1
|
Muñoz-Perete JM, Cano-Sánchez J, Castellote-Caballero Y, Vico-Rodríguez P, Cano-Orihuela M, Sánchez-Alcalá M, Carcelén-Fraile MDC. Effectiveness of Transcranial Stimulation on Cognitive Abilities of Older Adults with Mild Cognitive Impairment. J Clin Med 2025; 14:2472. [PMID: 40217920 PMCID: PMC11989800 DOI: 10.3390/jcm14072472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2025] [Revised: 03/27/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025] Open
Abstract
Background/Objectives: Aging leads to cognitive decline that may progress to dementia. Transcranial direct current stimulation (tDCS) has emerged as a strategy to improve cognitive functions in older adults with mild cognitive impairment (MCI). This study reviews the effectiveness of tDCS in these populations. Methods: A systematic review and meta-analysis was conducted following the PRISMA 2020 guidelines. Randomized controlled trials obtained from PubMed, Scopus, Cinahl, and Web of Science were included. Studies with tDCS intervention in older adults with MCI were selected, excluding those without a control group or that did not measure relevant cognitive variables. Methodological quality was analyzed with the PEDro scale and a meta-analysis was applied with random-effects models. Results: A total of 27 studies were included in this review, of which 13 were part of the meta-analysis. tDCS showed significant improvements in global cognitive function (p < 0.001) and selective attention (p = 0.044), but not in mental flexibility or visual attention. Positive effects on quality of life and depressive symptoms were also reported in some studies. Conclusions: tDCS may improve cognitive functions in older adults with MCI, but inconsistencies persist in its magnitude and duration. It is recommended to standardize protocols and conduct studies with greater methodological rigor and long-term follow-up.
Collapse
Affiliation(s)
- Juan Miguel Muñoz-Perete
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (J.M.M.-P.)
| | - Javier Cano-Sánchez
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (J.M.M.-P.)
| | - Yolanda Castellote-Caballero
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (J.M.M.-P.)
- Department of Health Sciences, Faculty of Health Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Paulino Vico-Rodríguez
- Department of Health Sciences, Faculty of Health Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Marta Cano-Orihuela
- Department of Health Sciences, Faculty of Health Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| | - Marcelina Sánchez-Alcalá
- Department of Health Sciences, Faculty of Health Sciences, University of Jaén, 23071 Jaén, Spain; (J.M.M.-P.)
| | - María del Carmen Carcelén-Fraile
- Department of Education Sciences, Faculty of Social Sciences, University of Atlántico Medio, 35017 Las Palmas de Gran Canaria, Spain
| |
Collapse
|
2
|
Lord B, Allen JJB, Young S, Sanguinetti JL. Enhancing Equanimity With Noninvasive Brain Stimulation: A Novel Framework for Mindfulness Interventions. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2025; 10:384-392. [PMID: 39708953 DOI: 10.1016/j.bpsc.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/05/2024] [Accepted: 12/07/2024] [Indexed: 12/23/2024]
Abstract
Mindfulness has gained widespread recognition for its benefits for mental health, cognitive performance, and well-being. However, the multifaceted nature of mindfulness, which encompasses elements such as attentional focus, emotional regulation, and present-moment awareness, complicates its definition and measurement. A key component that may underlie its broad benefits is equanimity-the ability to maintain an open and nonreactive attitude toward all sensory experiences. Empirical research suggests that mindfulness works through a combination of top-down attentional control and bottom-up sensory and emotional processes and that equanimity's role in regulating those bottom-up processes drives the psychological and physiological benefits, making it a promising target for both theoretical and practical exploration. Given these findings, the development of interventions that specifically augment equanimity could improve the impact of mindfulness practices. Research into noninvasive brain stimulation (NIBS) suggests that it is a potential tool for altering neural circuits involved in mindfulness. However, most NIBS studies reported to date have focused on improving cognitive control systems and have left equanimity relatively unexplored. Preliminary findings from focused ultrasound interventions targeting the posterior cingulate cortex suggest that NIBS can directly facilitate equanimity by inhibiting self-referential processing in the default mode network to promote a more present-centered state of awareness. Future research should prioritize the integration of NIBS with well-defined mindfulness training protocols, focusing on equanimity as a core target. This approach could provide a novel framework for advancing both contemplative neuroscience and clinical applications, offering new insights into the mechanisms of mindfulness and refining NIBS methodologies to support individualized, precision wellness interventions.
Collapse
Affiliation(s)
- Brian Lord
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Department of Psychology, University of Arizona, Tuscon, Arizona.
| | - John J B Allen
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Department of Psychology, University of Arizona, Tuscon, Arizona
| | - Shinzen Young
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Sanmai Technologies, PBC, Sunnyvale, California
| | - Joseph L Sanguinetti
- Center for Consciousness Studies, Science Enhanced Mindful Awareness Lab, University of Arizona, Tuscon, Arizona; Sanmai Technologies, PBC, Sunnyvale, California
| |
Collapse
|
3
|
Jin S, Lu W, Zhang J, Zhang L, Tao F, Zhang Y, Hu X, Liu Q. The mechanisms, hallmarks, and therapies for brain aging and age-related dementia. Sci Bull (Beijing) 2024; 69:3756-3776. [PMID: 39332926 DOI: 10.1016/j.scib.2024.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/14/2024] [Accepted: 09/02/2024] [Indexed: 09/29/2024]
Abstract
Age-related cognitive decline and dementia are significant manifestations of brain aging. As the elderly population grows rapidly, the health and socio-economic impacts of cognitive dysfunction have become increasingly significant. Although clinical treatment of dementia has faced considerable challenges over the past few decades, with limited breakthroughs in slowing its progression, there has been substantial progress in understanding the molecular mechanisms and hallmarks of age-related dementia (ARD). This progress brings new hope for the intervention and treatment of this disease. In this review, we categorize the latest findings in ARD biomarkers into four stages based on disease progression: Healthy brain, pre-clinical, mild cognitive impairment, and dementia. We then systematically summarize the most promising therapeutic approaches to prevent or slow ARD at four levels: Genome and epigenome, organelle, cell, and organ and organism. We emphasize the importance of early prevention and detection, along with the implementation of combined treatments as multimodal intervention strategies, to address brain aging and ARD in the future.
Collapse
Affiliation(s)
- Shiyun Jin
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Wenping Lu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China
| | - Juan Zhang
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China
| | - Li Zhang
- Laboratory for Integrative Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA
| | - Fangbiao Tao
- MOE Key Laboratory of Population Health Across Life Cycle, Anhui Medical University, Hefei 230032, China.
| | - Ye Zhang
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Xianwen Hu
- Department of Anesthesiology, the Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; Key Laboratory of Anesthesiology and Perioperative Medicine of Anhui Higher Education Institutes, Anhui Medical University, Hefei 230601, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China; Anhui Province Key Laboratory of Biomedical Aging Research, University of Science and Technology of China, Hefei 230027, China; Institute on Aging and Brain Disorders, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230027, China.
| |
Collapse
|
4
|
von Bastian CC, Hyde ERA, Jiang S. Tackling cognitive decline in late adulthood: Cognitive interventions. Curr Opin Psychol 2024; 56:101780. [PMID: 38176281 DOI: 10.1016/j.copsyc.2023.101780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/29/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024]
Abstract
Affordable and easy-to-administer interventions such as cognitive training, cognitively stimulating everyday leisure activities, and non-invasive brain stimulation techniques, are promising avenues to counteract age-related cognitive decline and support people in maintaining cognitive health into late adulthood. However, the same pattern of findings emerges across all three fields of cognitive intervention research: whereas improvements within the intervention context are large and often reliable, generalisation to other cognitive abilities and contexts are severely limited. These findings suggest that while cognitive interventions can enhance the efficiency with which people use their existing cognitive capacity, these interventions are unlikely to expand existing capacity limits. Therefore, future research investigating generalisation of enhanced efficiency constitutes a promising avenue for developing reliably effective cognitive interventions.
Collapse
Affiliation(s)
- Claudia C von Bastian
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom.
| | - Eleanor R A Hyde
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom
| | - Shuangke Jiang
- Department of Psychology and Neuroscience Institute, University of Sheffield, United Kingdom
| |
Collapse
|
5
|
Turrini S, Wong B, Eldaief M, Press DZ, Sinclair DA, Koch G, Avenanti A, Santarnecchi E. The multifactorial nature of healthy brain ageing: Brain changes, functional decline and protective factors. Ageing Res Rev 2023; 88:101939. [PMID: 37116664 DOI: 10.1016/j.arr.2023.101939] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/14/2023] [Accepted: 04/24/2023] [Indexed: 04/30/2023]
Abstract
As the global population faces a progressive shift towards a higher median age, understanding the mechanisms underlying healthy brain ageing has become of paramount importance for the preservation of cognitive abilities. The first part of the present review aims to provide a comprehensive look at the anatomical changes the healthy brain endures with advanced age, while also summarizing up to date findings on modifiable risk factors to support a healthy ageing process. Subsequently, we describe the typical cognitive profile displayed by healthy older adults, conceptualizing the well-established age-related decline as an impairment of four main cognitive factors and relating them to their neural substrate previously described; different cognitive trajectories displayed by typical Alzheimer's Disease patients and successful agers with a high cognitive reserve are discussed. Finally, potential effective interventions and protective strategies to promote cognitive reserve and defer cognitive decline are reviewed and proposed.
Collapse
Affiliation(s)
- Sonia Turrini
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy
| | - Bonnie Wong
- Neuropsychology Program, Frontotemporal Disorders Unit, Massachusetts General Hospital, Harvard Medical School, Boston, MA , USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Mark Eldaief
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniel Z Press
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - David A Sinclair
- Blavatnik Institute, Department of Genetics, Paul F. Glenn Center for Biology of ageing Research, Harvard Medical School, Boston, MA, USA
| | - Giacomo Koch
- Stroke Unit, Department of Systems Medicine, University of Tor Vergata, Rome, Italy; Department of Clinical and Behavioural Neurology, Santa Lucia Foundation IRCCS, Rome, Italy
| | - Alessio Avenanti
- Centro studi e ricerche in Neuroscienze Cognitive, Dipartimento di Psicologia "Renzo Canestrari", Alma Mater Studiorum Università di Bologna, Campus di Cesena, Cesena, Italy; Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Universidad Católica del Maule, Talca, Chile
| | - Emiliano Santarnecchi
- Precision Neuroscience & Neuromodulation Program, Gordon Center for Medical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Antonenko D, Fromm AE, Thams F, Grittner U, Meinzer M, Flöel A. Microstructural and functional plasticity following repeated brain stimulation during cognitive training in older adults. Nat Commun 2023; 14:3184. [PMID: 37268628 DOI: 10.1038/s41467-023-38910-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 05/18/2023] [Indexed: 06/04/2023] Open
Abstract
The combination of repeated behavioral training with transcranial direct current stimulation (tDCS) holds promise to exert beneficial effects on brain function beyond the trained task. However, little is known about the underlying mechanisms. We performed a monocenter, single-blind randomized, placebo-controlled trial comparing cognitive training to concurrent anodal tDCS (target intervention) with cognitive training to concurrent sham tDCS (control intervention), registered at ClinicalTrial.gov (Identifier NCT03838211). The primary outcome (performance in trained task) and secondary behavioral outcomes (performance on transfer tasks) were reported elsewhere. Here, underlying mechanisms were addressed by pre-specified analyses of multimodal magnetic resonance imaging before and after a three-week executive function training with prefrontal anodal tDCS in 48 older adults. Results demonstrate that training combined with active tDCS modulated prefrontal white matter microstructure which predicted individual transfer task performance gain. Training-plus-tDCS also resulted in microstructural grey matter alterations at the stimulation site, and increased prefrontal functional connectivity. We provide insight into the mechanisms underlying neuromodulatory interventions, suggesting tDCS-induced changes in fiber organization and myelin formation, glia-related and synaptic processes in the target region, and synchronization within targeted functional networks. These findings advance the mechanistic understanding of neural tDCS effects, thereby contributing to more targeted neural network modulation in future experimental and translation tDCS applications.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany.
| | | | - Friederike Thams
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH), Berlin, Germany
- Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Institute of Biometry and Clinical Epidemiology, Berlin, Germany
| | - Marcus Meinzer
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
| | - Agnes Flöel
- Department of Neurology, Universitätsmedizin Greifswald, Greifswald, Germany
- German Centre for Neurodegenerative Diseases (DZNE) Standort Greifswald, Greifswald, Germany
| |
Collapse
|
7
|
Bagattini C, Cid-Fernández S, Bulgari M, Miniussi C, Bortoletto M. Opposite pattern of transcranial direct current stimulation effects in middle-aged and older adults: Behavioral and neurophysiological evidence. Front Aging Neurosci 2023; 15:1087749. [PMID: 36761183 PMCID: PMC9905246 DOI: 10.3389/fnagi.2023.1087749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 01/04/2023] [Indexed: 01/27/2023] Open
Abstract
Introduction Episodic memory (EM) exhibits an age-related decline, with overall increased impairment after the age of 65. The application of transcranial direct current stimulation (tDCS) to ameliorate cognitive decline in ageing has been extensively investigated, but its efficacy has been reported with mixed results. In this study, we aimed to assess whether age contributes to interindividual variability in tDCS efficacy. Methods Thirty-eight healthy adults between 50 and 81 years old received anodal tDCS over the left prefrontal cortex during images encoding and then performed an EM recognition task while event-related potentials (ERPs) were recorded. Results Our results showed an opposite pattern of effect between middle-aged (50-64 years) and older (65-81 years) adults. Specifically, performance in the recognition task after tDCS was enhanced in older adults and was worsened in middle-aged adults. Moreover, ERPs acquired during the recognition task showed that two EM components related to familiarity and post-retrieval monitoring, i.e., Early Frontal and Late Frontal Old-New effects, respectively, were significantly reduced in middle-aged adults after anodal tDCS. Discussion These results support an age-dependent effect of prefrontal tDCS on EM processes and its underlying electrophysiological substrate, with opposing modulatory trajectories along the aging lifespan.
Collapse
Affiliation(s)
- Chiara Bagattini
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy,Section of Neurosurgery, Department of Neuroscience Biomedicine and Movement Sciences, University of Verona, Verona, Italy,*Correspondence: Chiara Bagattini,
| | - Susana Cid-Fernández
- Department of Developmental and Educational Psychology, University of Santiago de Compostela, Santiago de Compostela, Galicia, Spain
| | - Martina Bulgari
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Carlo Miniussi
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Rovereto, Italy
| | - Marta Bortoletto
- Neurophysiology Lab, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| |
Collapse
|
8
|
Camacho‐Conde JA, del Rosario Gonzalez‐Bermudez M, Carretero‐Rey M, Khan ZU. Therapeutic potential of brain stimulation techniques in the treatment of mental, psychiatric, and cognitive disorders. CNS Neurosci Ther 2022; 29:8-23. [PMID: 36229994 PMCID: PMC9804057 DOI: 10.1111/cns.13971] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 08/25/2022] [Accepted: 08/26/2022] [Indexed: 02/06/2023] Open
Abstract
Treatment for brain diseases has been disappointing because available medications have failed to produce clinical response across all the patients. Many patients either do not respond or show partial and inconsistent effect, and even in patients who respond to the medications have high relapse rates. Brain stimulation has been seen as an alternative and effective remedy. As a result, brain stimulation has become one of the most valuable therapeutic tools for combating against brain diseases. In last decade, studies with the application of brain stimulation techniques not only have grown exponentially but also have expanded to wide range of brain disorders. Brain stimulation involves passing electric currents into the cortical and subcortical area brain cells with the use of noninvasive as well as invasive methods to amend brain functions. Over time, technological advancements have evolved into the development of precise devices; however, at present, most used noninvasive techniques are repetitive transcranial magnetic stimulation (rTMS) and transcranial direct current stimulation (tDCS), whereas the most common invasive technique is deep brain stimulation (DBS). In the current review, we will provide an overview of the potential of noninvasive (rTMS and tDCS) and invasive (DBS) brain stimulation techniques focusing on the treatment of mental, psychiatric, and cognitive disorders.
Collapse
Affiliation(s)
- Jose Antonio Camacho‐Conde
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | | | - Marta Carretero‐Rey
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain
| | - Zafar U. Khan
- Laboratory of Neurobiology, CIMESUniversity of Malaga, Campus Teatinos s/nMalagaSpain,Department of Medicine, Faculty of MedicineUniversity of Malaga, Campus Teatinos s/nMalagaSpain,CIBERNEDInstitute of Health Carlos IIIMadridSpain
| |
Collapse
|
9
|
Ziegler DA, Anguera JA, Gallen CL, Hsu WY, Wais PE, Gazzaley A. Leveraging technology to personalize cognitive enhancement methods in aging. NATURE AGING 2022; 2:475-483. [PMID: 35873177 PMCID: PMC9302894 DOI: 10.1038/s43587-022-00237-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Abstract
As population aging advances at an increasing rate, efforts to help people maintain or improve cognitive function late in life are critical. Although some studies have shown promise, the question of whether cognitive training is an effective tool for improving general cognitive ability remains incompletely explored, and study results to date have been inconsistent. Most approaches to cognitive enhancement in older adults have taken a 'one size fits all' tack, as opposed to tailoring interventions to the specific needs of individuals. In this Perspective, we argue that modern technology has the potential to enable large-scale trials of public health interventions to enhance cognition in older adults in a personalized manner. Technology-based cognitive interventions that rely on closed-loop systems can be tailored to individuals in real time and have the potential for global testing, extending their reach to large and diverse populations of older adults. We propose that the future of cognitive enhancement in older adults will rely on harnessing new technologies in scientifically informed ways.
Collapse
Affiliation(s)
- David A. Ziegler
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| | - Joaquin A. Anguera
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
| | - Courtney L. Gallen
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Wan-Yu Hsu
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Peter E. Wais
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Adam Gazzaley
- Department of Neurology, University of California San Francisco, San Francisco, CA, USA
- Neuroscape, University of California San Francisco, San Francisco, CA, USA
- Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA, USA
- Department of Physiology, University of California San Francisco, San Francisco, CA, USA
- Correspondence should be addressed to David A. Ziegler or Adam Gazzaley. ;
| |
Collapse
|
10
|
Antonenko D, Thams F, Grittner U, Uhrich J, Glöckner F, Li S, Flöel A. Randomized trial of cognitive training and brain stimulation in non-demented older adults. ALZHEIMER'S & DEMENTIA (NEW YORK, N. Y.) 2022; 8:e12262. [PMID: 35229023 PMCID: PMC8864498 DOI: 10.1002/trc2.12262] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 12/09/2021] [Accepted: 01/11/2022] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Given rapid global population aging, developing interventions against age-associated cognitive decline is an important medical and societal goal. We evaluated a cognitive training protocol combined with transcranial direct current stimulation (tDCS) on trained and non-trained functions in non-demented older adults. METHODS Fifty-six older adults (65-80 years) were randomly assigned to one of two interventional groups, using age and baseline performance as strata. Both groups performed a nine-session cognitive training over 3 weeks with either concurrent anodal tDCS (atDCS, 1 mA, 20 minutes) over the left dorsolateral prefrontal cortex (target intervention) or sham stimulation (control intervention). Primary outcome was performance on the trained letter updating task immediately after training. Secondary outcomes included performance on other executive and memory (near and far transfer) tasks. All tasks were administered at baseline, post-intervention, and at 1- and 7-month follow-up assessments. Prespecified analyses to investigate treatment effects were conducted using mixed-model analyses. RESULTS No between-group differences emerged in the trained letter updating and Markov decision-making tasks at post-intervention and at follow-up timepoints. Secondary analyses revealed group differences in one near-transfer task: Superior n-back task performance was observed in the tDCS group at post-intervention and at follow-up. No such effects were observed for the other transfer tasks. Improvements in working memory were associated with individually induced electric field strengths. DISCUSSION Cognitive training with atDCS did not lead to superior improvement in trained task performance compared to cognitive training with sham stimulation. Thus, our results do not support the immediate benefit of tDCS-assisted multi-session cognitive training on the trained function. As the intervention enhanced performance in a near-transfer working memory task, we provide exploratory evidence for effects on non-trained working memory functions in non-demented older adults that persist over a period of 1 month.
Collapse
Affiliation(s)
- Daria Antonenko
- Department of NeurologyUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Friederike Thams
- Department of NeurologyUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Ulrike Grittner
- Berlin Institute of Health (BIH)BerlinGermany
- Charité – Universitätsmedizin Berlin, Humboldt‐Universität zu BerlinBerlin Institute of HealthInstitute of Biometry and Clinical EpidemiologyBerlinGermany
| | - Jessica Uhrich
- Department of NeurologyUniversitätsmedizin GreifswaldGreifswaldGermany
| | - Franka Glöckner
- Lifespan Developmental NeuroscienceFaculty of PsychologyTU DresdenDresdenGermany
| | - Shu‐Chen Li
- Lifespan Developmental NeuroscienceFaculty of PsychologyTU DresdenDresdenGermany
| | - Agnes Flöel
- Department of NeurologyUniversitätsmedizin GreifswaldGreifswaldGermany
- German Centre for Neurodegenerative Diseases (DZNE) Standort GreifswaldGreifswaldGermany
| |
Collapse
|
11
|
Al Qasem W, Abubaker M, Kvašňák E. Working Memory and Transcranial-Alternating Current Stimulation-State of the Art: Findings, Missing, and Challenges. Front Psychol 2022; 13:822545. [PMID: 35237214 PMCID: PMC8882605 DOI: 10.3389/fpsyg.2022.822545] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 01/19/2022] [Indexed: 12/06/2022] Open
Abstract
Working memory (WM) is a cognitive process that involves maintaining and manipulating information for a short period of time. WM is central to many cognitive processes and declines rapidly with age. Deficits in WM are seen in older adults and in patients with dementia, schizophrenia, major depression, mild cognitive impairment, Alzheimer's disease, etc. The frontal, parietal, and occipital cortices are significantly involved in WM processing and all brain oscillations are implicated in tackling WM tasks, particularly theta and gamma bands. The theta/gamma neural code hypothesis assumes that retained memory items are recorded via theta-nested gamma cycles. Neuronal oscillations can be manipulated by sensory, invasive- and non-invasive brain stimulations. Transcranial alternating-current stimulation (tACS) and repetitive transcranial magnetic stimulation (rTMS) are frequency-tuned non-invasive brain stimulation (NIBS) techniques that have been used to entrain endogenous oscillations in a frequency-specific manner. Compared to rTMS, tACS demonstrates superior cost, tolerability, portability, and safety profile, making it an attractive potential tool for improving cognitive performance. Although cognitive research with tACS is still in its infancy compared to rTMS, a number of studies have shown a promising WM enhancement effect, especially in the elderly and patients with cognitive deficits. This review focuses on the various methods and outcomes of tACS on WM in healthy and unhealthy human adults and highlights the established findings, unknowns, challenges, and perspectives important for translating laboratory tACS into realistic clinical settings. This will allow researchers to identify gaps in the literature and develop frequency-tuned tACS protocols with promising safety and efficacy outcomes. Therefore, research efforts in this direction should help to consider frequency-tuned tACS as a non-pharmacological tool of cognitive rehabilitation in physiological aging and patients with cognitive deficits.
Collapse
Affiliation(s)
- Wiam Al Qasem
- Department of Medical Biophysics and Medical Informatics, Third Faculty of Medicine, Charles University in Prague, Praha, Czechia
| | | | | |
Collapse
|
12
|
Booth SJ, Taylor JR, Brown LJE, Pobric G. The effects of transcranial alternating current stimulation on memory performance in healthy adults: A systematic review. Cortex 2021; 147:112-139. [PMID: 35032750 DOI: 10.1016/j.cortex.2021.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 11/14/2021] [Accepted: 12/01/2021] [Indexed: 01/03/2023]
Abstract
The recent introduction of Transcranial Alternating Current stimulation (tACS) in research on memory modulation has yielded some exciting findings. Whilst evidence suggests small but significant modulatory effects of tACS on perception and cognition, it is unclear how effective tACS is at modulating memory, and the neural oscillations underlying memory. The aim of this systematic review was to determine the efficacy with which tACS, compared to sham stimulation, can modify working memory (WM) and long-term memory (LTM) performance in healthy adults. We examined how these effects may be moderated by specific tACS parameters and study/participant characteristics. Our secondary goal was to investigate the neural correlates of tACS' effects on memory performance in healthy adults. A systematic search of eight databases yielded 11,413 records, resulting in 34 papers that included 104 eligible studies. The results were synthesised by memory type (WM/LTM) and according to the specific parameters of frequency band, stimulation montage, individual variability, cognitive demand, and phase. A second synthesis examined the correspondence between tACS' effects on memory performance and the oscillatory features of electroencephalography (EEG) and magnetencephalography (MEG) recordings in a subset of 26 studies. The results showed a small-to-medium effect of tACS on WM and LTM performance overall. There was strong evidence to suggest that posterior theta-tACS modulates WM performance, whilst the modulation of LTM is achieved by anterior gamma-tACS. Moreover, there was a correspondence between tACS effects on memory performance and oscillatory outcomes at the stimulation frequency. We discuss limitations in the field and suggest ways to improve our understanding of tACS efficacy to ensure a transition of tACS from an investigative method to a therapeutic tool.
Collapse
Affiliation(s)
- Samantha J Booth
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Jason R Taylor
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Laura J E Brown
- Division of Psychology and Mental Health, School of Health Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| | - Gorana Pobric
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine, and Health, University of Manchester, Manchester Academic Health Science Centre, England, UK.
| |
Collapse
|
13
|
Beppi C, Ribeiro Violante I, Scott G, Sandrone S. EEG, MEG and neuromodulatory approaches to explore cognition: Current status and future directions. Brain Cogn 2021; 148:105677. [PMID: 33486194 DOI: 10.1016/j.bandc.2020.105677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/26/2020] [Accepted: 12/27/2020] [Indexed: 01/04/2023]
Abstract
Neural oscillations and their association with brain states and cognitive functions have been object of extensive investigation over the last decades. Several electroencephalography (EEG) and magnetoencephalography (MEG) analysis approaches have been explored and oscillatory properties have been identified, in parallel with the technical and computational advancement. This review provides an up-to-date account of how EEG/MEG oscillations have contributed to the understanding of cognition. Methodological challenges, recent developments and translational potential, along with future research avenues, are discussed.
Collapse
Affiliation(s)
- Carolina Beppi
- Neuroscience Center Zurich, University of Zurich and ETH Zurich, Zurich, Switzerland; Department of Neurology, University Hospital Zurich and University of Zurich, Zurich, Switzerland; Clinical Neuroscience Center, University Hospital Zurich and University of Zurich, Zurich, Switzerland.
| | - Inês Ribeiro Violante
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom; School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom.
| | - Gregory Scott
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| | - Stefano Sandrone
- Computational, Cognitive and Clinical Neuroscience Laboratory (C3NL), Department of Brain Sciences, Imperial College London, London, United Kingdom.
| |
Collapse
|