1
|
Valerio JE, de Jesús Aguirre Vera G, Zumaeta J, Rea NS, Fernandez Gomez MP, Mantilla-Farfan P, Valente L, Alvarez-Pinzon AM. Comparative Analysis of 5-ALA and Fluorescent Techniques in High-Grade Glioma Treatment. Biomedicines 2025; 13:1161. [PMID: 40426988 PMCID: PMC12108851 DOI: 10.3390/biomedicines13051161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2025] [Revised: 04/26/2025] [Accepted: 05/06/2025] [Indexed: 05/29/2025] Open
Abstract
Background: 5-Aminolevulinic acid (5-ALA) serves as a precursor in the heme biosynthesis pathway, resulting in the selective accumulation of protoporphyrin IX (PpIX) within glioma cells. This property facilitates fluorescence-guided resection (FGR) in high-grade gliomas (HGGs), enhancing surgical precision and oncological results. Nonetheless, its clinical implementation is restricted by factors such as accessibility, cost, and technical limitations. Methods: A systematic review of PubMed literature (2019-2024) was conducted to assess the efficacy of 5-ALA in HGG surgery compared to conventional white light microscopy. Studies focusing on non-neurosurgical applications, pediatric populations, and non-HGG indications were excluded. Results: Nineteen articles met the criteria. Recent studies indicate that 5-ALA-guided resection significantly enhances gross total resection (GTR) rates compared to white light surgery (75.4% vs. 54.3%, p < 0.001). Patients receiving 5-ALA-assisted resection exhibit enhanced progression-free survival (PFS) at 6 months (median 8.1 months compared to 5.4 months, p = 0.002) and overall survival (OS) (median 15.2 months versus 12.3 months, p = 0.008). The necessity for specialized neurosurgical microscopes equipped with blue light filters restricts accessibility, especially in low-resource environments. Recent advancements in fluorescence-enhancing technologies, particularly loupe-based systems, have demonstrated increases in fluorescence intensity by up to tenfold through direct emission. Sodium fluorescein, originally designed for ophthalmological use, has been adapted for enhancing contrast in intracranial tumors; however, its non-specific binding to serum albumin restricts its accuracy in glioma resection. Conclusions: Recent publications demonstrate that 5-ALA fluorescence-guided surgery significantly improves gross total resection rates and survival outcomes in patients with high-grade gliomas. Although it offers clinical advantages, cost and equipment constraints continue to pose substantial obstacles to broad implementation. Additional research is required to enhance fluorescence-guided techniques and increase accessibility in resource-constrained environments.
Collapse
Affiliation(s)
- José E. Valerio
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
- Department of Neurological Surgery, Palmetto General Hospital, Miami, FL 33016, USA
- Neurosurgery Oncology Center of Excellence, Department of Neurosurgery, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
- GW School of Business, George Washington University, Washington, DC 20052, USA
| | - Guillermo de Jesús Aguirre Vera
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
- Health Sciences Program, Tecnológico de Monterrey School of Medicine, Monterrey 64710, Mexico
| | - Jorge Zumaeta
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
| | - Noe Santiago Rea
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
| | | | - Penelope Mantilla-Farfan
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
- Neurosurgery Oncology Center of Excellence, Department of Neurosurgery, Miami Neuroscience Center at Larkin, South Miami, FL 33143, USA
| | - Laurel Valente
- Premed Program, Northeastern University, Boston, MA 02115, USA;
| | - Andrés M. Alvarez-Pinzon
- Neurosurgery Department, Latinoamerica Valerio Foundation, Weston, FL, 33331, USA; (J.E.V.)
- Clinical Trials and Translational Research Division, MD Anderson Cancer Center at Baptist (BMDA), Jacksonville, FL 32207, USA
- The Institute of Neuroscience of Castilla y León (INCYL), Cancer Neuroscience, University of Salamanca (USAL), 37007 Salamanca, Spain
| |
Collapse
|
2
|
Tang J, Karbhari N, Campian JL. Therapeutic Targets in Glioblastoma: Molecular Pathways, Emerging Strategies, and Future Directions. Cells 2025; 14:494. [PMID: 40214448 PMCID: PMC11988183 DOI: 10.3390/cells14070494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/10/2025] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Glioblastoma (GBM) is the most aggressive primary brain tumor in adults, characterized by rapid growth, invasive infiltration into surrounding brain tissue, and resistance to conventional therapies. Despite advancements in surgery, radiotherapy, and chemotherapy, median survival remains approximately 15 months, underscoring the urgent need for innovative treatments. Key considerations informing treatment development include oncogenic genetic and epigenetic alterations that may dually serve as therapeutic targets and facilitate treatment resistance. Various immunotherapeutic strategies have been explored and continue to be refined for their anti-tumor potential. Technical aspects of drug delivery and blood-brain barrier (BBB) penetration have been addressed through novel vehicles and techniques including the incorporation of nanotechnology. Molecular profiling has emerged as an important tool to individualize treatment where applicable, and to identify patient populations with the most drug sensitivity. The goal of this review is to describe the spectrum of potential GBM therapeutic targets, and to provide an overview of key trial outcomes. Altogether, the progress of clinical and preclinical work must be critically evaluated in order to develop therapies for GBM with the strongest therapeutic efficacy.
Collapse
Affiliation(s)
- Justin Tang
- Department of Biomedical Science, University of Guelph, Guelph, ON N1G 2W1, Canada
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Nishika Karbhari
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| | - Jian L. Campian
- Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA; (N.K.); (J.L.C.)
| |
Collapse
|
3
|
Tripathy NS, Sahoo L, Paikray S, Dilnawaz F. Emerging nanoplatforms towards microenvironment-responsive glioma therapy. Med Oncol 2025; 42:46. [PMID: 39812745 DOI: 10.1007/s12032-024-02596-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/28/2024] [Indexed: 01/16/2025]
Abstract
Gliomas are aggressive intracranial tumors of the central nervous system with a poor prognosis, high risk of recurrence, and low survival rates. Radiation, surgery, and chemotherapy are traditional cancer therapies. It is very challenging to accurately image and differentiate the malignancy grade of gliomas due to their heterogeneous and infiltrating nature and the obstruction of the blood-brain barrier. Imaging plays a crucial role in gliomas which significantly plays an important role in the accuracy of the diagnosis followed by any subsequent surgery or therapy. Other diagnostic methods (such as biopsies or surgery) are often very invasive. Preoperative imaging and intraoperative image-guided surgery perform the most significant safe resection. In recent years, the rapid growth of nanotechnology has opened up new avenues for glioma diagnosis and treatment. For better therapeutic efficacy, developing microenvironment-responsive nanoplatforms, including novel nanotherapeutic platforms of sonodynamic therapy, photodynamic therapy, and photothermal treatments, are employed for improved patient survival and better clinical control outcome. In this review recent advancement of multifunctional nanoplatforms leading toward treatment of glioma is discussed.
Collapse
Affiliation(s)
- Nigam Sekhar Tripathy
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Liza Sahoo
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Safal Paikray
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India
| | - Fahima Dilnawaz
- School of Biotechnology, Centurion University of Technology and Management, Jatni, Bhubaneswar, Odisha, 752050, India.
| |
Collapse
|
4
|
Scarpace L, Archer N, Belusic M, Buonanno I, Eng N, Estevez A, Garcia J, Schaber A. Enhancing the Use of 5-Aminolevulinic Acid in Fluorescence-guided Surgery for High-grade Glioma: An Expert Nurse Practitioner Opinion-based Approach. J Perianesth Nurs 2025:S1089-9472(24)00454-4. [PMID: 39808090 DOI: 10.1016/j.jopan.2024.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE This report details the recommendations of a Nursing Best Practice Working Group, which aims to advance best practice in the use of 5-aminolevulinic acid (5-ALA) fluorescence-guided surgery (FGS) in patients with high-grade glioma (HGG). DESIGN Quality Improvement Project. METHODS These recommendations were gathered during a meeting of a Nursing Best Practice Working Group comprising expert nurses and practice administrators from five US centers of excellence in the management of HGG. Ahead of the meeting, a survey was taken to evaluate the views of each expert and surgical teams, patients and institutions on current benefits, challenges and practices associated with the use of 5-ALA FGS in HGG. The Nursing Best Practice Working Group then met to share their experiences, explore where consensus exists, and identify opportunities for enhanced patient management. FINDINGS The advisors made recommendations to support improvements across a range of areas associated with multidisciplinary team delivery of 5-ALA FGS. These included specific issues surrounding the administration of 5-ALA, photosensitivity and low-light precautions, and key aspects relating to protocol development, content features, format and accessibility, and updates and education of both the multidisciplinary team and patients. Guidance was also gathered on a flowchart to support the practical delivery of patient care and detail roles, responsibilities, and timings. CONCLUSIONS This guidance provides direction for the development of practical, evidence-based protocols and educational approaches for multidisciplinary teams and patients. Such approaches can improve best practice in 5-ALA FGS in all institutes, irrespective of size, and when developed collaboratively provide the means to share best practice across institutes and reach consensus on patient care.
Collapse
Affiliation(s)
- Lisa Scarpace
- Henry Ford Health, Department of Neurosurgery, Hermelin Brain Tumor Center, Detroit, MI.
| | | | - Michelle Belusic
- BNI Advanced Pratice, St Joseph's Hospital and Medical Center, Phoenix, AZ
| | - Isabella Buonanno
- Department of Surgery - Pre-operative Holding and Post-operative Recovery (PACU), Moffitt Cancer Center, Tampa, FL
| | - Nini Eng
- Department of Neurosurgery, Moffitt Cancer Center, Tampa, FL
| | - Alina Estevez
- Department of Surgery - Pre-operative Holding, Moffitt Cancer Center, Tampa, FL
| | - Jaclyn Garcia
- Dignity Health/Barrow Neurological Institute, Phoenix, AZ
| | | |
Collapse
|
5
|
Pekov SI, Bormotov DS, Bocharova SI, Sorokin AA, Derkach MM, Popov IA. Mass spectrometry for neurosurgery: Intraoperative support in decision-making. MASS SPECTROMETRY REVIEWS 2025; 44:62-73. [PMID: 38571445 DOI: 10.1002/mas.21883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/29/2024] [Accepted: 03/23/2024] [Indexed: 04/05/2024]
Abstract
Ambient ionization mass spectrometry was proved to be a powerful tool for oncological surgery. Still, it remains a translational technique on the way from laboratory to clinic. Brain surgery is the most sensitive to resection accuracy field since the balance between completeness of resection and minimization of nerve fiber damage determines patient outcome and quality of life. In this review, we summarize efforts made to develop various intraoperative support techniques for oncological neurosurgery and discuss difficulties arising on the way to clinical implementation of mass spectrometry-guided brain surgery.
Collapse
Affiliation(s)
- Stanislav I Pekov
- Skolkovo Institute of Science and Technology, Moscow, Russian Federation
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| | - Denis S Bormotov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | | | - Anatoly A Sorokin
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Maria M Derkach
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
| | - Igor A Popov
- Moscow Institute of Physics and Technology, Dolgoprudny, Russian Federation
- Siberian State Medical University, Tomsk, Russian Federation
| |
Collapse
|
6
|
Wise PA, Studier-Fischer A, Hackert T, Nickel F. [Status Quo of Surgical Navigation]. Zentralbl Chir 2024; 149:522-528. [PMID: 38056501 DOI: 10.1055/a-2211-4898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Surgical navigation, also referred to as computer-assisted or image-guided surgery, is a technique that employs a variety of methods - such as 3D imaging, tracking systems, specialised software, and robotics to support surgeons during surgical interventions. These emerging technologies aim not only to enhance the accuracy and precision of surgical procedures, but also to enable less invasive approaches, with the objective of reducing complications and improving operative outcomes for patients. By harnessing the integration of emerging digital technologies, surgical navigation holds the promise of assisting complex procedures across various medical disciplines. In recent years, the field of surgical navigation has witnessed significant advances. Abdominal surgical navigation, particularly endoscopy, laparoscopic, and robot-assisted surgery, is currently undergoing a phase of rapid evolution. Emphases include image-guided navigation, instrument tracking, and the potential integration of augmented and mixed reality (AR, MR). This article will comprehensively delve into the latest developments in surgical navigation, spanning state-of-the-art intraoperative technologies like hyperspectral and fluorescent imaging, to the integration of preoperative radiological imaging within the intraoperative setting.
Collapse
Affiliation(s)
- Philipp Anthony Wise
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Alexander Studier-Fischer
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| | - Thilo Hackert
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
| | - Felix Nickel
- Klinik für Allgemein-, Viszeral- und Thoraxchirurgie, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Deutschland
- Klinik für Allgemein-, Viszeral- und Transplantationschirurgie, Universitätsklinikum Heidelberg, Heidelberg, Deutschland
| |
Collapse
|
7
|
Mansour HM, Shah S, Aguilar TM, Abdul-Muqsith M, Gonzales-Portillo GS, Mehta AI. Enhancing Glioblastoma Resection with NIR Fluorescence Imaging: A Systematic Review. Cancers (Basel) 2024; 16:3984. [PMID: 39682171 DOI: 10.3390/cancers16233984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/21/2024] [Accepted: 11/26/2024] [Indexed: 12/18/2024] Open
Abstract
Glioblastoma (GB) is among the most aggressive and difficult-to-treat brain tumors, with a median survival of only 12-15 months despite maximal treatments, including surgery, radiotherapy, and chemotherapy. Extensive surgical resection improves survival in glioblastoma patients; however, achieving complete resection is often hindered by limitations in neurosurgical guidance technologies for accurate tumor margin detection. Recent advancements in fluorescence-guided surgery (FGS) and imaging techniques have significantly enhanced the precision and extent of glioblastoma resections. This study evaluates the impact of NIR fluorescence imaging on tumor visualization, surgical precision, cost-effectiveness, and patient survival. A systematic review of PubMed, Scopus, Google Scholar, and Embase was conducted to identify studies on the role of NIR fluorescence in glioblastoma surgery. A total of 135 studies were included, comprising 10 reviews, three clinical studies, 10 randomized controlled trials (RCTs), 10 preclinical studies, and four case reports, all focused on NIR fluorescence imaging in glioblastoma surgery. The findings indicate that NIR fluorescence imaging significantly improves tumor visualization, resulting in an 18-22% increase in gross total resection (GTR) rates in clinical studies. NIR fluorescence provides continuous real-time feedback, minimizing repeat imaging, reducing operational costs, and increasing GTR. These improvements contribute to better patient outcomes, including extended progression-free survival, improved overall survival, and reduced postoperative neurological deficits. This review underscores the potential of NIR imaging to establish a new standard for intraoperative glioblastoma management.
Collapse
Affiliation(s)
- Hadeel M Mansour
- Department of Neurosurgery, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Siddharth Shah
- Department of Neurosurgery, University of Florida, Gainesville, FL 32608, USA
| | - Tania M Aguilar
- Department of Neurosurgery, University of Illinois Chicago, Chicago, IL 60612, USA
| | | | | | - Ankit I Mehta
- Department of Neurosurgery, University of Illinois Chicago, Chicago, IL 60612, USA
| |
Collapse
|
8
|
Efendiev K, Alekseeva P, Skobeltsin A, Shiryaev A, Pisareva T, Akhilgova F, Mamedova A, Reshetov I, Loschenov V. Combined use of 5-ALA-induced protoporphyrin IX and chlorin e6 for fluorescence diagnostics and photodynamic therapy of skin tumors. Lasers Med Sci 2024; 39:266. [PMID: 39477891 DOI: 10.1007/s10103-024-04219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/24/2024] [Indexed: 02/01/2025]
Abstract
Different types of photosensitizers (PSs) have different dynamics and intensities of accumulation, depending on the type of tumor or different areas within the same tumor. This determines the effectiveness of fluorescence diagnostics and photodynamic therapy (PDT). This paper studies the processes of 5-aminolevulinic acid (5-ALA)-induced protoporphyrin IX (PpIX) and chlorin e6 (Ce6) accumulation in the central and border zones of a tumor after combined administration of two PSs into the patient's body. Fluorescence diagnostic methods have shown that sublingual administration of 5-ALA leads to the more intense accumulation of PpIX in a tumor compared to oral administration. Differences have been identified in the dynamics of 5-ALA-induced PpIX and Ce6 accumulation in the central and border zones of the tumor, as well as normal tissues. Ce6 accumulates mainly in the central zone of the tumor while PpIX accumulates in the border zone of the tumor. All patients with combined PDT experienced complete therapeutic pathomorphosis and relapse-free observation.
Collapse
Affiliation(s)
- Kanamat Efendiev
- Prokhorov General Physics Institute, Moscow, Russian Federation.
- Moscow Engineering Physics Institute, Moscow, Russian Federation.
| | | | | | | | | | | | | | | | - Victor Loschenov
- Prokhorov General Physics Institute, Moscow, Russian Federation
- Moscow Engineering Physics Institute, Moscow, Russian Federation
| |
Collapse
|
9
|
Schusteff RA, Slavin KV, Roth S. 5-Aminolevulonic Acid, a New Tumor Contrast Agent: Anesthesia Considerations in Patients Undergoing Craniotomy. J Neurosurg Anesthesiol 2024; 36:294-302. [DOI: 10.1097/ana.0000000000000941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 09/26/2023] [Indexed: 01/03/2025]
Abstract
5-aminolevulinic acid (ALA) is used during resection of malignant gliomas due to its fluorescence properties and has been shown to render resection more effective than resection without ALA guidance. The aim of this narrative review is to categorize the adverse effects of ALA relevant to anesthesia providers. Intraoperative hypotension, porphyria-related side effects, alterations in blood chemistry and coagulation, photosensitivity, and increased levels of liver enzymes have all been reported. We also sought to examine the impact of dosage and timing of oral administration on efficacy of ALA and on these side effects. Twenty-seven studies met our inclusion criteria of patients undergoing craniotomy for glioma resection using ALA and occurrence of at least one adverse effect. The results of these studies showed that there was heterogeneity in levels of intraoperative hypotension, with some reporting an incidence as high as 32%, and that hypotension was associated with antihypertensive medication use. Clinical symptoms of porphyria, such as gastrointestinal disturbance, were less commonly reported. Photosensitivity of the skin after 5-ALA administration was well documented particularly in patients exposed to light; however, adverse effects on the eye were not adequately studied. Elevation in liver enzymes was a common finding postoperatively but was often clinically insignificant. The timing of oral administration presents practical issues for the preoperative management of patients undergoing resection with ALA. We provide guidance for perioperative management of patients who receive ALA for brain tumor resection. Controlled studies with adequate statistical power are required to further understand and prevent the adverse effects of ALA.
Collapse
Affiliation(s)
- Rachel A. Schusteff
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| | - Konstantin V. Slavin
- Department of Neurosurgery, University of Illinois at Chicago College of Medicine, and Neurology Section, Jesse Brown Veterans Administration Medical Center, Chicago, IL
| | - Steven Roth
- Department of Anesthesiology, University of Illinois at Chicago College of Medicine
| |
Collapse
|
10
|
Xu H, Ye Z, Gao X, Dai Y, Luo Y, Han Z, Gu Y. Repurposing GnRH-A as a Near-Infrared Fluorescent Probe for Diagnosis and Surgical Navigation of Breast Cancer Tumors and Metastases. J Med Chem 2024; 67:12386-12398. [PMID: 38995618 DOI: 10.1021/acs.jmedchem.4c01142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2024]
Abstract
Breast cancer, globally the most common cancer in women, presents significant challenges in treatment. Breast-conserving surgery (BCS), a less traumatic and painful alternative to radical mastectomy, not only preserves the breast's appearance but also supports postsurgical functional recovery. However, accurately identifying tumors, precisely delineating margins, and thoroughly removing metastases remain complex surgical challenges, exacerbated by the limitations of current imaging techniques, including poor tumor uptake and low signal contrast. Addressing these challenges, our study developed a series of GnRHR-targeted probes (YQGN-n) for fluorescence imaging and surgical navigation of breast cancer through a drug repositioning strategy. Notably, YQGN-7, with its high cellular affinity (Kd of 217.8 nM), demonstrates exceptional selectivity and specificity for breast cancer tumors, surpassing traditional imaging agents like ICG in tumor uptake and pharmacokinetic properties. Furthermore, YQGN-7's effectiveness in surgical navigation, both for primary breast tumors and metastases, highlights its potential as a revolutionary tool in BCS.
Collapse
Affiliation(s)
- Haoran Xu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhuoyi Ye
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Xin Gao
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yue Dai
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yang Luo
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Zhihao Han
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicine, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 24 Tongjia Lane, Nanjing 210009, China
| |
Collapse
|
11
|
Filip P, Lerner DK, Kominsky E, Schupper A, Liu K, Khan NM, Roof S, Hadjipanayis C, Genden E, Iloreta AMC. 5-Aminolevulinic Acid Fluorescence-Guided Surgery in Head and Neck Squamous Cell Carcinoma. Laryngoscope 2024; 134:741-748. [PMID: 37540051 DOI: 10.1002/lary.30910] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 06/30/2023] [Accepted: 07/04/2023] [Indexed: 08/05/2023]
Abstract
OBJECTIVES To determine the utility of 5-aminolevulinic acid (5-ALA) fluorescence for resection of head and neck carcinoma. METHODS In this prospective pilot trial, 5-ALA was administered as an oral suspension 3-5 h prior to induction of anesthesia for resection of head and neck squamous cell carcinoma (HNSCC). Following resection, 405 nm blue light was applied, and fluorescence of the tumor as well as the surgical bed was recorded. Specimen fluorescence intensity was graded categorically as none (score = 0), mild (1), moderate (2), or robust (3) by the operating surgeon intraoperatively and corroborated with final pathologic diagnosis. RESULTS Seven patients underwent resection with 5-ALA. Five (83%) were male with an age range of 33-82 years (mean = 60). Sites included nasal cavity (n = 3), oral cavity (n = 3), and the larynx (n = 1). All specimens demonstrated robust fluorescence when 5-ALA was administered 3-5 h preoperatively. 5-ALA fluorescence predicted the presence of perineural invasion, a positive margin, and metastatic lymphadenopathy. Two patients had acute photosensitivity reactions, and one patient had a temporary elevation of hepatic enzymes. CONCLUSIONS 5-ALA induces robust intraoperative fluorescence of HNSCC, capable of demonstrating a positive margin, perineural invasion, and metastatic nodal disease. Although no conclusions are there about the safety of this drug in the head and neck cancer population, our study parallels the extensive safety data in the neurosurgical literature. Future applications may include intraoperative assessment of margin status, diagnostic accuracy, and impacts on survival. LEVEL OF EVIDENCE 4 Laryngoscope, 134:741-748, 2024.
Collapse
Affiliation(s)
- Peter Filip
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - David K Lerner
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Evan Kominsky
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Alexander Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Katherine Liu
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Nazir Mohemmed Khan
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Scott Roof
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | | | - Eric Genden
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| | - Alfred M C Iloreta
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York City, New York, U.S.A
| |
Collapse
|
12
|
Chang CY, Chen CC. 5-aminolevulinic enhanced brain lesions mimic glioblastoma: A case report and literature review. Medicine (Baltimore) 2024; 103:e34518. [PMID: 38181251 PMCID: PMC10766299 DOI: 10.1097/md.0000000000034518] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/06/2023] [Indexed: 01/07/2024] Open
Abstract
RATIONALE Glioblastoma multiforme (GBM) is a highly malignant primary brain tumor for which maximal tumor resection plays an important role in the treatment strategy. 5-aminolevulinic (5-ALA) is a powerful tool in fluorescence-guided surgery for GBM. However, 5-ALA- enhancing lesion can also be observed with different etiologies. PATIENTS CONCERNS Three cases of 5-ALA-enhancing lesions with etiologies different from glioma. DIAGNOSES The final diagnosis was abscess in 1 patient and diffuse large B-cell in the other 2 patients. INTERVENTIONS Three patients received 5-aminolevulinic acid-guided tumor resection under microscope with intraoperative neuromonitoring. OUTCOMES All of our patients showed improvement or stable neurological function outcomes. The final pathology revealed etiologies different from GBM. LESSONS The 5-aminolevulinic acid fluorescence-guided surgery has demonstrated its maximal extent of resection and safety profile in patients with high-grade glioma. Non-glioma etiologies may also mimic GBM in 5-ALA-guided surgeries. Therefore, patient history taking and consideration of brain images are necessary for the interpretation of 5-ALA-enhanced lesions.
Collapse
Affiliation(s)
- Chao-Yuan Chang
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
| | - Chun-Chung Chen
- Neurosurgical Department, China Medical University Hospital, Taichung, Taiwan
- Department of Surgery, College of Medicine, China Medical University, Taichung, Taiwan
| |
Collapse
|
13
|
Pevná V, Huntošová V. Imaging of heterogeneity in 3D spheroids of U87MG glioblastoma cells and its implications for photodynamic therapy. Photodiagnosis Photodyn Ther 2023; 44:103821. [PMID: 37778715 DOI: 10.1016/j.pdpdt.2023.103821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND In recent years, pharmacology and toxicology have emphasised the intention to move from in vivo models to simplified 3D objects represented by spheroidal models of cancer. Mitochondria are one of the subcellular organelles responsible for cell metabolism and are often a lucrative target for cancer treatment including photodynamic therapy (PDT). METHODS Hanging droplet-grown glioblastoma cells were forced to form spheroids with heterogeneous environments that were characterised by fluorescence microscopy and flow cytometry using fluorescent probes sensitive to oxidative stress and apoptosis. PDT was induced with hypericin at 590 nm. RESULTS It was found that the metabolic activity of the cells in the periphery and core of the spheroid was different. Higher oxidative stress and induction of caspase-3 were observed in the peripheral layers after PDT. These parts were more destabilised and showed higher expression of LC3B, an autophagic marker. However, the response of the whole system to the treatment was controlled by the cells in the core of the spheroids, which were hardly affected by the treatment. It has been shown that the depth of penetration of hypericin into this system is an important limiting step for PDT and the induction of autophagy and apoptosis. CONCLUSIONS In this work, we have described the fluorescence imaging of vital mitochondria, caspase-3 production and immunostaining of autophagic LC3B in cells from glioblastoma spheroids before and after PDT. Overall, we can conclude that this model represents an in vitro and in vivo applicable alternative for the study of PDT in solid microtumours.
Collapse
Affiliation(s)
- Viktória Pevná
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia
| | - Veronika Huntošová
- Center for Interdisciplinary Biosciences, Technology and Innovation Park, P.J. Šafárik University in Košice, Jesenná 5, Košice SK-041 54, Slovakia; Institute of Animal Biochemistry and Genetics, Centre of Biosciences, Slovak Academy of Sciences, Dubravska cesta 9, Bratislava 840 05, Slovakia.
| |
Collapse
|
14
|
Mondal A, Kang J, Kim D. Recent Progress in Fluorescent Probes for Real-Time Monitoring of Glioblastoma. ACS APPLIED BIO MATERIALS 2023; 6:3484-3503. [PMID: 36917648 DOI: 10.1021/acsabm.3c00052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
Treating glioblastoma (GBM) by resecting to a large extent can prolong a patient's survival by controlling the tumor cells, but excessive resection may produce postoperative complications by perturbing the brain structures. Therefore, various imaging procedures have been employed to successfully diagnose and resect with utmost caution and to protect vital structural or functional features. Fluorescence tagging is generally used as an intraoperative imaging technique in glioma cells in collaboration with other surgical tools such as MRI and navigation methods. However, the existing fluorescent probes may have several limitations, including poor selectivity, less photostability, false signals, and intraoperative re-administration when used in clinical and preclinical studies for glioma surgery. The involvement of smart fluorogenic materials, specifically fluorescent dyes, and biomarker-amended cell-penetrable fluorescent probes have noteworthy advantages for precise glioma imaging. This review outlines the contemporary advancements of fluorescent probes for imaging glioma cells along with their challenges and visions, with the anticipation to develop next-generation smart glioblastoma detection modalities.
Collapse
Affiliation(s)
- Amita Mondal
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Jisoo Kang
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
| | - Dokyoung Kim
- Department of Anatomy and Neurobiology, College of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, South Korea
- Center for Converging Humanities, Kyung Hee University, Seoul 02447, Republic of Korea
- Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, Core Research Institute (CRI), Kyung Hee University, Seoul 02447, Republic of Korea
- Materials Research Science and Engineering Center, University of California at San Diego, 9500 Gilman Drive La Jolla, California 92093, United States
- Center for Brain Technology, Brain Science Institute, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea
- KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
15
|
Shah S, Ivey N, Matur A, Andaluz N. Intraoperative Fluorophores: An Update on 5-Aminolevulinic Acid and Sodium Fluorescein in Resection of Tumors of the Central Nervous System and Metastatic Lesions-A Systematic Review and Meta-Analysis. Tomography 2023; 9:1551-1567. [PMID: 37736977 PMCID: PMC10514891 DOI: 10.3390/tomography9050124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/11/2023] [Accepted: 08/17/2023] [Indexed: 09/23/2023] Open
Abstract
INTRODUCTION Recent advances in tumor visualization have improved the extent of resection (EOR) of primary and secondary tumors of the central nervous system, while limiting the morbidity and mortality of the surgery. One area of recent interest has been the use of intraoperative fluorophores for tumor visualization such as 5-aminolevulinic acid (5-ala) and sodium fluorescein. We performed a systematic review and meta-analysis on the utility of fluorophore administration and EOR with each fluorophore to update the current literature. METHODS We conducted a systematic review and meta-analysis on the use of intraoperative 5-ala or fluorescein between 2021 and 2023 using the PubMed, SCOPUS, and WOS databases. The initial search yielded 8688 results. After inclusion and exclusion criteria were met, 44 studies remained for review. A meta-analysis was performed to compare the EOR between studies for each fluorophore and to compare the presence of intraoperative fluorescence by tumor type. Odds ratios (OR) were calculated for gross total resection (GTR), and two-way ANOVA tests were performed to compare rates of intraoperative fluorescence by fluorophore and tumor type. RESULTS In all groups except low-grade glioma, fluorescence was present after 5-ala administration; fluorescence was present for all groups after fluorescein administration. Two-way ANOVA analysis for both fluorophores demonstrated no statistically significant difference in presence of fluorescence between type of tumor resected. Meta-analysis of EOR did show a higher, but not significant, rate of GTR in the 5-ala group compared to controls (OR = 1.29, 95% CI = 0.49; 3.37). In the fluorescein group, there were statistically significant higher odds of GTR compared to the control group (OR = 2.10, 95% CI = 1.43; 3.10, I2 = 0%). CONCLUSIONS Both 5-ala and sodium fluorescein demonstrated intraoperative fluorescence among various tumor types in both cranial and spinal tumors, as well as efficacy in improving EOR. Both fluorophores merit further investigation for use in surgery of CNS tumors.
Collapse
Affiliation(s)
- Sanjit Shah
- University of Cincinnati Medical Center, Cincinnati, OH 45209, USA
| | | | | | | |
Collapse
|
16
|
Rehman S, Brennan PM, Lilienkampf A, Bradley M. Approved and investigational fluorescent optical imaging agents for disease detection in surgery. Int J Surg 2023; 109:2378-2387. [PMID: 37195806 PMCID: PMC10442106 DOI: 10.1097/js9.0000000000000459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Accepted: 05/01/2023] [Indexed: 05/18/2023]
Abstract
Fluorescent optical imaging is becoming an increasingly attractive imaging tool that physicians can utilise as it can detect previously 'unseen' changes in tissue at a cellular level that are consistent with disease. This is possible using a range of fluorescently labelled imaging agents that, once excited by specific wavelengths of light, can illuminate damaged and diseased tissues. For surgeons, such agents can permit dynamic, intraoperative imaging providing a real-time guide as they resect diseased tissue.
Collapse
Affiliation(s)
| | - Paul M. Brennan
- Centre for Clinical Brain Sciences, The University of Edinburgh, Edinburgh, UK
| | | | | |
Collapse
|
17
|
Yalamarty SSK, Filipczak N, Li X, Subhan MA, Parveen F, Ataide JA, Rajmalani BA, Torchilin VP. Mechanisms of Resistance and Current Treatment Options for Glioblastoma Multiforme (GBM). Cancers (Basel) 2023; 15:cancers15072116. [PMID: 37046777 PMCID: PMC10093719 DOI: 10.3390/cancers15072116] [Citation(s) in RCA: 90] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/25/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023] Open
Abstract
Glioblastoma multiforme (GBM) is a highly aggressive form of brain cancer that is difficult to treat due to its resistance to both radiation and chemotherapy. This resistance is largely due to the unique biology of GBM cells, which can evade the effects of conventional treatments through mechanisms such as increased resistance to cell death and rapid regeneration of cancerous cells. Additionally, the blood–brain barrier makes it difficult for chemotherapy drugs to reach GBM cells, leading to reduced effectiveness. Despite these challenges, there are several treatment options available for GBM. The standard of care for newly diagnosed GBM patients involves surgical resection followed by concurrent chemoradiotherapy and adjuvant chemotherapy. Emerging treatments include immunotherapy, such as checkpoint inhibitors, and targeted therapies, such as bevacizumab, that attempt to attack specific vulnerabilities in GBM cells. Another promising approach is the use of tumor-treating fields, a type of electric field therapy that has been shown to slow the growth of GBM cells. Clinical trials are ongoing to evaluate the safety and efficacy of these and other innovative treatments for GBM, intending to improve with outcomes for patients.
Collapse
Affiliation(s)
- Satya Siva Kishan Yalamarty
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang 330006, China
| | - Md Abdus Subhan
- Department of Chemistry, ShahJalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Farzana Parveen
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
- Department of Pharmacy Services, DHQ Hospital, Jhang 35200, Pakistan
| | - Janaína Artem Ataide
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Faculty of Pharmaceutical Sciences, University of Campinas (UNICAMP), Campinas 13083-871, Brazil
| | - Bharat Ashok Rajmalani
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
| | - Vladimir P. Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine (CPBN), Department of Pharmaceutical Sciences, Northeastern University, Boston, MA 02115, USA
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA
| |
Collapse
|
18
|
Photodynamic Opening of the Blood-Brain Barrier and the Meningeal Lymphatic System: The New Niche in Immunotherapy for Brain Tumors. Pharmaceutics 2022; 14:pharmaceutics14122612. [PMID: 36559105 PMCID: PMC9784636 DOI: 10.3390/pharmaceutics14122612] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Photodynamic therapy (PDT) is a promising add-on therapy to the current standard of care for patients with glioblastoma (GBM). The traditional explanation of the anti-cancer PDT effects involves the PDT-induced generation of a singlet oxygen in the GBM cells, which causes tumor cell death and microvasculature collapse. Recently, new vascular mechanisms of PDT associated with opening of the blood-brain barrier (OBBB) and the activation of functions of the meningeal lymphatic vessels have been discovered. In this review, we highlight the emerging trends and future promises of immunotherapy for brain tumors and discuss PDT-OBBB as a new niche and an important informative platform for the development of innovative pharmacological strategies for the modulation of brain tumor immunity and the improvement of immunotherapy for GBM.
Collapse
|
19
|
McCracken DJ, Schupper AJ, Lakomkin N, Malcolm J, Painton Bray D, Hadjipanayis CG. Turning on the light for brain tumor surgery: A 5-aminolevulinic acid story. Neuro Oncol 2022; 24:S52-S61. [PMID: 36322101 PMCID: PMC9629477 DOI: 10.1093/neuonc/noac191] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To aid surgeons in more complete and safe resection of brain tumors, adjuvant technologies have been developed to improve visualization of target tissue. Fluorescence-guided surgery relies on the use of fluorophores and specific light wavelengths to better delineate tumor tissue, inflammation, and areas of blood-brain barrier breakdown. 5-aminolevulinic acid (5-ALA), the first fluorophore developed specifically for brain tumors, accumulates within tumor cells, improving visualization of tumors both at the core, and infiltrative margin. Here, we describe the background of how 5-ALA integrated into the modern neurosurgery practice, clinical evidence for the current use of 5-ALA, and future directions for its role in neurosurgical oncology. Maximal safe resection remains the standard of care for most brain tumors. Gross total resection of high-grade gliomas (HGGs) is associated with greater overall survival and progression-free survival (PFS) in comparison to subtotal resection or adjuvant treatment therapies alone.1-3 A major challenge neurosurgeons encounter when resecting infiltrative gliomas is identification of the glioma tumor margin to perform a radical resection while avoiding and preserving eloquent regions of the brain. 5-aminolevulinic acid (5-ALA) remains the only optical-imaging agent approved by the FDA for use in glioma surgery and identification of tumor tissue.4 A multicenter randomized, controlled trial revealed that 5-ALA fluorescence-guided surgery (FGS) almost doubled the extent of tumor resection and also improved 6-month PFS.5 In this review, we will highlight the current evidence for use of 5-ALA FGS in brain tumor surgery, as well as discuss the future directions for its use.
Collapse
Affiliation(s)
- David J McCracken
- Department of Neurosurgery, Piedmont Healthcare, Atlanta, Georgia, USA
| | - Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, Mount Sinai Health System, New York, New York, USA
| | - Nikita Lakomkin
- Department of Neurosurgery, Mayo Clinic, Rochester, Minnesota, USA
| | - James Malcolm
- Department of Neurosurgery, Emory University, Atlanta, Georgia, USA
| | | | - Constantinos G Hadjipanayis
- Corresponding Author: Constantinos G. Hadjipanayis, MD, PhD, Mount Sinai Union Square, 10 Union Square East, Suite 5E, New York, NY 10003, USA ()
| |
Collapse
|
20
|
Wu A, Wu JY, Lim M. Updates in intraoperative strategies for enhancing intra-axial brain tumor control. Neuro Oncol 2022; 24:S33-S41. [PMID: 36322098 PMCID: PMC9629479 DOI: 10.1093/neuonc/noac170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To ensure excellent postoperative clinical outcomes while preserving critical neurologic function, neurosurgeons who manage patients with intra-axial brain tumors can use intraoperative technologies and tools to achieve maximal safe resection. Neurosurgical oncology revolves around safe and optimal extent of resection, which further dictates subsequent treatment regimens and patient outcomes. Various methods can be adapted for treating both primary and secondary intra-axial brain lesions. We present a review of recent advances and published research centered on different innovative tools and techniques, including fluorescence-guided surgery, new methods of drug delivery, and minimally invasive procedural options.
Collapse
Affiliation(s)
- Adela Wu
- Department of Neurosurgery, Stanford Health Care, Stanford, California, USA
| | | | - Michael Lim
- Department of Neurosurgery, Stanford Health Care, Stanford, California, USA
| |
Collapse
|
21
|
Li G, Rodrigues A, Kim L, Garcia C, Jain S, Zhang M, Hayden-Gephart M. 5-Aminolevulinic Acid Imaging of Malignant Glioma. Surg Oncol Clin N Am 2022; 31:581-593. [DOI: 10.1016/j.soc.2022.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Harada Y, Murayama Y, Takamatsu T, Otsuji E, Tanaka H. 5-Aminolevulinic Acid-Induced Protoporphyrin IX Fluorescence Imaging for Tumor Detection: Recent Advances and Challenges. Int J Mol Sci 2022; 23:ijms23126478. [PMID: 35742921 PMCID: PMC9223645 DOI: 10.3390/ijms23126478] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/02/2022] [Accepted: 06/07/2022] [Indexed: 12/18/2022] Open
Abstract
5-Aminolevulinic acid (5-ALA) is a natural amino acid and a precursor of heme and chlorophyll. Exogenously administered 5-ALA is metabolized into protoporphyrin IX (PpIX). PpIX accumulates in cancer cells because of the low activity of ferrochelatase, an enzyme that metabolizes PpIX to heme. High expression of 5-ALA influx transporters, such as peptide transporters 1/2, in cancer cells also enhances PpIX production. Because PpIX radiates red fluorescence when excited with blue/violet light, 5-ALA has been used for the visualization of various tumors. 5-ALA photodynamic diagnosis (PDD) has been shown to improve the tumor removal rate in high-grade gliomas and non-muscular invasive bladder cancers. However, 5-ALA PDD remains a challenge as a diagnostic method because tissue autofluorescence interferes with PpIX signals in cases where tumors emit only weak signals, and non-tumorous lesions, such as inflammatory sites, tend to emit PpIX fluorescence. Here, we review the current outline of 5-ALA PDD and strategies for improving its diagnostic applicability for tumor detection, focusing on optical techniques and 5-ALA metabolic pathways in both viable and necrotic tumor tissues.
Collapse
Affiliation(s)
- Yoshinori Harada
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
- Correspondence: ; Tel.: +81-75-251-5322
| | - Yasutoshi Murayama
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Tetsuro Takamatsu
- Department of Medical Photonics, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan; (Y.M.); (E.O.)
| | - Hideo Tanaka
- Department of Pathology and Cell Regulation, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 465 Kajii-cho Kamigyo-ku, Kyoto 602-8566, Japan;
| |
Collapse
|
23
|
Haider S, Hamilton TM, Hunt RJ, Lee IY, Robin AM. Clinically useful tumor fluorescence greater than 24 hours after 5-aminolevulinic acid administration. Surg Neurol Int 2022; 13:99. [PMID: 35399905 PMCID: PMC8986640 DOI: 10.25259/sni_836_2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 02/05/2022] [Indexed: 12/02/2022] Open
Abstract
Background: 5-aminolevulinic acid (5-ALA) is a valuable surgical adjuvant used for the resection of glioblastoma multiforme (GBM). Since Food and Drug Administration approval in 2017, 5-ALA has been used in over 37,000 cases. The current recommendation for peak efficacy and intraoperative fluorescence is within 4 h after administration. This narrow time window imposes a perioperative time constraint which may complicate or preclude the use of 5-ALA in GBM surgery. Case Description: This case report describes the prolonged activity of 5-ALA in a 66-year-old patient with a newly diagnosed GBM lesion within the left supramarginal gyrus. An awake craniotomy with language and sensorimotor mapping was planned along with 5-ALA fluorescence guidance. Shortly, after receiving the preoperative 5-ALA dose, the patient developed a fever. Surgery was postponed for an infectious disease workup which proved negative. The patient was taken to surgery the following day, 36 h after 5-ALA administration. Despite the delay, intraoperative fluorescence within the tumor remained and was sufficient to guide resection. Postoperative imaging confirmed a gross total resection of the tumor. Conclusion: The use of 5-ALA as an intraoperative adjuvant may still be effective for patients beyond the recommended 4-h window after initial administration. Reconsideration of current use of 5-ALA is warranted.
Collapse
|
24
|
Matsumae M, Nishiyama J, Kuroda K. Intraoperative MR Imaging during Glioma Resection. Magn Reson Med Sci 2022; 21:148-167. [PMID: 34880193 PMCID: PMC9199972 DOI: 10.2463/mrms.rev.2021-0116] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/11/2021] [Indexed: 11/09/2022] Open
Abstract
One of the major issues in the surgical treatment of gliomas is the concern about maximizing the extent of resection while minimizing neurological impairment. Thus, surgical planning by carefully observing the relationship between the glioma infiltration area and eloquent area of the connecting fibers is crucial. Neurosurgeons usually detect an eloquent area by functional MRI and identify a connecting fiber by diffusion tensor imaging. However, during surgery, the accuracy of neuronavigation can be decreased due to brain shift, but the positional information may be updated by intraoperative MRI and the next steps can be planned accordingly. In addition, various intraoperative modalities may be used to guide surgery, including neurophysiological monitoring that provides real-time information (e.g., awake surgery, motor-evoked potentials, and sensory evoked potential); photodynamic diagnosis, which can identify high-grade glioma cells; and other imaging techniques that provide anatomical information during the surgery. In this review, we present the historical and current context of the intraoperative MRI and some related approaches for an audience active in the technical, clinical, and research areas of radiology, as well as mention important aspects regarding safety and types of devices.
Collapse
Affiliation(s)
- Mitsunori Matsumae
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Jun Nishiyama
- Department of Neurosurgery, Tokai University School of Medicine, Isehara, Kanagawa, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Sciences, School of Information Science and Technology, Tokai University, Hiratsuka, Kanagawa, Japan
| |
Collapse
|
25
|
Ahrens LC, Krabbenhøft MG, Hansen RW, Mikic N, Pedersen CB, Poulsen FR, Korshoej AR. Effect of 5-Aminolevulinic Acid and Sodium Fluorescein on the Extent of Resection in High-Grade Gliomas and Brain Metastasis. Cancers (Basel) 2022; 14:cancers14030617. [PMID: 35158885 PMCID: PMC8833379 DOI: 10.3390/cancers14030617] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/20/2022] [Accepted: 01/24/2022] [Indexed: 12/26/2022] Open
Abstract
Surgery is essential in the treatment of high-grade gliomas (HGG) and gross total resection (GTR) is known to increase the overall survival and progression-free survival. Several studies have shown that fluorescence-guided surgery with 5-aminolevulinic acid (5-ALA) increases GTR considerably compared to white light surgery (65% vs. 36%). In recent years, sodium fluorescein (SF) has become an increasingly popular agent for fluorescence-guided surgery due to numerous utility benefits compared to 5-ALA, including lower cost, non-toxicity, easy administration during surgery and a wide indication range covering all contrast-enhancing lesions with disruption of the blood-brain barrier in the CNS. However, currently, SF is an off-label agent and the level of evidence for use in HGG surgery is inferior compared to 5-ALA. Here, we give an update and review the latest literature on fluorescence-guided surgery with 5-ALA and SF for brain tumors with emphasis on fluorescence-guided surgery in HGG and brain metastases. Further, we assess the advantages and disadvantages of both fluorophores and discuss their future perspectives.
Collapse
Affiliation(s)
- Lasse Cramer Ahrens
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Correspondence: (L.C.A.); (A.R.K.); Tel.: +45-(20)-254418 (L.C.A.)
| | - Mathias Green Krabbenhøft
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
| | - Rasmus Würgler Hansen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Nikola Mikic
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Department of Clinical Medicine, Aarhus University, Incuba Skejby, Building 2, Palle Juul-Jensens Boulevard 82, J618, DK8200 Aarhus, Denmark
| | - Christian Bonde Pedersen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Frantz Rom Poulsen
- Department of Neurosurgery, Odense University Hospital, DK5000 Odense, Denmark; (R.W.H.); (C.B.P.); (F.R.P.)
| | - Anders Rosendal Korshoej
- Department of Neurosurgery, Aarhus University Hospital, Palle Juul-Jensens Boulevard 165, J618, DK8200 Aarhus, Denmark; (M.G.K.); (N.M.)
- Department of Clinical Medicine, Aarhus University, Incuba Skejby, Building 2, Palle Juul-Jensens Boulevard 82, J618, DK8200 Aarhus, Denmark
- Correspondence: (L.C.A.); (A.R.K.); Tel.: +45-(20)-254418 (L.C.A.)
| |
Collapse
|
26
|
Shi X, Zhang Z, Zhang Z, Cao C, Cheng Z, Hu Z, Tian J, Ji N. Near-infrared window II fluorescence image-guided surgery of high-grade gliomas prolongs the progression-free survival of patients. IEEE Trans Biomed Eng 2021; 69:1889-1900. [PMID: 34818184 DOI: 10.1109/tbme.2021.3130195] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE This translational study aims to investigate the clinical benefits of indocyanine green (ICG) based near-infrared window II (NIR-II) fluorescence image-guided surgery (FGS) on high-grade glioma (HGG) patients. METHODS Patients were randomly assigned to receive FGS or traditional white light image-guided surgery (WLS). The detection rate of NIR-II fluorescence was observed. Complete resection rate, progression-free survival (PFS), overall survival (OS), and neurological status were compared. Tissue samples were obtained from the FGS group, with the diagnosis based on the surgeons and the fluorescence recorded for comparison of diagnostic capability. Patients with WHO grade III gliomas or glioblastomas (GBM) were analyzed separately. RESULTS 15 GBM and 4 WHO grade III glioma patients in the FGS group and 18 GBM and 4 WHO grade III glioma patients in the WLS group were enrolled. The detection rate of NIR-II fluorescence was 100% for GBM. The complete resection rate was significantly increased by the FGS for GBM (FGS, 100% [95% CI 73.41-100] vs. WLS, 50% [95% CI 29.03-70.97], P = 0.0036). The PFS and OS of the FGS group were also significantly prolonged (Median PFS: FGS, 9.0 months vs. WLS, 7.0 months, P < 0.0001; Median OS: FGS, 19.0 months vs. WLS, 15.5 months, P = 0.0002). No recurrence was observed in WHO grade III glioma patients. CONCLUSIONS NIR-II FGS achieves much better complete resection rate of GBM than conventional WLS, leading to greatly improved survival of GBM patients. SIGNIFICANCE NIR-II FGS is a highly promising technique worthy of exploring more clinical applications.
Collapse
|
27
|
Targeting glioblastoma stem cells: The first step of photodynamic therapy. Photodiagnosis Photodyn Ther 2021; 36:102585. [PMID: 34687963 DOI: 10.1016/j.pdpdt.2021.102585] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 09/22/2021] [Accepted: 10/12/2021] [Indexed: 02/07/2023]
Abstract
Glioblastoma is one of the most malignant types of brain cancer. Evidence suggests that within gliomas there is a small subpopulation of cells with the capacity for self-renewal, called glioma stem cells. These cells could be responsible for tumorigenesis, chemo and radioresistance, and finally for the recurrence of the tumor. Fluorescence-guided resection have improved the results of treatment against this disease, prolonging the survival of patients by a few months. Also, clinical trials have reported potential improvements in the therapeutic response after photodynamic therapy. Thus far, there are few published works that show the response of glioblastoma stem-like cells to photodynamic therapy. Here, we present a brief review exclusively commenting on the therapeutic approaches to eliminate glioblastoma stem cells and on the research publications about this topic of glioblastoma stem cells in relation to photodynamic therapy. It is our hope that this review will be useful to provide an overview about what is known to date on the topic and to promote the generation of new ideas for the eradication of glioblastoma stem cells by photodynamic treatment.
Collapse
|
28
|
Arias-Ramos N, Ibarra LE, Serrano-Torres M, Yagüe B, Caverzán MD, Chesta CA, Palacios RE, López-Larrubia P. Iron Oxide Incorporated Conjugated Polymer Nanoparticles for Simultaneous Use in Magnetic Resonance and Fluorescent Imaging of Brain Tumors. Pharmaceutics 2021; 13:1258. [PMID: 34452219 PMCID: PMC8400017 DOI: 10.3390/pharmaceutics13081258] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/03/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Conjugated polymer nanoparticles (CPNs) have emerged as advanced polymeric nanoplatforms in biomedical applications by virtue of extraordinary properties including high fluorescence brightness, large absorption coefficients of one and two-photons, and excellent photostability and colloidal stability in water and physiological medium. In addition, low cytotoxicity, easy functionalization, and the ability to modify CPN photochemical properties by the incorporation of dopants, convert them into excellent theranostic agents with multifunctionality for imaging and treatment. In this work, CPNs were designed and synthesized by incorporating a metal oxide magnetic core (Fe3O4 and NiFe2O4 nanoparticles, 5 nm) into their matrix during the nanoprecipitation method. This modification allowed the in vivo monitoring of nanoparticles in animal models using magnetic resonance imaging (MRI) and intravital fluorescence, techniques widely used for intracranial tumors evaluation. The modified CPNs were assessed in vivo in glioblastoma (GBM) bearing mice, both heterotopic and orthotopic developed models. Biodistribution studies were performed with MRI acquisitions and fluorescence images up to 24 h after the i.v. nanoparticles administration. The resulting IONP-doped CPNs were biocompatible in GBM tumor cells in vitro with an excellent cell incorporation depending on nanoparticle concentration exposure. IONP-doped CPNs were detected in tumor and excretory organs of the heterotopic GBM model after i.v. and i.t. injection. However, in the orthotopic GBM model, the size of the nanoparticles is probably hindering a higher effect on intratumorally T2-weighted images (T2WI) signals and T2 values. The photodynamic therapy (PDT)-cytotoxicity of CPNs was not either affected by the IONPs incorporation into the nanoparticles.
Collapse
Affiliation(s)
- Nuria Arias-Ramos
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Luis Exequiel Ibarra
- Instituto de Biotecnología Ambiental y Salud (INBIAS), Universidad Nacional de Río Cuarto (UNRC) y CONICET, Córdoba X5800BIA, Argentina
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
| | - María Serrano-Torres
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Balbino Yagüe
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| | - Matías Daniel Caverzán
- Departamento de Biología Molecular, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, Universidad Nacional de Río Cuarto (UNRC), Córdoba X5800BIA, Argentina; (M.D.C.)
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
| | - Carlos Alberto Chesta
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Rodrigo Emiliano Palacios
- Instituto de Investigaciones en Tecnologías Energéticas y Materiales Avanzados (IITEMA), Universidad Nacional de Río Cuarto y CONICET, Córdoba X5800BIA, Argentina; (C.A.C.); (R.E.P.)
- Departamento de Química, Facultad de Ciencias Exactas, Fisicoquímicas y Naturales, UNRC, Córdoba X5800BIA, Argentina
| | - Pilar López-Larrubia
- Instituto de Investigaciones Biomédicas “Alberto Sols”, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid (CSIC-UAM), 28029 Madrid, Spain; (N.A.-R.); (M.S.-T.); (B.Y.)
| |
Collapse
|
29
|
Schupper AJ, Rao M, Mohammadi N, Baron R, Lee JYK, Acerbi F, Hadjipanayis CG. Fluorescence-Guided Surgery: A Review on Timing and Use in Brain Tumor Surgery. Front Neurol 2021; 12:682151. [PMID: 34220688 PMCID: PMC8245059 DOI: 10.3389/fneur.2021.682151] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/11/2021] [Indexed: 12/25/2022] Open
Abstract
Fluorescence-guided surgery (FGS) allows surgeons to have improved visualization of tumor tissue in the operating room, enabling maximal safe resection of malignant brain tumors. Over the past two decades, multiple fluorescent agents have been studied for FGS, including 5-aminolevulinic acid (5-ALA), fluorescein sodium, and indocyanine green (ICG). Both non-targeted and targeted fluorescent agents are currently being used in clinical practice, as well as under investigation, for glioma visualization and resection. While the efficacy of intraoperative fluorescence in studied fluorophores has been well established in the literature, the effect of timing on fluorophore administration in glioma surgery has not been as well depicted. In the past year, recent studies of 5-ALA use have shown that intraoperative fluorescence may persist beyond the previously studied window used in prior multicenter trials. Additionally, the use of fluorophores for different brain tumor types is discussed in detail, including a discussion of choosing the right fluorophore based on tumor etiology. In the following review, the authors will describe the temporal nature of the various fluorophores used in glioma surgery, what remains uncertain in FGS, and provide a guide for using fluorescence as a surgical adjunct in brain tumor surgery.
Collapse
Affiliation(s)
- Alexander J Schupper
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Manasa Rao
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Nicki Mohammadi
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Rebecca Baron
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - John Y K Lee
- Department of Neurosurgery, University of Pennsylvania School of Medicine, Philadelphia, PA, United States
| | - Francesco Acerbi
- Department of Neurosurgery, Fondazione Istituto Di Ricovero e Cura a Carattere Scientifico Istituto Neurologico Carlo Besta, Milan, Italy
| | | |
Collapse
|