1
|
Shumski EJ, Eagle SR, Kontos AP, Bazarian JJ, Caccese JB, Chrisman SPD, Clugston JR, McAllister TW, McCrea M, Broglio SP, Lynall RC, Schmidt JD. The Interval Between Concussions Does Not Influence Time to Asymptomatic or Return to Play: A CARE Consortium Study. Sports Med 2024; 54:2185-2197. [PMID: 38671175 DOI: 10.1007/s40279-024-02015-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/27/2024] [Indexed: 04/28/2024]
Abstract
INTRODUCTION The purpose of this study was to determine if the time interval between two concussive events influences the number of days to asymptomatic status, days to return to play, or performance on common post-concussion assessments following the second concussion. METHODS Data from 448 collegiate athletes and service academy cadets with two concussions (time between concussions: median 295.0 days [interquartile range: 125.0-438.2]), 40.0% female) were analyzed from Concussion Assessment Research and Education (CARE) Consortium institutions between 2014 and 2020. Days between concussions was the primary predictor variable. Primary outcome measures included time to asymptomatic and time to return to play following the second concussion. Secondary outcome measures included total number of symptoms, total symptom severity, Balance Error Scoring System total score, and Standardized Assessment of Concussion total score within 48 h of their second concussion. RESULTS Time between concussions did not significantly contribute to the multivariate time to asymptomatic (p = 0.390), time to return to play (p = 0.859), or the secondary outcomes (p-range = 0.165-0.477) models. Time to asymptomatic (p = 0.619) or return to play (p = 0.524) did not differ between same-season and different-season concussions. Sex significantly contributed to the return to play (p = 0.005) multivariate model. Delayed symptom onset and immediate removal from play/competition significantly contributed to the total number of symptoms (p = 0.001, p = 0.014) and symptom severity (p = 0.011, p = 0.022) multivariate models. CONCLUSION These results suggest that in a population with a large period between injuries, the time between concussions may not be relevant to clinical recovery.
Collapse
Affiliation(s)
- Eric J Shumski
- UGA Concussion Research Laboratory, Department of Kinesiology, Ramsey Student Center, University of Georgia, 330 River Rd., Athens, GA, 30602, USA.
| | - Shawn R Eagle
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Anthony P Kontos
- Department of Orthopaedic Surgery, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jeffrey J Bazarian
- Department of Emergency Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY, USA
| | - Jaclyn B Caccese
- The Ohio State University Chronic Brain Injury Program, The Ohio State University College of Medicine, Columbus, OH, USA
| | - Sara P D Chrisman
- Division of Adolescent Medicine, University of Washington, Seattle, USA
| | - James R Clugston
- Department of Community Health and Family Medicine, University of Florida, Gainesville, FL, USA
| | - Thomas W McAllister
- Department of Psychiatry, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Steven P Broglio
- Michigan Concussion Center, University of Michigan, Ann Arbor, MI, USA
| | - Robert C Lynall
- UGA Concussion Research Laboratory, Department of Kinesiology, Ramsey Student Center, University of Georgia, 330 River Rd., Athens, GA, 30602, USA
| | - Julianne D Schmidt
- UGA Concussion Research Laboratory, Department of Kinesiology, Ramsey Student Center, University of Georgia, 330 River Rd., Athens, GA, 30602, USA
| |
Collapse
|
2
|
Howarth N, White AJ, Batten J, Pearce AJ, Miller MA. An exploratory study into the relationship between playing at home or away and concussion. Brain Inj 2023; 37:478-484. [PMID: 36843269 DOI: 10.1080/02699052.2023.2181400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2023]
Abstract
PRIMARY OBJECTIVE To investigate the effect of home and away game travel on risk of concussion across different levels of rugby union. RESEARCH DESIGN Exploration study across school, university, and professional rugby teams. METHODS AND PROCEDURES Retrospective analysis of concussion incidence and symptomology of surveillance data and prospective data collection for potential concussions via surveys. Data was collected from school rugby teams (n = 344 matches, over 2 years), a university rugby (n = 6 matches), and a professional rugby team (n = 64 matches, over two seasons). MAIN OUTCOMES AND RESULTS School level rugby had an increased prevalence of concussions in away matches (p = 0.02). Likewise, there was a significant increase (p < 0.05) in concussions at away matches in university rugby. In addition, the professional rug by team had significant differences in recovery times and symptoms with away fixtures, including longer recovery times (p < 0.01), more initial symptoms (p < 0.01), as well as greater and more severe symptoms at 48 hours (p < 0.05). CONCLUSIONS This research highlights an increased prevalence of concussion in school and university-aged rugby players away from home, as well as increased symptoms, symptom severity, and recovery times in professional rugby players.
Collapse
Affiliation(s)
- Nathan Howarth
- Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK.,Division of Health Sciences, Warwick Medical School, University of Warwick, Warwick, UK
| | - Adam J White
- Division of Health Sciences, Warwick Medical School, University of Warwick, Warwick, UK
| | - John Batten
- Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK.,School of Sport, Health and Community, University of Winchester, Winchester, UK
| | - Alan J Pearce
- College of Science, Health and Engineering, La Trobe University, Bundoora, Australia
| | - Michelle A Miller
- Faculty of Health and Life Science, Oxford Brookes University, Oxford, UK.,Division of Health Sciences, Warwick Medical School, University of Warwick, Warwick, UK
| |
Collapse
|
3
|
Pearce AJ, King D, Kidgell DJ, Frazer AK, Tommerdahl M, Suter CM. Assessment of Somatosensory and Motor Processing Time in Retired Athletes with a History of Repeated Head Trauma. J Funct Morphol Kinesiol 2022; 7:jfmk7040109. [PMID: 36547655 PMCID: PMC9782447 DOI: 10.3390/jfmk7040109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/27/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
Measurement of the adverse outcomes of repeated head trauma in athletes is often achieved using tests where the comparator is ‘accuracy’. While it is expected that ex-athletes would perform worse than controls, previous studies have shown inconsistent results. Here we have attempted to address these inconsistencies from a different perspective by quantifying not only accuracy, but also motor response times. Age-matched control subjects who have never experienced head trauma (n = 20; 41.8 ± 14.4 years) where compared to two cohorts of retired contact sport athletes with a history of head trauma/concussions; one with self-reported concerns (n = 36; 45.4 ± 12.6 years), and another with no ongoing concerns (n = 19; 43.1 ± 13.5 years). Participants performed cognitive (Cogstate) and somatosensory (Cortical Metrics) testing with accuracy and motor times recorded. Transcranial magnetic stimulation (TMS) investigated corticospinal conduction and excitability. Results showed that there was little difference between groups in accuracy scores. Conversely, motor times in all but one test revealed that ex-athletes with self-reported concerns were significantly slower compared to other groups (p ranges 0.031 to <0.001). TMS latency showed significantly increased time (p = 0.008) in the group with ongoing concerns. These findings suggest that incorporating motor times is more informative than considering accuracy scores alone.
Collapse
Affiliation(s)
- Alan J. Pearce
- College of Science, Health and Engineering, La Trobe University, Melbourne 3016, Australia
- Correspondence:
| | - Doug King
- Sports Performance Research Institute New Zealand (SPRINZ), Faculty of Health and Environmental Science, Auckland University of Technology, Auckland 1142, New Zealand
- Wolfson Research Institute for Health and Wellbeing, Department of Sport and Exercise Sciences, Durham University, Durham DH1 3LE, UK
| | - Dawson J. Kidgell
- Faculty of Medicine Nursing and Health Science, Monash University, Melbourne 3800, Australia
| | - Ashlyn K. Frazer
- Faculty of Medicine Nursing and Health Science, Monash University, Melbourne 3800, Australia
| | - Mark Tommerdahl
- Cortical Metrics, Carrboro, NC 27510, USA
- Department of Biomedical Engineering, University of North Carolina, Chapel Hill, NC 27510, USA
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Sydney 2050, Australia
- Brain and Mind Centre, University Sydney, Camperdown 2050, Australia
| |
Collapse
|
4
|
Nowinski CJ, Bureau SC, Buckland ME, Curtis MA, Daneshvar DH, Faull RLM, Grinberg LT, Hill-Yardin EL, Murray HC, Pearce AJ, Suter CM, White AJ, Finkel AM, Cantu RC. Applying the Bradford Hill Criteria for Causation to Repetitive Head Impacts and Chronic Traumatic Encephalopathy. Front Neurol 2022; 13:938163. [PMID: 35937061 PMCID: PMC9355594 DOI: 10.3389/fneur.2022.938163] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a neurodegenerative disease associated with a history of repetitive head impacts (RHI). CTE was described in boxers as early as the 1920s and by the 1950s it was widely accepted that hits to the head caused some boxers to become "punch drunk." However, the recent discovery of CTE in American and Australian-rules football, soccer, rugby, ice hockey, and other sports has resulted in renewed debate on whether the relationship between RHI and CTE is causal. Identifying the strength of the evidential relationship between CTE and RHI has implications for public health and medico-legal issues. From a public health perspective, environmentally caused diseases can be mitigated or prevented. Medico-legally, millions of children are exposed to RHI through sports participation; this demographic is too young to legally consent to any potential long-term risks associated with this exposure. To better understand the strength of evidence underlying the possible causal relationship between RHI and CTE, we examined the medical literature through the Bradford Hill criteria for causation. The Bradford Hill criteria, first proposed in 1965 by Sir Austin Bradford Hill, provide a framework to determine if one can justifiably move from an observed association to a verdict of causation. The Bradford Hill criteria include nine viewpoints by which to evaluate human epidemiologic evidence to determine if causation can be deduced: strength, consistency, specificity, temporality, biological gradient, plausibility, coherence, experiment, and analogy. We explored the question of causation by evaluating studies on CTE as it relates to RHI exposure. Through this lens, we found convincing evidence of a causal relationship between RHI and CTE, as well as an absence of evidence-based alternative explanations. By organizing the CTE literature through this framework, we hope to advance the global conversation on CTE mitigation efforts.
Collapse
Affiliation(s)
- Christopher J. Nowinski
- Concussion Legacy Foundation, Boston, MA, United States,*Correspondence: Christopher J. Nowinski
| | | | - Michael E. Buckland
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Maurice A. Curtis
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Daniel H. Daneshvar
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Massachusetts General Hospital, Boston, MA, United States,Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Boston, MA, United States
| | - Richard L. M. Faull
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Lea T. Grinberg
- Memory and Aging Center, Department of Neurology, University of California, San Francisco, San Francisco, CA, United States,Global Brain Health Institute, University of California, San Francisco, San Francisco, CA, United States,Department of Pathology, University of Sao Paulo Medical School, São Paulo, Brazil,Department of Pathology, University of California, San Francisco, San Francisco, CA, United States
| | - Elisa L. Hill-Yardin
- School of Health and Biomedical Sciences, STEM College, RMIT University, Bundoora, VIC, Australia,Department of Anatomy & Physiology, The University of Melbourne, Parkville, VIC, Australia
| | - Helen C. Murray
- Department of Anatomy and Medical Imaging and Centre for Brain Research, Faculty of Medical and Health Science, University of Auckland, Auckland, New Zealand
| | - Alan J. Pearce
- College of Science, Health, and Engineering, La Trobe University, Melbourne, VIC, Australia
| | - Catherine M. Suter
- Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, NSW, Australia,School of Medical Sciences, University of Sydney, Camperdown, NSW, Australia
| | - Adam J. White
- Department of Sport, Health Science, and Social Work, Oxford Brookes University, Oxford, United Kingdom,Concussion Legacy Foundation UK, Cheltenham, United Kingdom
| | - Adam M. Finkel
- Department of Environmental Health Sciences, University of Michigan School of Public Health, Ann Arbor, MI, United States
| | - Robert C. Cantu
- Concussion Legacy Foundation, Boston, MA, United States,Department of Neurology, Boston University School of Medicine, Boston, MA, United States,Department of Neurosurgery, Emerson Hospital, Concord, MA, United States
| |
Collapse
|
5
|
Tommerdahl M, Favarov O, Wagner CD, Walilko TJ, Zai L, Bentley TB. Evaluation of a Field-Ready Neurofunctional Assessment Tool for Use in a Military Environment. Mil Med 2021; 187:e1363-e1369. [PMID: 33929032 DOI: 10.1093/milmed/usab160] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION The Office of Naval Research sponsored the Blast Load Assessment Sense and Test (BLAST) program to develop a rapid, in-field solution that could be used by team leaders, commanders, and medical personnel to provide a standardized approach to operationally relevant monitoring and analysis of service members exposed to single or repeated low-level blast. A critical piece of the BLAST team's solution was the development of the Brain Gauge technology which includes a cognitive assessment device that measures neurofunctional changes by testing sensory perceptions and a suite of mathematical algorithms that analyze the results of the test. The most recent versions of the technology are easily portable; the device is in the size and shape of a computer mouse. Tests can be administered in a matter of minutes and do not require oversight by a clinician, making Brain Gauge an excellent choice for field use. This paper describes the theoretical underpinnings and performance of a fieldable Brain Gauge technology for use with military populations. MATERIALS AND METHODS The methods used by the Brain Gauge have been documented in over 80 peer-reviewed publications. These papers are reviewed, and the utility of the Brain Gauge is described in terms of those publications. RESULTS The Brain Gauge has been demonstrated to be an effective tool for assessing blast-induced neurotrauma and tracking its recovery. Additionally, the method parallels neurophysiological findings of animal models which provide insight into the sensitivity of specific metrics to mechanisms of information processing. CONCLUSIONS The overall objective of the work was to provide an efficient tool, or tools, that can be effectively used for (1) determining stand-down criteria when critical levels of blast exposure have been reached and (2) tracking the brain health history until return-to-duty status is achieved. Neurofunctional outcome measures will provide the scientific link between blast sensors and the impact of blast on biological health. This calibration process is strengthened with outcome measures that have a biological basis that are paralleled in animal models. The integrative approach that utilizes the Brain Gauge technology will provide a significant advance for assessing the impact of blast exposure and support rapid, science-based decision-making that will ensure mission success and promote the protection of brain health in service members.
Collapse
Affiliation(s)
- Mark Tommerdahl
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Cortical Metrics, LLC, Carrboro, NC 27599, USA
| | - Oleg Favarov
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, Cortical Metrics, LLC, Carrboro, NC 27599, USA
| | - Christina D Wagner
- Applied Research Associates, Inc Arlington Division, Arlington, VA 22203, USA
| | - Timothy J Walilko
- Applied Research Associates, Inc Arlington Division, Arlington, VA 22203, USA
| | | | | |
Collapse
|