mutant gliomas (p = 0.0001-0.037), and SUVmax, SUVmean, TLC and the T/N ratio exhibited good performances in distinguishing the IDH status (areas under the ROC curve (AUCs) 0.856-0.918, accuracies 0.857-0.893) as well as stratifying patient prognosis. Although the differences and performances of the traditional parameters in distinguishing diverse TERT and MGMT statuses were moderate in the whole population, the T/N ratio and TLC displayed certain predictive value in discriminating the TERT status in the IDH-mutant and IDH-wildtype subgroups (p = 0.028-0.048, AUCs 0.857-0.860, accuracies 0.800-0.917, respectively). CONCLUSIONS Traditional CHO PET parameters are capable of distinguishing IDH but not TERT or MGMT alterations in the whole population. In accordance with the clinical understanding of TERT promoter mutations, the T/N ratio and TLC can also discriminate the TERT status in IDH subgroups.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.,Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yucheng Zhang
- Institute of Nuclear and New Energy Technology, Tsinghua University, Haidian District, Beijing, China
| | - Delin Liu
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Penghao Liu
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yixin Shi
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Yaning Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Dachun Zhao
- Department of Pathology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China
| | - Xin Cheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No.1 Shuaifuyuan Wangfujing Dongcheng District, Beijing, China.
| |
Collapse
|