1
|
Ikelaar NA, Barnard AM, Eng SWM, Hosseini Vajargah S, Ha KCH, Kan HE, Vandenborne K, Niks EH, Walter GA, Spitali P. Large scale serum proteomics identifies proteins associated with performance decline and clinical milestones in Duchenne muscular dystrophy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.08.05.24311516. [PMID: 39148831 PMCID: PMC11326316 DOI: 10.1101/2024.08.05.24311516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Serum biomarkers are promising minimally invasive outcome measures in clinical studies in Duchenne muscular dystrophy (DMD). However, biomarkers strongly associated with clinical progression and predicting performance decline are lacking. In this study we aimed to identify serum biomarkers associated with clinical performance and able to predict clinical milestones in DMD. Towards this aim we present a retrospective multi-center cohort study including serum samples and clinical data collected in research participants with DMD as part of a natural history study at the University of Florida (UF) and real-world observations at Leiden University Medical Center (LUMC) between 2009-2022. The 7K SomaScan® assay was used to analyse protein levels in in individual serum samples. Serum biomarkers predicted age at loss of ambulation (LoA), age at loss of overhead reach (OHR) and age at loss of hand to mouth function (HTM). Secondary outcomes were the association of biomarkers with age, corticosteroid (CS) usage, and clinical performance based on the North Star Ambulatory Assessment (NSAA), 10 meter run velocity (10mrv), 6 minute walk (6MWT) and Performance of the Upper Limb (PUL2.0). A total of 716 serum samples were collected in 79 participants at UF and 74 at LUMC (mean[SD] age; 10.9[3.2] vs 8.4[3.4]). 244 serum proteins showed an association with CS usage in both cohorts independent of CS type and regimen, including MMP3 and IGLL1. 318 probes (corresponding to 294 proteins) showed significant associations with NSAA, 10mrv, 6MWT and/or PUL2.0 across both cohorts. The expression of 38 probes corresponding to 36 proteins such as RGMA, EHMT2, ART3, ANTXR2 and DLK1 was associated with risk of both lower and upper limb clinical milestones in both the LUMC and UF cohort. In conclusion, multiple biomarkers were associated with CS use, motor function and upper lower and upper limb disease milestones in DMD. These biomarkers were validated across two independent cohorts, increasing their likelihood of translation for use within the broader DMD population.
Collapse
Affiliation(s)
- N A Ikelaar
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - A M Barnard
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - S W M Eng
- BioSymetrics, Inc., Huntington, NY, USA
| | | | - K C H Ha
- BioSymetrics, Inc., Huntington, NY, USA
| | - H E Kan
- Duchenne Center Netherlands
- C.J. Gorter MRI Center, Department of Radiology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| | - K Vandenborne
- Department of Physical Therapy, University of Florida, Gainesville, FL, USA
| | - E H Niks
- Department of Neurology, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
- Duchenne Center Netherlands
| | - G A Walter
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - P Spitali
- Human Genetics Department, Leiden University Medical Center, Leiden, Zuid-Holland, the Netherlands
| |
Collapse
|
2
|
Flores-Opazo M, Kopinke D, Helmbacher F, Fernández-Verdejo R, Tuñón-Suárez M, Lynch GS, Contreras O. Fibro-adipogenic progenitors in physiological adipogenesis and intermuscular adipose tissue remodeling. Mol Aspects Med 2024; 97:101277. [PMID: 38788527 PMCID: PMC11692456 DOI: 10.1016/j.mam.2024.101277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/27/2024] [Accepted: 05/13/2024] [Indexed: 05/26/2024]
Abstract
Excessive accumulation of intermuscular adipose tissue (IMAT) is a common pathological feature in various metabolic and health conditions and can cause muscle atrophy, reduced function, inflammation, insulin resistance, cardiovascular issues, and unhealthy aging. Although IMAT results from fat accumulation in muscle, the mechanisms underlying its onset, development, cellular components, and functions remain unclear. IMAT levels are influenced by several factors, such as changes in the tissue environment, muscle type and origin, extent and duration of trauma, and persistent activation of fibro-adipogenic progenitors (FAPs). FAPs are a diverse and transcriptionally heterogeneous population of stromal cells essential for tissue maintenance, neuromuscular stability, and tissue regeneration. However, in cases of chronic inflammation and pathological conditions, FAPs expand and differentiate into adipocytes, resulting in the development of abnormal and ectopic IMAT. This review discusses the role of FAPs in adipogenesis and how they remodel IMAT. It highlights evidence supporting FAPs and FAP-derived adipocytes as constituents of IMAT, emphasizing their significance in adipose tissue maintenance and development, as well as their involvement in metabolic disorders, chronic pathologies and diseases. We also investigated the intricate molecular pathways and cell interactions governing FAP behavior, adipogenesis, and IMAT accumulation in chronic diseases and muscle deconditioning. Finally, we hypothesize that impaired cellular metabolic flexibility in dysfunctional muscles impacts FAPs, leading to IMAT. A deeper understanding of the biology of IMAT accumulation and the mechanisms regulating FAP behavior and fate are essential for the development of new therapeutic strategies for several debilitating conditions.
Collapse
Affiliation(s)
| | - Daniel Kopinke
- Department of Pharmacology and Therapeutics, University of Florida, Gainesville, 32610, FL, USA; Myology Institute, University of Florida College of Medicine, Gainesville, FL, USA.
| | | | - Rodrigo Fernández-Verdejo
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA; Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Mauro Tuñón-Suárez
- Laboratorio de Fisiología Del Ejercicio y Metabolismo (LABFEM), Escuela de Kinesiología, Facultad de Medicina, Universidad Finis Terrae, Chile.
| | - Gordon S Lynch
- Centre for Muscle Research, Department of Anatomy and Physiology, The University of Melbourne, Melbourne, Victoria, Parkville 3010, Australia.
| | - Osvaldo Contreras
- Developmental and Regenerative Biology Division, Victor Chang Cardiac Research Institute, Darlinghurst, NSW, 2010, Australia; School of Clinical Medicine, UNSW Sydney, Kensington, NSW 2052, Australia.
| |
Collapse
|
3
|
Nieves-Rodriguez S, Barthélémy F, Woods JD, Douine ED, Wang RT, Scripture-Adams DD, Chesmore KN, Galasso F, Miceli MC, Nelson SF. Transcriptomic analysis of paired healthy human skeletal muscles to identify modulators of disease severity in DMD. Front Genet 2023; 14:1216066. [PMID: 37576554 PMCID: PMC10415210 DOI: 10.3389/fgene.2023.1216066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
Muscle damage and fibro-fatty replacement of skeletal muscles is a main pathologic feature of Duchenne muscular dystrophy (DMD) with more proximal muscles affected earlier and more distal affected later in the disease course, suggesting that different skeletal muscle groups possess distinctive characteristics that influence their susceptibility to disease. To explore transcriptomic factors driving differential gene expression and modulating DMD skeletal muscle severity, we characterized the transcriptome of vastus lateralis (VL), a more proximal and susceptible muscle, relative to tibialis anterior (TA), a more distal and protected muscle, in 15 healthy individuals using bulk RNA sequencing to identify gene expression differences that may mediate their relative susceptibility to damage with loss of dystrophin. Matching single nuclei RNA sequencing data was generated for 3 of the healthy individuals, to infer cell composition in the bulk RNA sequencing dataset and to improve mapping of differentially expressed genes to their cell source of expression. A total of 3,410 differentially expressed genes were identified and mapped to cell type using single nuclei RNA sequencing of muscle, including long non-coding RNAs and protein coding genes. There was an enrichment of genes involved in calcium release from the sarcoplasmic reticulum, particularly in the myofibers and these myofiber genes were higher in the VL. There was an enrichment of genes in "Collagen-Containing Extracellular Matrix" expressed by fibroblasts, endothelial, smooth muscle and pericytes, with most genes higher in the TA, as well as genes in "Regulation Of Apoptotic Process" expressed across all cell types. Previously reported genetic modifiers were also enriched within the differentially expressed genes. We also identify 6 genes with differential isoform usage between the VL and TA. Lastly, we integrate our findings with DMD RNA sequencing data from the TA, and identify "Collagen-Containing Extracellular Matrix" and "Negative Regulation Of Apoptotic Process" as differentially expressed between DMD compared to healthy. Collectively, these findings propose novel candidate mechanisms that may mediate differential muscle susceptibility in muscular dystrophies and provide new insight into potential therapeutic targets.
Collapse
Affiliation(s)
- Shirley Nieves-Rodriguez
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Florian Barthélémy
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jeremy D. Woods
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Emilie D. Douine
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Richard T. Wang
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Deirdre D. Scripture-Adams
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Kevin N. Chesmore
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
| | - Francesca Galasso
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - M. Carrie Miceli
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Microbiology, David Geffen School of Medicine and College of Letters and Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Stanley F. Nelson
- Department of Human Genetics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Center for Duchenne Muscular Dystrophy at UCLA, Los Angeles, CA, United States
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
4
|
Han X, Han J, Wang N, Ji G, Guo R, Li J, Wu H, Ma S, Fang P, Song X. Identification of Auxiliary Biomarkers and Description of the Immune Microenvironmental Characteristics in Duchenne Muscular Dystrophy by Bioinformatical Analysis and Experiment. Front Neurosci 2022; 16:891670. [PMID: 35720684 PMCID: PMC9204148 DOI: 10.3389/fnins.2022.891670] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/04/2022] [Indexed: 11/13/2022] Open
Abstract
Background Duchenne muscular dystrophy (DMD) is a genetic muscle disorder characterized by progressive muscle wasting associated with persistent inflammation. In this study, we aimed to identify auxiliary biomarkers and further characterize the immune microenvironment in DMD. Methods Differentially expressed genes (DEGs) were identified between DMD and normal muscle tissues based on Gene Expression Omnibus (GEO) datasets. Bioinformatical analysis was used to screen and identify potential diagnostic signatures of DMD which were further validated by real-time quantitative reverse transcription PCR (RT-qPCR). We also performed single-sample gene-set enrichment analysis (ssGSEA) to characterize the proportion of tissue-infiltrating immune cells to determine the inflammatory state of DMD. Results In total, 182 downregulated genes and 263 upregulated genes were identified in DMD. C3, SPP1, TMSB10, TYROBP were regarded as adjunct biomarkers and successfully validated by RT-qPCR. The infiltration of macrophages, CD4+, and CD8+ T cells was significantly higher (p < 0.05) in DMD compared with normal muscle tissues, while the infiltration of activated B cells, CD56dim natural killer cells, and type 17 T helper (Th17) cells was lower. In addition, the four biomarkers (C3, SPP1, TMSB10, TYROBP) were strongly associated with immune cells and immune-related pathways in DMD muscle tissues. Conclusion Analyses demonstrated C3, SPP1, TMSB10, and TYROBP may serve as biomarkers and enhance our understanding of immune responses in DMD. The infiltration of immune cells into the muscle microenvironment might exert a critical impact on the development and occurrence of DMD.
Collapse
Affiliation(s)
- Xu Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jingzhe Han
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ning Wang
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Guang Ji
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Ruoyi Guo
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Jing Li
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Hongran Wu
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Shaojuan Ma
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
| | - Pingping Fang
- Department of Neurology, Handan Central Hospital, Handan, China
| | - Xueqin Song
- Department of Neurology, The Second Hospital of Hebei Medical University, Shijiazhuang, China
- Neurological Laboratory of Hebei Province, Shijiazhuang, China
- *Correspondence: Xueqin Song,
| |
Collapse
|
5
|
Fernández-Simón E, Suárez-Calvet X, Carrasco-Rozas A, Piñol-Jurado P, López-Fernández S, Pons G, Bech Serra JJ, de la Torre C, de Luna N, Gallardo E, Díaz-Manera J. RhoA/ROCK2 signalling is enhanced by PDGF-AA in fibro-adipogenic progenitor cells: implications for Duchenne muscular dystrophy. J Cachexia Sarcopenia Muscle 2022; 13:1373-1384. [PMID: 35132805 PMCID: PMC8977967 DOI: 10.1002/jcsm.12923] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 12/21/2021] [Accepted: 12/30/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The lack of dystrophin expression in Duchenne muscular dystrophy (DMD) induces muscle fibre and replacement by fibro-adipose tissue. Although the role of some growth factors in the process of fibrogenesis has been studied, pathways activated by PDGF-AA have not been described so far. Our aim was to study the molecular role of PDGF-AA in the fibrotic process of DMD. METHODS Skeletal muscle fibro-adipogenic progenitor cells (FAPs) from three DMD treated with PDGF-AA at 50 ng/mL were analysed by quantitative mass spectrometry-based proteomics. Western-blot, immunofluorescence, and G-LISA were used to confirm the mass spectrometry results. We evaluated the effects of PDGF-AA on the activation of RhoA pathway using two inhibitors, C3-exoenzyme and fasudil. Cell proliferation and migration were determined by BrdU and migration assay. Actin reorganization and collagen synthesis were measured by phalloidin staining and Sircol assay, respectively. In an in vivo proof of concept study, we treated dba/2J-mdx mice with fasudil for 6 weeks. Muscle strength was assessed with the grip strength. Immunofluorescence and flow cytometry analyses were used to study fibrotic and inflammatory markers in muscle tissue. RESULTS Mass spectrometry revealed that RhoA pathway proteins were up-regulated in treated compared with non-treated DMD FAPs (n = 3, mean age = 8 ± 1.15 years old). Validation of proteomic data showed that Arhgef2 expression was significantly increased in DMD muscles compared with healthy controls by a 7.7-fold increase (n = 2, mean age = 8 ± 1.14 years old). In vitro studies showed that RhoA/ROCK2 pathway was significantly activated by PDGF-AA (n = 3, 1.88-fold increase, P < 0.01) and both C3-exoenzyme and fasudil blocked that activation (n = 3, P < 0.05 and P < 0.001, respectively). The activation of RhoA pathway by PDGF-AA promoted a significant increase in proliferation and migration of FAPs (n = 3, P < 0.001), while C3-exoenzyme and fasudil inhibited FAPs proliferation at 72 h and migration at 48 and 72 h (n = 3, P < 0.001). In vivo studies showed that fasudil improved muscle function (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, 1.76-fold increase, P < 0.013), and histological studies demonstrated a 23% reduction of collagen-I expression area (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, P < 0.01). CONCLUSIONS Our results suggest that PDGF-AA promotes the activation of RhoA pathway in FAPs from DMD patients. This pathway could be involved in FAPs activation promoting its proliferation, migration, and actin reorganization, which represents the beginning of the fibrotic process. The inhibition of RhoA pathway could be considered as a potential therapeutic target for muscle fibrosis in patients with muscular dystrophies.
Collapse
Affiliation(s)
- Esther Fernández-Simón
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Xavier Suárez-Calvet
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Ana Carrasco-Rozas
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain
| | - Patricia Piñol-Jurado
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| | - Susana López-Fernández
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | - Gemma Pons
- Plastic Surgery Department, Hospital de la Santa Creu i Sant Pau, Autonomous University of Barcelona, Barcelona, Spain
| | | | | | - Noemí de Luna
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Eduard Gallardo
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain
| | - Jordi Díaz-Manera
- Neuromuscular Diseases Unit, Neurology Department, Hospital de la Santa Creu i Sant Pau and Biomedical Research Institute Sant Pau (IIB Sant Pau), Barcelona, Spain.,Centro de Investigaciones Biomédicas en Red en Enfermedades Raras (CIBERER), Madrid, Spain.,John Walton Muscular Dystrophy Research Center, University of Newcastle, Newcastle upon Tyne, UK
| |
Collapse
|