1
|
Zhvania MG, Sharikadze I, Japaridze N, Tizabi Y, Rzayev F, Gasimov E, Lobzhanidze G. Status epilepticus alters hippocampal ultrastructure in kainic acid rat model. Tissue Cell 2025; 94:102789. [PMID: 39954563 DOI: 10.1016/j.tice.2025.102789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/17/2025]
Abstract
Kainic acid (KA) model of epilepsy is a reliable tool to study temporal lobe epilepsy (TLE), the most common type of partial epilepsy in adults. Substantial body of data suggest that the KA-induced status epilepticus (SE) leads to several molecular and structural changes in the hippocampus, including sclerosis, sprouting of mossy fiber, reorganization of inter-neuronal networks, alterations in neuropeptide signaling, gliosis, and synaptic transmission dysregulation. However, no details on the ultrastructural changes, especially in relationship to synapses are available. This information is important in providing a comprehensive understanding of subtle changes that occur in this debilitating disease. Thus, in this study, applying electron-microscopic morphometric analysis, we evaluated the ultrastructural effects of KA on the CA1 region of the hippocampus, an area intimately involved in SE. The total number of synaptic vesicles (SVs), the number of docking SVs, the length of synapse active zone (AZ) and the number and area of presynaptic and postsynaptic mitochondria in axo-dendritic (excitatory) synapses were measured at 24 h, and 8 and 21 days after KA administration. Results indicate a decrease in the total number and docking of SVs, an increase in the length of AZ and the number and area of presynaptic and postsynaptic mitochondria, which were more prominent at 8 days after KA injection. The findings suggest a time-dependent ultrastructural changes in CA1 region of the hippocampus in an animal model of focal epilepsy.
Collapse
Affiliation(s)
- Mzia G Zhvania
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia; Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine. Tbilisi, Georgia.
| | - Irina Sharikadze
- School of Natural Sciences and Medicine, Ilia State University, Tbilisi, Georgia
| | - Nadezhda Japaridze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine. Tbilisi, Georgia; Carl Zeiss Scientific and Education Center, New Vision University, Tbilisi, Georgia
| | - Yousef Tizabi
- Department of Pharmacology, Howard University College of Medicine, Washington DC, USA
| | - Fuad Rzayev
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Eldar Gasimov
- Department of Histology, Embryology and Cytology, Azerbaijan Medical University, Baku, Azerbaijan
| | - Giorgi Lobzhanidze
- Department of Brain Ultrastructure and Nanoarchitecture, Ivane Beritashvili Center of Experimental Biomedicine. Tbilisi, Georgia
| |
Collapse
|
2
|
Yang M, Li Y, Liu X, Zou S, Lei L, Zou Q, Zhang Y, Fang Y, Chen S, Zhou L. Autophagy-related genes in mesial temporal lobe epilepsy: an integrated bioinformatics analysis. ACTA EPILEPTOLOGICA 2024; 6:16. [PMID: 40217519 PMCID: PMC11960276 DOI: 10.1186/s42494-024-00160-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Autophagy plays essential roles in the development and pathogenesis of mesial temporal lobe epilepsy (mTLE). In this research, we aim to identify and validate the autophagy-related genes associated with mTLE through bioinformatics analysis and experimental validations. METHODS We obtained the dataset GSE143272 and high-throughput sequencing results of mTLE from public databases. Potential differentially expressed autophagy-related genes related to mTLE were identified using R software. Subsequently, genomes pathway enrichment analysis, protein-protein interactions (PPIs), and the gene ontology (GO) enrichment were performed for the selected autophagy-related genes. The mRNA expression profiles of hub genes were then used to establish a least absolute shrinkage and selection operator (LASSO) model. Finally, seven hub candidate autophagy-related genes were confirmed in hippocampus using the lithium-pilocarpine chronic epilepsy model. RESULTS A total of 40 differential expression genes (DEGs) among the core autophagy-related genes were identified. The analysis results of PPI revealed that interactions among these DEGs. KEGG pathway and GO analysis of selected candidate autophagy-related genes indicated that those enriched terms mainly focused on macroautophagy, regulation of autophagy, cellular response to extracellular stimulus and mitochondrion disassembly. The results suggested that SQSTM1, VEGFA, BNIP and WIPI2 were consistent with the bioinformatics analysis. The expression levels of SQSTM1 and VEGFA in epilepsy model samples were significantly higher than those in normal control, while BNIP and WIPI2 expression levels were notably decreased. The final hub gene-based LASSO regression model accurately predicted the occurrence of epilepsy (AUC = 0.88). CONCLUSIONS Through bioinformatics analysis of public data, we identified 40 candidate autophagy-related genes associated with mTLE. SQSTM1, VEGFA, BNIP and WIPI2 may play significant roles in autophagy, influencing the onset and development of mTLE by regulating autophagy pathway. These findings deepen our understanding of mTLE, and may serve as sensitive and valuable indicators for the prognosis and diagnosis of this condition.
Collapse
Affiliation(s)
- Man Yang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xianyue Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shangnan Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Lei Lei
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Qihang Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shuda Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
3
|
Abdel Mageed SS, Rashad AA, Elshaer SS, Elballal MS, Mohammed OA, Darwish SF, Salama RM, Mangoura SA, Al-Noshokaty TM, Gomaa RM, Elesawy AE, El-Demerdash AA, Zaki MB, Abulsoud AI, El-Dakroury WA, Elrebehy MA, Abdel-Reheim MA, Moustafa YM, Gedawy EM, Doghish AS. The emerging role of miRNAs in epilepsy: From molecular signatures to diagnostic potential. Pathol Res Pract 2024; 254:155146. [PMID: 38266457 DOI: 10.1016/j.prp.2024.155146] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Epilepsy is a medical condition characterized by intermittent seizures accompanied by changes in consciousness. Epilepsy significantly impairs the daily functioning and overall well-being of affected individuals. Epilepsy is a chronic neurological disorder characterized by recurrent seizures resulting from various dysfunctions in brain activity. The molecular processes underlying changes in neuronal structure, impaired apoptotic responses in neurons, and disruption of regenerative pathways in glial cells in epilepsy remain unknown. MicroRNAs (miRNAs) play a crucial role in regulating apoptosis, autophagy, oxidative stress, neuroinflammation, and the body's regenerative and immune responses. miRNAs have been shown to influence many pathogenic processes in epilepsy including inflammatory responses, neuronal necrosis and apoptosis, dendritic growth, synaptic remodeling, and other processes related to the development of epilepsy. Therefore, the purpose of our current analysis was to determine the role of miRNAs in the etiology and progression of epilepsy. Furthermore, they have been examined for their potential application as biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Sherif S Abdel Mageed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ahmed A Rashad
- Department of Clinical Pharmacy and Pharmacy Practice, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Shereen Saeid Elshaer
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Department of Biochemistry, Faculty of Pharmacy (Girls), Al-Azhar University, Nasr City, Cairo 11823, Egypt
| | - Mohammed S Elballal
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Osama A Mohammed
- Department of Pharmacology, College of Medicine, University of Bisha, Bisha 61922, Saudi Arabia
| | - Samar F Darwish
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Rania M Salama
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Misr International University (MIU), Cairo, Egypt
| | - Safwat Abdelhady Mangoura
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Tohada M Al-Noshokaty
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt
| | - Rania M Gomaa
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Mansoura University, P.O. Box 35516, Mansoura, Egypt; Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed E Elesawy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Aya A El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mohamed Bakr Zaki
- Department of Biochemistry, Faculty of Pharmacy, University of Sadat City, Menoufia 32897, Egypt
| | - Ahmed I Abulsoud
- Biochemistry Department, Faculty of Pharmacy, Heliopolis University, Cairo 11785, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| | - Walaa A El-Dakroury
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mahmoud A Elrebehy
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Mustafa Ahmed Abdel-Reheim
- Department of Pharmaceutical Sciences, College of Pharmacy, Shaqra University, Shaqra 11961, Saudi Arabia; Department of Pharmacology and Toxicology, Faculty of Pharmacy, Beni-Suef University, Beni Suef 62521, Egypt.
| | - Yasser M Moustafa
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt
| | - Ehab M Gedawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy and Pharmaceutical Industries, Badr University in Cairo (BUC), Badr City, P.O. Box 11829, Cairo, Egypt
| | - Ahmed S Doghish
- Department of Biochemistry, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo 11829, Egypt; Biochemistry and Molecular Biology Department, Faculty of Pharmacy (Boys), Al-Azhar University, Nasr City, 11231 Cairo, Egypt.
| |
Collapse
|
4
|
Chen S, Huang M, Xu D, Li M. Epigenetic regulation in epilepsy: A novel mechanism and therapeutic strategy for epilepsy. Neurochem Int 2024; 173:105657. [PMID: 38145842 DOI: 10.1016/j.neuint.2023.105657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 12/02/2023] [Accepted: 12/14/2023] [Indexed: 12/27/2023]
Abstract
Epilepsy is a common neurological disorder characterized by recurrent seizures with excessive and abnormal neuronal discharges. Epileptogenesis is usually involved in neuropathological processes such as ion channel dysfunction, neuronal injury, inflammatory response, synaptic plasticity, gliocyte proliferation and mossy fiber sprouting, currently the pathogenesis of epilepsy is not yet completely understood. A growing body of studies have shown that epigenetic regulation, such as histone modifications, DNA methylation, noncoding RNAs (ncRNAs), N6-methyladenosine (m6A) and restrictive element-1 silencing transcription factor/neuron-restrictive silencing factor (REST/NRSF) are also involved in epilepsy. Through epigenetic studies, we found that the synaptic dysfunction, nerve damage, cognitive dysfunction and brain development abnormalities are affected by epigenetic regulation of epilepsy-related genes in patients with epilepsy. However, the functional roles of epigenetics in pathogenesis and treatment of epilepsy are still to be explored. Therefore, profiling the array of genes that are epigenetically dysregulated in epileptogenesis is likely to advance our understanding of the mechanisms underlying the pathophysiology of epilepsy and may for the amelioration of these serious human conditions provide novel insight into therapeutic strategies and diagnostic biomarkers for epilepsy to improve serious human condition.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Ming Huang
- Department of Neurology, Hubei Provincial Hospital of Integrated Chinese and Western Medicine, Hubei University of Chinese Medicine, Wuhan, 430000, China
| | - Da Xu
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Man Li
- Department of Neurology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China.
| |
Collapse
|
5
|
Pai MS, Wang KC, Yeh KC, Wang SJ. Stabilization of mitochondrial function by chlorogenic acid protects against kainic acid-induced seizures and neuronal cell death in rats. Eur J Pharmacol 2023; 961:176197. [PMID: 38000721 DOI: 10.1016/j.ejphar.2023.176197] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 10/21/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
The current study investigated the effect of chlorogenic acid, a polyphenolic compound found in numerous plant products, on a kainic acid-induced seizure rat model and its potential mechanism. Rats were administered chlorogenic acid (10 and 50 mg/kg) intraperitoneally for 30 min before kainic acid (15 mg/kg) intraperitoneal administration. Pretreatment with chlorogenic acid decreased the seizure score, increased the latency to onset of the first seizure, and decreased the mortality rate. Chlorogenic acid pretreatment also resulted in a significant reduction in glutamate elevation and neuronal death in the hippocampus of kainic acid-treated rats. In addition, electron microscopy revealed that kainic acid-induced changes in hippocampal mitochondrial structure were prevented by chlorogenic acid pretreatment. Additionally, the levels of mitochondrial function-related proteins, including sirtuin 3, Complex I, glutamate dehydrogenase 1 and ATP synthase, were increased, and the level of the mitochondrial damage marker cytochrome C was decreased in the hippocampus of chlorogenic acid/kainic acid rats. Furthermore, the expression of mitochondrial biogenesis-related proteins [AMP-activated protein kinase (AMPK), sirtuin1, and peroxisome proliferator-activated receptor γ-coactivator-1α (PGC-1α)] and mitophagy-related proteins [phosphatase and tensin homolog (PTEN)-induced putative kinase 1 (PINK1), Parkin, and microtubule-associated protein 1 light chain 3 (LC3)] was decreased in the hippocampus of kainic acid-treated rats, which was reversed by chlorogenic acid pretreatment. These observations reveal the marked neuroprotective potential of chlorogenic acid against kainic acid-induced neurotoxicity and seizures through prevention of glutamate increase and preservation of AMPK/sirtuin 1/PGC-1α-mediated mitochondrial biogenesis and PINK1/Parkin-induced mitophagy to maintain adequate mitochondrial homeostasis and function.
Collapse
Affiliation(s)
- Ming-Shang Pai
- Department of Psychiatry, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan
| | - Kaw-Chen Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Neurology, Cardinal Tien Hospital, New Taipei, Taiwan
| | - Kun-Chieh Yeh
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Department of Surgery, Taoyuan Armed Forces General Hospital, Taoyuan, Taiwan; Department of Surgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, No.510, Zhongzheng Rd., Xinzhuang Dist, New Taipei City, 24205, Taiwan; Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan City, Taiwan.
| |
Collapse
|
6
|
Hansen SN, Holm A, Kauppinen S, Klitgaard H. RNA therapeutics for epilepsy: An emerging modality for drug discovery. Epilepsia 2023; 64:3113-3129. [PMID: 37703096 DOI: 10.1111/epi.17772] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 09/04/2023] [Accepted: 09/11/2023] [Indexed: 09/14/2023]
Abstract
Drug discovery in epilepsy began with the finding of potassium bromide by Sir Charles Locock in 1857. The following century witnessed the introduction of phenotypic screening tests for discovering antiseizure medications (ASMs). Despite the high success rate of developing ASMs, they have so far failed in eliminating drug resistance and in delivering disease-modifying treatments. This emphasizes the need for new drug discovery strategies in epilepsy. RNA-based drugs have recently shown promise as a new modality with the potential of providing disease modification and counteracting drug resistance in epilepsy. RNA therapeutics can be directed either toward noncoding RNAs, such as microRNAs, long noncoding RNAs (ncRNAs), and circular RNAs, or toward messenger RNAs. The former show promise in sporadic, nongenetic epilepsies, as interference with ncRNAs allows for modulation of entire disease pathways, whereas the latter seem more promising in monogenic childhood epilepsies. Here, we describe therapeutic strategies for modulating disease-associated RNA molecules and highlight the potential of RNA therapeutics for the treatment of different patient populations such as sporadic, drug-resistant epilepsy, and childhood monogenic epilepsies.
Collapse
Affiliation(s)
| | - Anja Holm
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | - Sakari Kauppinen
- Department of Clinical Medicine, Center for RNA Medicine, Aalborg University, Copenhagen, Denmark
| | | |
Collapse
|
7
|
Çarman KB, Tekin HG, Çavuşoğlu D, Yarar C, Kaplan E, Karademir CN, Arslantaş D. Evaluation of MicroRNAs in Pediatric Epilepsy. Turk Arch Pediatr 2023; 58:429-435. [PMID: 37357458 PMCID: PMC10441094 DOI: 10.5152/turkarchpediatr.2023.22320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/19/2023] [Indexed: 06/27/2023]
Abstract
OBJECTIVE The pathophysiology of epilepsy remains unknown. Recent research has shown that microRNA expression changes in epileptic adults. In the present work, we aimed to identify serum microRNA expression in drug-responsive and resistant children with idiopathic general- ized epilepsy. MATERIALS AND METHODS The study included 43 (20 male and 23 female) epilepsy patients and 66 (43 male and 23 female) control subjects. The mean ages of the groups were 113.41 ± 61.83 and 105.46 ± 62.31 months, respectively. Twenty-eight epileptic patients were classi- fied as drug resistant. Thirteen of the controls were the siblings of patients with epilepsy. The study only included children with idiopathic generalized epilepsy who had normal brain mag- netic resonance imaging. The serum microRNA expressions (microRNA-181a, microRNA-155, microRNA-146, and microRNA-223) were investigated. Expressions of serum microRNA-181a, microRNA-155, microRNA-146, and microRNA-223 were previously investigated in epilepsy patients and children with febrile seizures. Therefore, these microRNAs were chosen. The expressions of serum levels of microRNAs were determined using quantitative real-time poly- merase chain reaction. RESULTS The results indicated that the expressions of serum microRNA-155 and microRNA-223 were elevated in epileptic children (P < .05). The expression of the same microRNAs was also elevated in individuals with drug-resistant epilepsy compared to healthy controls (P < .05). microRNA-146a, microRNA-155, and microRNA-223 expressions were higher in drug-resistant patients than in drug-responsive children (P < .05). A logistic regression study determined that an increase of microRNA-155 was a risk for epilepsy, while a decrease of microRNA-146a risk for epilepsy. CONCLUSION Few researchers have investigated the function of microRNAs in the develop- ment of childhood epilepsy. Our findings revealed that epilepsy patients have abnormal microRNAexpression.
Collapse
Affiliation(s)
- Kürşat Bora Çarman
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Hande Gazeteci Tekin
- Department of Pediatric Neurology, Bakırçay University, Training Hospital, İzmir, Turkey
| | - Dilek Çavuşoğlu
- Department of Pediatric Neurology, Afyon University of Health Sciences Faculty of Medicine, Afyonkarahisar, Turkey
| | - Coşkun Yarar
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Emre Kaplan
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Cefa Nil Karademir
- Department of Pediatric Neurology, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| | - Didem Arslantaş
- Department of Public Health, Eskişehir Osmangazi University Faculty of Medicine, Eskişehir, Turkey
| |
Collapse
|
8
|
Molecular Mechanism and Regulation of Autophagy and Its Potential Role in Epilepsy. Cells 2022; 11:cells11172621. [PMID: 36078029 PMCID: PMC9455075 DOI: 10.3390/cells11172621] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/14/2022] [Accepted: 08/22/2022] [Indexed: 01/18/2023] Open
Abstract
Autophagy is an evolutionally conserved degradation mechanism for maintaining cell homeostasis whereby cytoplasmic components are wrapped in autophagosomes and subsequently delivered to lysosomes for degradation. This process requires the concerted actions of multiple autophagy-related proteins and accessory regulators. In neurons, autophagy is dynamically regulated in different compartments including soma, axons, and dendrites. It determines the turnover of selected materials in a spatiotemporal control manner, which facilitates the formation of specialized neuronal functions. It is not surprising, therefore, that dysfunctional autophagy occurs in epilepsy, mainly caused by an imbalance between excitation and inhibition in the brain. In recent years, much attention has been focused on how autophagy may cause the development of epilepsy. In this article, we overview the historical landmarks and distinct types of autophagy, recent progress in the core machinery and regulation of autophagy, and biological roles of autophagy in homeostatic maintenance of neuronal structures and functions, with a particular focus on synaptic plasticity. We also discuss the relevance of autophagy mechanisms to the pathophysiology of epileptogenesis.
Collapse
|
9
|
Comprehensive analysis of ncRNA involvement in brain microglia immunology. Clin Immunol 2022; 241:109075. [PMID: 35809855 DOI: 10.1016/j.clim.2022.109075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/28/2022] [Accepted: 07/04/2022] [Indexed: 11/23/2022]
Abstract
Microglia is a major class of brain-resident myeloid cells and non-coding RNAs (ncRNAs) serves as key regulators in microglia homeostasis and inflammatory process. Here, we constructed the systematical association between microglia and ncRNAs including miRNAs, lncRNAs and circRNAs from two aspects, manual retrieval and computational detection. A total of 648 experimental verified ncRNA-microglia associations were obtained from published studies, including ncRNA regulatory patterns within different experimental models. Furthermore, we extracted 9 miRNA and 1 lncRNA expression profiles from the GEO database. Also, we obtained 31 sample-match miRNA and mRNA expression profiles, containing a total of 2335 normal or disordered brain samples. Finally, we developed a platform named MG-ncRexplorer (http://bio-bigdata.hrbmu.edu.cn/MG-ncRexplorer/), exploring the associations between ncRNAs and microglia among experimental validated and computational detection. To demonstrate the usage of MG-ncRexplorer, we constructed regulatory target networks based on manual retrieval associations and identified risk glioma miRNAs among multiple high-throughput expression profiles.
Collapse
|
10
|
Visintin R, Ray SK. Specific microRNAs for Modulation of Autophagy in Spinal Cord Injury. Brain Sci 2022; 12:247. [PMID: 35204010 PMCID: PMC8870708 DOI: 10.3390/brainsci12020247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/02/2022] [Accepted: 02/06/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of spinal cord injury (SCI) is currently a major challenge, with a severe lack of effective therapies for yielding meaningful improvements in function. Therefore, there is a great opportunity for the development of novel treatment strategies for SCI. The modulation of autophagy, a process by which a cell degrades and recycles unnecessary or harmful components (protein aggregates, organelles, etc.) to maintain cellular homeostasis and respond to a changing microenvironment, is thought to have potential for treating many neurodegenerative conditions, including SCI. The discovery of microRNAs (miRNAs), which are short ribonucleotide transcripts for targeting of specific messenger RNAs (mRNAs) for silencing, shows prevention of the translation of mRNAs to the corresponding proteins affecting various cellular processes, including autophagy. The number of known miRNAs and their targets continues to grow rapidly. This review article aims to explore the relationship between autophagy and SCI, specifically with the intent of identifying specific miRNAs that can be useful to modulate autophagy for neuroprotection and the improvement of functional recovery in SCI.
Collapse
Affiliation(s)
- Rhett Visintin
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC 29208, USA;
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, Columbia, SC 29209, USA
| |
Collapse
|