2
|
Pal GD, David FJ, Shils JL, Munoz MJ, Afshari M, Sani S, Metman LV, Corcos DM. Subthalamic Physiology in Genetic Subtypes of Parkinson's Disease. Mov Disord 2023; 38:1113-1114. [PMID: 37475610 PMCID: PMC10372720 DOI: 10.1002/mds.29409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 02/27/2023] [Indexed: 07/22/2023] Open
Affiliation(s)
- Gian D. Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
| | - Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Jay L. Shils
- Department of Anesthesiology, Rush University Medical Center, Chicago, IL, USA
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen Metman
- Parkinson’s Disease and Movement Disorders Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
3
|
Weill C, Gallant A, Baker Erdman H, Abu Snineh M, Linetsky E, Bergman H, Israel Z, Arkadir D. The Genetic Etiology of Parkinson's Disease Does Not Robustly Affect Subthalamic Physiology. Mov Disord 2023; 38:484-489. [PMID: 36621944 DOI: 10.1002/mds.29310] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/13/2022] [Accepted: 12/05/2022] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND It is unknown whether Parkinson's disease (PD) genetic heterogeneity, leading to phenotypic and pathological variability, is also associated with variability in the unique PD electrophysiological signature. Such variability might have practical implications for adaptive deep brain stimulation (DBS). OBJECTIVE The aim of our work was to study the electrophysiological activity in the subthalamic nucleus (STN) of patients with PD with pathogenic variants in different disease-causing genes. METHODS Electrophysiological data from participants with negative genetic tests were compared with those from GBA, LRRK2, and PRKN-PD. RESULTS We analyzed data from 93 STN trajectories (GBA-PD: 28, LRRK2-PD: 22, PARK-PD: 10, idiopathic PD: 33) of 52 individuals who underwent DBS surgery. Characteristics of β oscillatory activity in the dorsolateral motor part of the STN were similar for patients with negative genetic tests and for patients with different forms of monogenic PD. CONCLUSIONS The genetic heterogeneity in PD is not associated with electrophysiological differences. Therefore, similar adaptive DBS algorithms would be applicable to genetically heterogeneous patient populations. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Caroline Weill
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Akiva Gallant
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Halen Baker Erdman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
| | - Muneer Abu Snineh
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Eduard Linetsky
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| | - Hagai Bergman
- The Edmond and Lily Safra Center for Brain Sciences, The Hebrew University, Jerusalem, Israel
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - Zvi Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
- Department of Neurosurgery, Hadassah Medical Center, Jerusalem, Israel
| | - David Arkadir
- Department of Neurology, Hadassah Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University, Jerusalem, Israel
| |
Collapse
|
4
|
David FJ, Rivera YM, Entezar TK, Arora R, Drane QH, Munoz MJ, Rosenow JM, Sani SB, Pal GD, Verhagen-Metman L, Corcos DM. Encoding type, medication, and deep brain stimulation differentially affect memory-guided sequential reaching movements in Parkinson's disease. Front Neurol 2022; 13:980935. [PMID: 36324383 PMCID: PMC9618698 DOI: 10.3389/fneur.2022.980935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/26/2022] [Indexed: 11/13/2022] Open
Abstract
Memory-guided movements, vital to daily activities, are especially impaired in Parkinson's disease (PD). However, studies examining the effects of how information is encoded in memory and the effects of common treatments of PD, such as medication and subthalamic nucleus deep brain stimulation (STN-DBS), on memory-guided movements are uncommon and their findings are equivocal. We designed two memory-guided sequential reaching tasks, peripheral-vision or proprioception encoded, to investigate the effects of encoding type (peripheral-vision vs. proprioception), medication (on- vs. off-), STN-DBS (on- vs. off-, while off-medication), and compared STN-DBS vs. medication on reaching amplitude, error, and velocity. We collected data from 16 (analyzed n = 7) participants with PD, pre- and post-STN-DBS surgery, and 17 (analyzed n = 14) healthy controls. We had four important findings. First, encoding type differentially affected reaching performance: peripheral-vision reaches were faster and more accurate. Also, encoding type differentially affected reaching deficits in PD compared to healthy controls: peripheral-vision reaches manifested larger deficits in amplitude. Second, the effect of medication depended on encoding type: medication had no effect on amplitude, but reduced error for both encoding types, and increased velocity only during peripheral-vision encoding. Third, the effect of STN-DBS depended on encoding type: STN-DBS increased amplitude for both encoding types, increased error during proprioception encoding, and increased velocity for both encoding types. Fourth, STN-DBS was superior to medication with respect to increasing amplitude and velocity, whereas medication was superior to STN-DBS with respect to reducing error. We discuss our findings in the context of the previous literature and consider mechanisms for the differential effects of medication and STN-DBS.
Collapse
Affiliation(s)
- Fabian J. David
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Yessenia M. Rivera
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Tara K. Entezar
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana-Champaign, IL, United States
| | - Rishabh Arora
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Quentin H. Drane
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Miranda J. Munoz
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Joshua M. Rosenow
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Sepehr B. Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, United States
| | - Gian D. Pal
- Department of Neurology, Rutgers University, New Brunswick, NJ, United States
| | - Leonard Verhagen-Metman
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| | - Daniel M. Corcos
- Department of Physical Therapy and Human Movement Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, United States
| |
Collapse
|
5
|
Pal G, Mangone G, Hill EJ, Ouyang B, Liu Y, Lythe V, Ehrlich D, Saunders-Pullman R, Shanker V, Bressman S, Alcalay RN, Garcia P, Marder KS, Aasly J, Mouradian MM, Link S, Rosenbaum M, Anderson S, Bernard B, Wilson R, Stebbins G, Nichols WC, Welter ML, Sani S, Afshari M, Verhagen L, de Bie RM, Foltynie T, Hall D, Corvol JC, Goetz CG. Parkinson Disease and Subthalamic Nucleus Deep Brain Stimulation: Cognitive Effects in GBA Mutation Carriers. Ann Neurol 2022; 91:424-435. [PMID: 34984729 PMCID: PMC8857042 DOI: 10.1002/ana.26302] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/01/2022] [Accepted: 01/03/2022] [Indexed: 12/16/2022]
Abstract
OBJECTIVE This study was undertaken to compare the rate of change in cognition between glucocerebrosidase (GBA) mutation carriers and noncarriers with and without subthalamic nucleus deep brain stimulation (STN-DBS) in Parkinson disease. METHODS Clinical and genetic data from 12 datasets were examined. Global cognition was assessed using the Mattis Dementia Rating Scale (MDRS). Subjects were examined for mutations in GBA and categorized as GBA carriers with or without DBS (GBA+DBS+, GBA+DBS-), and noncarriers with or without DBS (GBA-DBS+, GBA-DBS-). GBA mutation carriers were subcategorized according to mutation severity (risk variant, mild, severe). Linear mixed modeling was used to compare rate of change in MDRS scores over time among the groups according to GBA and DBS status and then according to GBA severity and DBS status. RESULTS Data were available for 366 subjects (58 GBA+DBS+, 82 GBA+DBS-, 98 GBA-DBS+, and 128 GBA-DBS- subjects), who were longitudinally followed (range = 36-60 months after surgery). Using the MDRS, GBA+DBS+ subjects declined on average 2.02 points/yr more than GBA-DBS- subjects (95% confidence interval [CI] = -2.35 to -1.69), 1.71 points/yr more than GBA+DBS- subjects (95% CI = -2.14 to -1.28), and 1.49 points/yr more than GBA-DBS+ subjects (95% CI = -1.80 to -1.18). INTERPRETATION Although not randomized, this composite analysis suggests that the combined effects of GBA mutations and STN-DBS negatively impact cognition. We advise that DBS candidates be screened for GBA mutations as part of the presurgical decision-making process. We advise that GBA mutation carriers be counseled regarding potential risks associated with STN-DBS so that alternative options may be considered. ANN NEUROL 2022;91:424-435.
Collapse
Affiliation(s)
- Gian Pal
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Graziella Mangone
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Emily J. Hill
- Department of Neurology and Rehabilitation Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Bichun Ouyang
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Yuanqing Liu
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Vanessa Lythe
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Debra Ehrlich
- Parkinson’s Disease Clinic, Office of the Clinical Director, NIH/NINDS, Bethesda, MD, USA
| | - Rachel Saunders-Pullman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Vicki Shanker
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Susan Bressman
- Department of Neurology, Mount Sinai Beth Israel, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Roy N. Alcalay
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Priscilla Garcia
- Department of Neurology, New York Medical College, Valhalla, NY, USA
| | - Karen S. Marder
- Department of Neurology, College of Physicians and Surgeons, Columbia University Medical Center, New York, NY, USA
| | - Jan Aasly
- Department of Neurology, St. Olavs Hospital and Department of Neuroscience, Norwegian University of Science and Technology, Trondheim, 7030, Norway
| | - M. Maral Mouradian
- Department of Neurology, Rutgers-Robert Wood Johnson Medical School, New Brunswick, NJ, USA
- Robert Wood Johnson Medical School Institute for Neurological Therapeutics, Rutgers Biomedical and Health Sciences, Piscataway, NJ, USA
| | - Samantha Link
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Marc Rosenbaum
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Sharlet Anderson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Bryan Bernard
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Robert Wilson
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Glenn Stebbins
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - William C. Nichols
- Division of Human Genetics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH, USA
| | - Marie-Laure Welter
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
- Normandie Univ, CHU Rouen, Department of Neurophysiology, Rouen, France
| | - Sepehr Sani
- Department of Neurosurgery, Rush University Medical Center, Chicago, IL, USA
| | - Mitra Afshari
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Leo Verhagen
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Rob M.A. de Bie
- Amsterdam University Medical Centers, University of Amsterdam, Department of Neurology, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Tom Foltynie
- Department of Clinical & Movement Neurosciences, UCL Institute of Neurology, London, UK
| | - Deborah Hall
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Jean-Christophe Corvol
- Sorbonne Université, Assistance Publique Hôpitaux de Paris, Inserm, CNRS, Institut du Cerveau – Paris Brain Institute – ICM, Pitié-Salpêtrière Hospital, Department of Neurology, Centre d’Investigation Clinique Neurosciences, Paris, France
| | - Christopher G. Goetz
- Department of Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| |
Collapse
|