1
|
Holm-Yildiz S, Krag T, Dysgaard T, Pedersen BS, Witting N, Kodal LS, Kannuberg L, Pedersen JJ, Lyu Z, Aagaard MM, Vissing J. Quantitative Muscle MRI to Monitor Disease Progression in Hypokalemic Period Paralysis. Neurol Genet 2024; 10:e200211. [PMID: 39633713 PMCID: PMC11616970 DOI: 10.1212/nxg.0000000000200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 09/10/2024] [Indexed: 12/07/2024]
Abstract
Background and Objectives Primary hypokalemic periodic paralysis (HypoPP) is a muscle channelopathy that can cause periodic paralysis and permanent weakness. Currently, little is known about how progressive this myopathy is. Natural history data for HypoPP can potentially answer the question of progressiveness and form the basis for outcome measures to be used in follow-up and emerging treatment trials. We aimed to describe the natural history of HypoPP and assess whether quantitative fat imaging is a valuable biomarker to monitor disease progression. Methods In this prospective follow-up study, we examined disease progression using Dixon MRI to monitor changes in fat replacement of the muscle and stationary dynamometry to monitor changes in muscle strength. Results We included 37 persons (mean age 43 years, range 18-79 years) with HypoPP-causing variants in CACNA1S. Three participants were asymptomatic carriers, 22 had periodic paralysis, 3 had permanent weakness, and 9 had periodic paralysis in combination with permanent weakness. The median follow-up time was 20 months (range 12-25). We found that fat fraction increased in 10 of 21 examined muscles. An increase in the composite fat fraction of at least 1 muscle group was found in all symptomatic phenotypes. By contrast, we found no significant change in muscle strength. Discussion The results from this follow-up study support the use of quantitative muscle MRI to monitor subclinical disease progression in HypoPP in patients with and without attacks of paralysis.
Collapse
Affiliation(s)
- Sonja Holm-Yildiz
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Thomas Krag
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Tina Dysgaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Britt Stævnsbo Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Nanna Witting
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Louise Sloth Kodal
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Linda Kannuberg
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Jonas Jalili Pedersen
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Zhe Lyu
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - Morten Müller Aagaard
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| | - John Vissing
- From the Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Denmark
| |
Collapse
|
2
|
De Wel B, Iterbeke L, Huysmans L, Peeters R, Goosens V, Dubuisson N, van den Bergh P, Van Parijs V, Remiche G, De Waele L, Maes F, Dupont P, Claeys KG. Lessons for future clinical trials in adults with Becker muscular dystrophy: Disease progression detected by muscle magnetic resonance imaging, clinical and patient-reported outcome measures. Eur J Neurol 2024; 31:e16282. [PMID: 38504654 PMCID: PMC11235693 DOI: 10.1111/ene.16282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/07/2024] [Accepted: 03/05/2024] [Indexed: 03/21/2024]
Abstract
BACKGROUND AND PURPOSE Because Becker muscular dystrophy (BMD) is a heterogeneous disease and only few studies have evaluated adult patients, it is currently still unclear which outcome measures should be used in future clinical trials. METHODS Muscle magnetic resonance imaging, patient-reported outcome measures and a wide range of clinical outcome measures, including motor function, muscle strength and timed-function tests, were evaluated in 21 adults with BMD at baseline and at 9 and 18 months of follow-up. RESULTS Proton density fat fraction increased significantly in 10/17 thigh muscles after 9 months, and in all thigh and lower leg muscles after 18 months. The 32-item Motor Function Measurement (MFM-32) scale (-1.3%, p = 0.017), North Star Ambulatory Assessment (-1.3 points, p = 0.010) and patient-reported activity limitations scale (-0.3 logits, p = 0.018) deteriorated significantly after 9 months. The 6-min walk distance (-28.7 m, p = 0.042), 10-m walking test (-0.1 m/s, p = 0.032), time to climb four stairs test (-0.03 m/s, p = 0.028) and Biodex peak torque measurements of quadriceps (-4.6 N m, p = 0.014) and hamstrings (-5.0 N m, p = 0.019) additionally deteriorated significantly after 18 months. At this timepoint, domain 1 of the MFM-32 was the only clinical outcome measure with a large sensitivity to change (standardized response mean 1.15). DISCUSSION It is concluded that proton density fat fraction imaging of entire thigh muscles is a sensitive outcome measure to track progressive muscle fat replacement in patients with BMD, already after 9 months of follow-up. Finally, significant changes are reported in a wide range of clinical and patient-reported outcome measures, of which the MFM-32 appeared to be the most sensitive to change in adults with BMD.
Collapse
Affiliation(s)
- Bram De Wel
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Neurosciences, Laboratory for Muscle Diseases and NeuropathiesKU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Louise Iterbeke
- Department of Neurosciences, Laboratory for Muscle Diseases and NeuropathiesKU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Lotte Huysmans
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESAT – PSIKU LeuvenLeuvenBelgium
| | - Ronald Peeters
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Veerle Goosens
- Department of RadiologyUniversity Hospitals LeuvenLeuvenBelgium
| | - Nicolas Dubuisson
- Department of Neurology, Neuromuscular Reference CenterCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Peter van den Bergh
- Department of Neurology, Neuromuscular Reference CenterCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Vinciane Van Parijs
- Department of Neurology, Neuromuscular Reference CenterCliniques Universitaires Saint‐LucBrusselsBelgium
| | - Gauthier Remiche
- Department of Neurology, Centre de Référence Neuromusculaire, HUB‐Hôpital ErasmeUniversité Libre de BruxellesBrusselsBelgium
| | - Liesbeth De Waele
- Department of PediatricsUniversity Hospitals LeuvenLeuvenBelgium
- Department of Development and RegenerationKU LeuvenLeuvenBelgium
| | - Frederik Maes
- Medical Imaging Research CentreUniversity Hospitals LeuvenLeuvenBelgium
- Department ESAT – PSIKU LeuvenLeuvenBelgium
| | - Patrick Dupont
- Department of Neurosciences, Laboratory for Cognitive NeurologyKU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| | - Kristl G. Claeys
- Department of NeurologyUniversity Hospitals LeuvenLeuvenBelgium
- Department of Neurosciences, Laboratory for Muscle Diseases and NeuropathiesKU Leuven, and Leuven Brain Institute (LBI)LeuvenBelgium
| |
Collapse
|
3
|
Ricci G, Govoni A, Torri F, Astrea G, Buchignani B, Marinella G, Battini R, Manca ML, Castiglione V, Giannoni A, Emdin M, Siciliano G. Characterization of Phenotypic Variability in Becker Muscular Dystrophy for Clinical Practice and Towards Trial Readiness: A Two-Years Follow up Study. J Neuromuscul Dis 2024; 11:375-387. [PMID: 38189759 DOI: 10.3233/jnd-221513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Background Becker muscular dystrophy (BMD) is a dystrophinopathy due to in-frame mutations in the dystrophin gene (DMD) which determines a reduction of dystrophin at muscle level. BMD has a wide spectrum of clinical variability with different degrees of disability. Studies of natural history are needed also in view of up-coming clinical trials. Objectives From an initial cohort of 32 BMD adult subjects, we present a detailed phenotypic characterization of 28 patients, then providing a description of their clinical natural history over the course of 12 months for 18 and 24 months for 13 of them. Methods Each patient has been genetically characterized. Baseline, and 1-year and 2 years assessments included North Star Ambulatory Assessment (NSAA), timed function tests (time to climb and descend four stairs), 6-minute walk test (6MWT), Walton and Gardner-Medwin Scale and Medical Research Council (MRC) scale. Muscle magnetic resonance imaging (MRI) was acquired at baseline and in a subgroup of 9 patients after 24 months. Data on cardiac function (electrocardiogram, echocardiogram, and cardiac MRI) were also collected. Results and conclusions Among the clinical heterogeneity, a more severe involvement is often observed in patients with 45-X del, with a disease progression over two years. The 6MWT appears sensitive to detect modification from baseline during follow up while no variation was observed by MRC testing. Muscle MRI of the lower limbs correlates with clinical parameters.Our study further highlights how the phenotypic variability of BMD adult patients makes it difficult to describe an uniform course and substantiates the need to identify predictive parameters and biomarkers to stratify patients.
Collapse
Affiliation(s)
- Giulia Ricci
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Alessandra Govoni
- Neuromuscular and Rare Disease Unit, La Fondazione IRCCS Ca' Granda Ospedale Maggiore di Milano Policlinico, Milano, Italy
| | - Francesca Torri
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| | - Guja Astrea
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Bianca Buchignani
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
- Department of Translational Research and of New Surgical and Medical Technologies Pisa University, Pisa, Italy
| | - Gemma Marinella
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Roberta Battini
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
- Department of Developmental Neuroscience, IRCCS Stella Maris, Calambrone, Pisa, Italy
| | - Maria Laura Manca
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
- Department of Mathematics, University of Pisa, Pisa, Italy
| | - Vincenzo Castiglione
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Alberto Giannoni
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Michele Emdin
- Health Science Interdisciplinary Center, Scuola Superiore Sant'Anna, Pisa, Italy
- Fondazione Toscana Gabriele Monasterio, Pisa, Italy
| | - Gabriele Siciliano
- Department of Clinical and Experimental Medicine, Neurological Clinic, University of Pisa, Pisa, Italy
| |
Collapse
|
4
|
Suslov VM, Lieberman LN, Carlier PG, Ponomarenko GN, Ivanov DO, Rudenko DI, Suslova GA, Adulas EI. Efficacy and safety of hydrokinesitherapy in patients with dystrophinopathy. Front Neurol 2023; 14:1230770. [PMID: 37564736 PMCID: PMC10410449 DOI: 10.3389/fneur.2023.1230770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 07/05/2023] [Indexed: 08/12/2023] Open
Abstract
Duchenne muscular dystrophy (DMD) is one of the most common forms of hereditary muscular dystrophies in childhood and is characterized by steady progression and early disability. It is known that physical therapy can slow down the rate of progression of the disease. According to global recommendations, pool exercises, along with stretching, are preferable for children with DMD, as these types of activities have a balanced effect on skeletal muscles and allow simultaneous breathing exercises. The present study aimed to evaluate the effectiveness of regular pool exercises in patients with Duchenne muscular dystrophy who are capable of independent movement during 4 months of training. 28 patients with genetically confirmed Duchenne muscular dystrophy, who were aged 6.9 ± 0.2 years, were examined. A 6-min distance walking test and timed tests, namely, rising from the floor, 10-meter running, and stair climbing and descending, muscle strength of the upper and lower extremities were assessed on the baseline and during dynamic observation at 2 and 4 months. Hydrorehabilitation course lasted 4 months and was divided into two stages: preparatory and training (depend on individual functional heart reserve (IFHR)). Set of exercises included pool dynamic aerobic exercises. Quantitative muscle MRI of the pelvic girdle and thigh was performed six times: before training (further BT) and after training (further AT) during all course. According to the results of the study, a statistically significant improvement was identified in a 6-min walking test, with 462.7 ± 6.2 m on the baseline and 492.0 ± 6.4 m after 4 months (p < 0.001). The results from the timed functional tests were as follows: rising from the floor test, 4.5 ± 0.3 s on the baseline and 3.8 ± 0.2 s after 4 months (p < 0.001); 10 meter distance running test, 4.9 ± 0.1 s on the baseline and 4.3 ± 0.1 s after 4 months (p < 0.001); 4-stair climbing test, 3.7 ± 0.2 s on the baseline and 3.2 ± 0.2 s after 4 months (p < 0.001); and 4-stair descent test, 3.9 ± 0.1 s on the baseline and 3.2 ± 0.1 s after 4 months (p < 0.001). Skeletal muscle quantitative MRI was performed in the pelvis and the thighs in order to assess the impact of the procedures on the muscle structure. Muscle water T2, a biomarker of disease activity, did not show any change during the training period, suggesting the absence of deleterious effects and negative impact on disease activity. Thus, a set of dynamic aerobic exercises in water can be regarded as effective and safe for patients with DMD.
Collapse
Affiliation(s)
- V. M. Suslov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - L. N. Lieberman
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - P. G. Carlier
- University Paris-Saclay, CEA, Frédéric Joliot Institute for Life Sciences, SHFJ, Orsay, France
| | - G. N. Ponomarenko
- Federal State Budgetary Institution Federal Scientific Center of the Rehabilitation of the Disabled Named After G. A.Albrecht of the Ministry of Labour and Social Protection of the Russian Federation, Saint Petersburg, Russia
| | - D. O. Ivanov
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - D. I. Rudenko
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - G. A. Suslova
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| | - E. I. Adulas
- Department of Rehabilitation, Federal State Budgetary Educational Institution of Higher Education Saint-Petersburg State Pediatric Medical University of the Ministry of Healthcare of the Russian Federation, Saint Petersburg, Russia
| |
Collapse
|
5
|
Comi GP, Niks EH, Vandenborne K, Cinnante CM, Kan HE, Willcocks RJ, Velardo D, Magri F, Ripolone M, van Benthem JJ, van de Velde NM, Nava S, Ambrosoli L, Cazzaniga S, Bettica PU. Givinostat for Becker muscular dystrophy: A randomized, placebo-controlled, double-blind study. Front Neurol 2023; 14:1095121. [PMID: 36793492 PMCID: PMC9923355 DOI: 10.3389/fneur.2023.1095121] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 01/09/2023] [Indexed: 02/03/2023] Open
Abstract
Objective No treatments are approved for Becker muscular dystrophy (BMD). This study investigated the efficacy and safety of givinostat, a histone deacetylase pan-inhibitor, in adults with BMD. Methods Males aged 18-65 years with a diagnosis of BMD confirmed by genetic testing were randomized 2:1 to 12 months treatment with givinostat or placebo. The primary objective was to demonstrate statistical superiority of givinostat over placebo for mean change from baseline in total fibrosis after 12 months. Secondary efficacy endpoints included other histological parameters, magnetic resonance imaging and spectroscopy (MRI and MRS) measures, and functional evaluations. Results Of 51 patients enrolled, 44 completed treatment. At baseline, there was greater disease involvement in the placebo group than givinostat, based on total fibrosis (mean 30.8 vs. 22.8%) and functional endpoints. Mean total fibrosis did not change from baseline in either group, and the two groups did not differ at Month 12 (least squares mean [LSM] difference 1.04%; p = 0.8282). Secondary histology parameters, MRS, and functional evaluations were consistent with the primary. MRI fat fraction in whole thigh and quadriceps did not change from baseline in the givinostat group, but values increased with placebo, with LSM givinostat-placebo differences at Month 12 of -1.35% (p = 0.0149) and -1.96% (p = 0.0022), respectively. Adverse events, most mild or moderate, were reported by 88.2% and 52.9% patients receiving givinostat and placebo. Conclusion The study failed to achieve the primary endpoint. However, there was a potential signal from the MRI assessments suggesting givinostat could prevent (or slow down) BMD disease progression.
Collapse
Affiliation(s)
- Giacomo P. Comi
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy,Department of Pathophysiology and Transplantation, Dino Ferrari Center, University of Milan, Milan, Italy,*Correspondence: Giacomo P. Comi ✉
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands,Duchenne Center Netherlands, Netherlands
| | | | | | - Hermien E. Kan
- Duchenne Center Netherlands, Netherlands,Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, Netherlands
| | | | - Daniele Velardo
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesca Magri
- Neurology Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Michela Ripolone
- Neuromuscular and Rare Diseases Unit, Department of Neuroscience, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Jules J. van Benthem
- Department of Orthopedics, Rehabilitation and Physiotherapy, Leiden University Medical Center, Leiden, Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center, Leiden, Netherlands,Duchenne Center Netherlands, Netherlands
| | - Simone Nava
- Radiology Department, Istituto Auxologico Italiano, IRCCS, Milan, Italy
| | | | | | | |
Collapse
|
6
|
Veeger TTJ, van de Velde NM, Keene KR, Niks EH, Hooijmans MT, Webb AG, de Groot JH, Kan HE. Baseline fat fraction is a strong predictor of disease progression in Becker muscular dystrophy. NMR IN BIOMEDICINE 2022; 35:e4691. [PMID: 35032073 PMCID: PMC9286612 DOI: 10.1002/nbm.4691] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/24/2021] [Accepted: 01/10/2022] [Indexed: 06/14/2023]
Abstract
In Becker muscular dystrophy (BMD), muscle weakness progresses relatively slowly, with a highly variable rate among patients. This complicates clinical trials, as clinically relevant changes are difficult to capture within the typical duration of a trial. Therefore, predictors for disease progression are needed. We assessed if temporal increase of fat fraction (FF) in BMD follows a sigmoidal trajectory and whether fat fraction at baseline (FFbase) could therefore predict FF increase after 2 years (ΔFF). Thereafter, for two different MR-based parameters, we tested the additional predictive value to FFbase. We used 3-T Dixon data from the upper and lower leg, and multiecho spin-echo MRI and 7-T 31 P MRS datasets from the lower leg, acquired in 24 BMD patients (age: 41.4 [SD 12.8] years). We assessed the pattern of increase in FF using mixed-effects modelling. Subsequently, we tested if indicators of muscle damage like standard deviation in water T2 (stdT2 ) and the phosphodiester (PDE) over ATP ratio at baseline had additional value to FFbase for predicting ∆FF. The association between FFbase and ΔFF was described by the derivative of a sigmoid function and resulted in a peak ΔFF around 0.45 FFbase (fourth-order polynomial term: t = 3.7, p < .001). StdT2 and PDE/ATP were not significantly associated with ∆FF if FFbase was included in the model. The relationship between FFbase and ∆FF suggests a sigmoidal trajectory of the increase in FF over time in BMD, similar to that described for Duchenne muscular dystrophy. Our results can be used to identify muscles (or patients) that are in the fast progressing stage of the disease, thereby facilitating the conduct of clinical trials.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Nienke M. van de Velde
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Kevin R. Keene
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Erik H. Niks
- Department of Neurology, Leiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical CentersAmsterdamThe Netherlands
| | - Andrew G. Webb
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation Medicine, Leiden University Medical Center (LUMC)LeidenThe Netherlands
| | - Hermien E. Kan
- C. J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical Center (LUMC)LeidenThe Netherlands
- Duchenne Center NetherlandsThe Netherlands
| |
Collapse
|
7
|
Kazemkhani N, ShahAli S, Shanbehzadeh S. Comparison of Isometric Strength of the Trunk and Hip Muscle Groups in Female Athletes with and without Low Back Pain: A Cross-Sectional Study. Med J Islam Repub Iran 2022; 36:62. [PMID: 36128283 PMCID: PMC9448477 DOI: 10.47176/mjiri.36.62] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Accepted: 06/13/2022] [Indexed: 11/29/2022] Open
Abstract
Background: Low back pain (LBP) is a common musculoskeletal disorder in athletes. Reduced strength in hip and trunk muscles has been observed among non-athletes with low back pain. This study aimed to compare the strength of trunk and hip muscles between female athletes with and without LBP and to investigate strength association with disability level in female athletes with LBP. Methods: This cross-sectional study was conducted on 26 female athletes with LBP and 30 female athletes without LBP. The strength of the trunk and hip muscles was measured using a hand-held dynamometer and the impact of LBP on the sports activities and activities of daily living was measured using the Athletes Disability Index (ADI). Data analysis was done using an independent sample t test and the Pearson correlation coefficient. Results: There were no significant differences between groups for trunk and hip muscles strength (p > 0.05). A fair to moderate correlation was seen between the strength of the trunk, hip abductors, flexor and extensors muscles and the scores of the ADI questionnaire in the LBP group (r = -0.26 to -0.48). However, there was no significant correlation between the strength of hip adductor muscles and the scores on the ADI questionnaire. Conclusion: Based on the results, the strength of trunk and hip muscles was not different between athletes with and without LBP. It is recommended that athletes' training be done during functional tasks rather than strengthening a single muscle group.
Collapse
Affiliation(s)
- Niloufar Kazemkhani
- Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Shabnam ShahAli
- Rehabilitation Research Center, Department of Physiotherapy, School of Rehabilitation Sciences, Iran University of Medical Sciences, Tehran, Iran,Corresponding author: Dr Shabnam ShahAli,
| | - Sanaz Shanbehzadeh
- Rehabilitation Research Center, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
8
|
van de Velde NM, Hooijmans MT, Sardjoe Mishre ASD, Keene KR, Koeks Z, Veeger TTJ, Alleman I, van Zwet EW, Beenakker JWM, Verschuuren JJGM, Kan HE, Niks EH. Selection Approach to Identify the Optimal Biomarker Using Quantitative Muscle MRI and Functional Assessments in Becker Muscular Dystrophy. Neurology 2021; 97:e513-e522. [PMID: 34162720 PMCID: PMC8356376 DOI: 10.1212/wnl.0000000000012233] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 04/29/2021] [Indexed: 12/30/2022] Open
Abstract
Objective To identify the best quantitative fat–water MRI biomarker for disease progression of leg muscles in Becker muscular dystrophy (BMD) by applying a stepwise approach based on standardized response mean (SRM) over 24 months, correlations with baseline ambulatory tests, and reproducibility. Methods Dixon fat–water imaging was performed at baseline (n = 24) and 24 months (n = 20). Fat fractions (FF) were calculated for 3 center slices and the whole muscles for 19 muscles and 6 muscle groups. Contractile cross-sectional area (cCSA) was obtained from the center slice. Functional assessments included knee extension and flexion force and 3 ambulatory tests (North Star Ambulatory Assessment [NSAA], 10-meter run, 6-minute walking test). MRI measures were selected using SRM (≥0.8) and correlation with all ambulatory tests (ρ ≤ −0.8). Measures were evaluated based on intraclass correlation coefficient (ICC) and SD of the difference. Sample sizes were calculated assuming 50% reduction in disease progression over 24 months in a clinical trial with 1:1 randomization. Results Median whole muscle FF increased between 0.2% and 2.6% without consistent cCSA changes. High SRMs and strong functional correlations were found for 8 FF but no cCSA measures. All measures showed excellent ICC (≥0.999) and similar SD of the interrater difference. Whole thigh 3 center slices FF was the best biomarker (SRM 1.04, correlations ρ ≤ −0.81, ICC 1.00, SD 0.23%, sample size 59) based on low SD and acquisition and analysis time. Conclusion In BMD, median FF of all muscles increased over 24 months. Whole thigh 3 center slices FF reduced the sample size by approximately 40% compared to NSAA.
Collapse
Affiliation(s)
- Nienke M van de Velde
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Melissa T Hooijmans
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Aashley S D Sardjoe Mishre
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Kevin R Keene
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Zaïda Koeks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Thom T J Veeger
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Iris Alleman
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik W van Zwet
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan-Willem M Beenakker
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Jan J G M Verschuuren
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Hermien E Kan
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands
| | - Erik H Niks
- From the Department of Neurology (N.M.v.d.V., K.R.K., Z.K., J.J.G.M.V., E.H.N.), C.J. Gorter Center for High-Field MRI, Department of Radiology (M.T.H., A.S.D.S.M., K.R.K., T.T.J.V., J.-W.M.B., H.E.K.), Department of Orthopaedics, Rehabilitation and Physical Therapy (I.A.), Department of Biomedical Data Sciences (E.W.v.Z.), and Department of Ophthalmology (J.-W.M.B.), Leiden University Medical Center, the Netherlands; and Duchenne Center Netherlands (N.M.v.d.V., J.J.G.M.V., H.E.K., E.H.N.), the Netherlands.
| |
Collapse
|
9
|
Sheikh AM, Rudolf K, de Stricker Borch J, Khawajazada T, Witting N, Vissing J. Patients With Becker Muscular Dystrophy Have Severe Paraspinal Muscle Involvement. Front Neurol 2021; 12:613483. [PMID: 34093388 PMCID: PMC8177107 DOI: 10.3389/fneur.2021.613483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 04/27/2021] [Indexed: 01/26/2023] Open
Abstract
Introduction: Paraspinal muscles are important for gross motor functions. Impairment of these muscles can lead to poor postural control and ambulation difficulty. Little knowledge exists about the involvement of paraspinal muscles in Becker muscular dystrophy. Objective: In this cross-sectional study, we investigated the involvement of paraspinal muscles with quantitative trunk strength measure and quantitative muscle MRI. Methods and Materials: Eighteen patients with Becker muscular dystrophy underwent trunk, hip, and thigh strength assessment using a Biodex dynamometer and an MRI Dixon scan. Fourteen age- and body mass index-matched healthy men were included for comparison. Results: Muscle fat fraction (FF) of the paraspinal muscles (multifidus and erector spinae) was higher in participants with Becker muscular dystrophy vs. healthy controls at all three examined spinal levels (C6, Th12, and L4/L5) (p < 0.05). There was a strong and inverse correlation between paraspinal muscle FF and trunk extension strength (ρ = −0.829, p < 0.001), gluteus maximus FF and hip extension strength (ρ = −0.701, p = 0.005), FF of the knee extensor muscles (quadriceps and sartorius) and knee extension strength (ρ = −0.842, p < 0.001), and FF of the knee flexor muscles (hamstring muscles) and knee flexion strength (ρ = −0.864, p < 0.001). Fat fraction of the paraspinal muscles also correlated with muscle FF of the thigh muscles and lower leg muscles. Conclusion: In conclusion, patients with Becker muscular dystrophy demonstrate severe paraspinal muscular involvement indicated by low back extension strength and high levels of fat replacement, which parallel involvement of lower limb muscles. Assessment of paraspinal muscle strength and fat replacement may serve as a possible biomarker for both the clinical management and further study of the disease.
Collapse
Affiliation(s)
- Aisha M Sheikh
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Karen Rudolf
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Josefine de Stricker Borch
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Tahmina Khawajazada
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Nanna Witting
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - John Vissing
- Copenhagen Neuromuscular Center, Department of Neurology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|