1
|
Al-Dhahi AS, Al-Kuraishy HM, Albuhadily AK, Al-Gareeb AI, Abdelaziz AM, Alexiou A, Papadakis M, Alruwaili M, El-Saber Batiha G. The possible role of neurogenesis activators in temporal lobe epilepsy: State of art and future perspective. Eur J Pharmacol 2025; 998:177646. [PMID: 40258399 DOI: 10.1016/j.ejphar.2025.177646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/08/2025] [Accepted: 04/17/2025] [Indexed: 04/23/2025]
Abstract
Neurogenesis is a complex process by which the neurons and supporting cells of the central nervous system (CNS) are generated by neural stem cells. Adult hippocampal neurogenesis (AHN) in the human brain is an active process during life and plays a critical role in the regulation of memory, cognition, and mood. It has been shown that epilepsy is linked with dysregulation of AHN. Of note, AHN is very sensitive to the pathological electrical stimuli during epileptic seizures, which result in the induction of neurogenesis in acute epilepsy and inhibition of neurogenesis in chronic epilepsy. Epileptic seizure-induced neurodegeneration activates the mobilization of neural stem cells during neurogenesis to substitute for neural loss in temporal lobe epilepsy (TLE), which is the most refractory type of epilepsy. Moreover, recurrent epileptic seizures in TLE trigger neurogenesis in certain brain regions. However, AHN is a transient acute epileptic seizure that terminated with 1-4 weeks following status epilepticus (SE). Nevertheless, adult AHN is dramatically reduced in chronic epilepsy and associated with the development of cognitive impairment in TLE. These findings indicate that impairment of AHN is linked with the severity of epileptic seizures. Hence, neurogenesis activators may attenuate the pathogenesis of TLE. Therefore, this review aims to discuss and explain the beneficial role of AHN in TLE and how neurogenesis activators could be effective in the management of epilepsy.
Collapse
Affiliation(s)
- Ahmed Salem Al-Dhahi
- Department of Neuroscience, King Fahad Specialist Hospital, Tabuk, Saudi Arabia.
| | - Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq.
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, Al-Mustansiriyah University, Baghdad, Iraq; Jabir ibn Hayyan Medical University Al-Ameer Qu./ Najaf - Iraq Po. Box (13), Kufa, Iraq.
| | - Ahmed M Abdelaziz
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Sinai University, Arish Branch, Arish 45511, Egypt.
| | - Athanasios Alexiou
- University Centre for Research & Development, Chandigarh University, Mohali, India; Department of Research & Development, Funogen, Athens, Greece.
| | - Marios Papadakis
- University Hospital Witten-Herdecke, University of Witten, Herdecke, Heusnerstrasse 40, Wuppertal 42283, Germany.
| | - Mubarak Alruwaili
- Department of Internal Medicine, College of Medicine, Jouf University, Sakaka, Saudi Arabia.
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhur University, Damanhur 22511, AlBeheira, Egypt.
| |
Collapse
|
2
|
Perkins GD, Neumar R, Hsu CH, Hirsch KG, Aneman A, Becker LB, Couper K, Callaway CW, Hoedemaekers CWE, Lim SL, Meurer W, Olasveengen T, Sekhon MS, Skrifvars M, Soar J, Tsai MS, Vengamma B, Nolan JP. Improving Outcomes After Post-Cardiac Arrest Brain Injury: A Scientific Statement From the International Liaison Committee on Resuscitation. Resuscitation 2024; 201:110196. [PMID: 38932555 DOI: 10.1016/j.resuscitation.2024.110196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
This scientific statement presents a conceptual framework for the pathophysiology of post-cardiac arrest brain injury, explores reasons for previous failure to translate preclinical data to clinical practice, and outlines potential paths forward. Post-cardiac arrest brain injury is characterized by 4 distinct but overlapping phases: ischemic depolarization, reperfusion repolarization, dysregulation, and recovery and repair. Previous research has been challenging because of the limitations of laboratory models; heterogeneity in the patient populations enrolled; overoptimistic estimation of treatment effects leading to suboptimal sample sizes; timing and route of intervention delivery; limited or absent evidence that the intervention has engaged the mechanistic target; and heterogeneity in postresuscitation care, prognostication, and withdrawal of life-sustaining treatments. Future trials must tailor their interventions to the subset of patients most likely to benefit and deliver this intervention at the appropriate time, through the appropriate route, and at the appropriate dose. The complexity of post-cardiac arrest brain injury suggests that monotherapies are unlikely to be as successful as multimodal neuroprotective therapies. Biomarkers should be developed to identify patients with the targeted mechanism of injury, to quantify its severity, and to measure the response to therapy. Studies need to be adequately powered to detect effect sizes that are realistic and meaningful to patients, their families, and clinicians. Study designs should be optimized to accelerate the evaluation of the most promising interventions. Multidisciplinary and international collaboration will be essential to realize the goal of developing effective therapies for post-cardiac arrest brain injury.
Collapse
|
3
|
Dey J, Chandra S, Gupta J, Tripathi PP. Hippocampal neurodegeneration induces transient endogenous regeneration and long-term exhaustion of the neurogenic niche. J Cell Physiol 2024; 239:e31249. [PMID: 38501376 DOI: 10.1002/jcp.31249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 02/25/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
The hippocampal dentate gyrus, responds to diverse pathological stimuli through neurogenesis. This phenomenon, observed following brain injury or neurodegeneration, is postulated to contribute to neuronal repair and functional recovery, thereby presenting an avenue for endogenous neuronal restoration. This study investigated the extent of regenerative response in hippocampal neurogenesis by leveraging the well-established kainic acid-induced status epilepticus model in vivo. In our study, we observed the activation and proliferation of neuronal progenitors or neural stem cell (NSC) and their subsequent migration to the injury sites following the seizure. At the injury sites, new neurons (Tuj1+BrdU+ and NeuN+BrdU+) have been generated indicating regenerative and reparative roles of the progenitor cells. We further detected whether this transient neurogenic burst, which might be a response towards an attempt to repair the brain, is associated with persistent long-term exhaustion of the dentate progenitor cells and impairment of adult neurogenesis marked by downregulation of Ki67, HoPX, and Sox2 with BrdU+ cell in the later part of life. Our studies suggest that the adult brain has the constitutive endogenous regenerative potential for brain repair to restore the damaged neurons, meanwhile, in the long term, it accelerates the depletion of the finite NSC pool in the hippocampal neurogenic niche by changing its proliferative and neurogenic capacity. A thorough understanding of the impact of modulating adult neurogenesis will eventually be required to design novel therapeutics to stimulate or assist brain repair while simultaneously preventing the adverse effects of early robust neurogenesis on the proliferative potential of endogenous neuronal progenitors.
Collapse
Affiliation(s)
- Jhilik Dey
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Sreyashi Chandra
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Jalaj Gupta
- Stem Cell Research Centre, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Prem Prakash Tripathi
- Cell Biology and Physiology, CSIR-Indian Institute of Chemical Biology, Kolkata, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| |
Collapse
|
4
|
Geribaldi-Doldán N, Carrascal L, Pérez-García P, Oliva-Montero JM, Pardillo-Díaz R, Domínguez-García S, Bernal-Utrera C, Gómez-Oliva R, Martínez-Ortega S, Verástegui C, Nunez-Abades P, Castro C. Migratory Response of Cells in Neurogenic Niches to Neuronal Death: The Onset of Harmonic Repair? Int J Mol Sci 2023; 24:6587. [PMID: 37047560 PMCID: PMC10095545 DOI: 10.3390/ijms24076587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/27/2023] [Indexed: 04/05/2023] Open
Abstract
Harmonic mechanisms orchestrate neurogenesis in the healthy brain within specific neurogenic niches, which generate neurons from neural stem cells as a homeostatic mechanism. These newly generated neurons integrate into existing neuronal circuits to participate in different brain tasks. Despite the mechanisms that protect the mammalian brain, this organ is susceptible to many different types of damage that result in the loss of neuronal tissue and therefore in alterations in the functionality of the affected regions. Nevertheless, the mammalian brain has developed mechanisms to respond to these injuries, potentiating its capacity to generate new neurons from neural stem cells and altering the homeostatic processes that occur in neurogenic niches. These alterations may lead to the generation of new neurons within the damaged brain regions. Notwithstanding, the activation of these repair mechanisms, regeneration of neuronal tissue within brain injuries does not naturally occur. In this review, we discuss how the different neurogenic niches respond to different types of brain injuries, focusing on the capacity of the progenitors generated in these niches to migrate to the injured regions and activate repair mechanisms. We conclude that the search for pharmacological drugs that stimulate the migration of newly generated neurons to brain injuries may result in the development of therapies to repair the damaged brain tissue.
Collapse
Affiliation(s)
- Noelia Geribaldi-Doldán
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Livia Carrascal
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Pérez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - José M. Oliva-Montero
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Ricardo Pardillo-Díaz
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Samuel Domínguez-García
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Department of Neuroscience, Karolinska Institutet, Biomedicum, 17177 Stockholm, Sweden
| | - Carlos Bernal-Utrera
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisioterapia, Facultad de Enfermería, Fisioterapia y Podología, Universidad de Sevilla, 41009 Sevilla, Spain
| | - Ricardo Gómez-Oliva
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Sergio Martínez-Ortega
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| | - Cristina Verástegui
- Departamento de Anatomía y Embriología Humanas, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
| | - Pedro Nunez-Abades
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Fisiología, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Carmen Castro
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), 11009 Cádiz, Spain
- Departamento de Biomedicina, Biotecnología y Salud Pública, Área de Fisiología, Facultad de Medicina, Universidad de Cádiz, 11003 Cádiz, Spain
| |
Collapse
|
5
|
Redina OE, Babenko VN, Smagin DA, Kovalenko IL, Galyamina AG, Efimov VM, Kudryavtseva NN. Effects of Positive Fighting Experience and Its Subsequent Deprivation on the Expression Profile of Mouse Hippocampal Genes Associated with Neurogenesis. Int J Mol Sci 2023; 24:3040. [PMID: 36769363 PMCID: PMC9918130 DOI: 10.3390/ijms24033040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/19/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
The hippocampus is known as the brain region implicated in visuospatial processes and processes associated with learning and short- and long-term memory. An important functional characteristic of the hippocampus is lifelong neurogenesis. A decrease or increase in adult hippocampal neurogenesis is associated with a wide range of neurological diseases. We have previously shown that in adult male mice with a chronic positive fighting experience in daily agonistic interactions, there is an increase in the proliferation of progenitor neurons and the production of young neurons in the dentate gyrus (in hippocampus), and these neurogenesis parameters remain modified during 2 weeks of deprivation of further fights. The aim of the present work was to identify hippocampal genes associated with neurogenesis and involved in the formation of behavioral features in mice with the chronic experience of wins in aggressive confrontations, as well as during the subsequent 2-week deprivation of agonistic interactions. Hippocampal gene expression profiles were compared among three groups of adult male mice: chronically winning for 20 days in the agonistic interactions, chronically victorious for 20 days followed by the 2-week deprivation of fights, and intact (control) mice. Neurogenesis-associated genes were identified whose transcription levels changed during the social confrontations and in the subsequent period of deprivation of fights. In the experimental males, some of these genes are associated with behavioral traits, including abnormal aggression-related behavior, an abnormal anxiety-related response, and others. Two genes encoding transcription factors (Nr1d1 and Fmr1) were likely to contribute the most to the between-group differences. It can be concluded that the chronic experience of wins in agonistic interactions alters hippocampal levels of transcription of multiple genes in adult male mice. The transcriptome changes get reversed only partially after the 2-week period of deprivation of fights. The identified differentially expressed genes associated with neurogenesis and involved in the control of a behavior/neurological phenotype can be used in further studies to identify targets for therapeutic correction of the neurological disturbances that develop in winners under the conditions of chronic social confrontations.
Collapse
Affiliation(s)
- Olga E. Redina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vladimir N. Babenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Dmitry A. Smagin
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Irina L. Kovalenko
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Anna G. Galyamina
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Vadim M. Efimov
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
| | - Natalia N. Kudryavtseva
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia
- Pavlov Institute of Physiology, Russian Academy of Sciences, Saint Petersburg 199034, Russia
| |
Collapse
|
6
|
Chen P, Guo Z, Zhou B. Insight into the role of adult hippocampal neurogenesis in aging and Alzheimer's disease. Ageing Res Rev 2023; 84:101828. [PMID: 36549424 DOI: 10.1016/j.arr.2022.101828] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/09/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia and seriously affects the quality of life of the elderly. Neurodegeneration is closely related to hippocampal dysfunction in AD patients. The hippocampus is key to creating new memories and is also one of the first areas of the brain to deteriorate with age. Mammalian neurogenesis occurs mainly in the hippocampus. Recent studies have confirmed that neurogenesis in the hippocampus is sustainable but decreases with age, which seriously affects the learning and memory function of AD patients. At present, our understanding of neurogenesis is still relatively shallow, especially pertaining to the influence and role of neurogenesis during aging and cognitive deficits in AD patients. Interestingly, many recent studies have described the characteristics of neurogenesis in animal models. This article reviews the progress of neurogenesis research in the context of aging and AD to provide new insights into neurogenesis.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| | - ZhiLei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Wuhan, Hubei, China.
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
7
|
Yin BK, Lázaro D, Wang ZQ. TRRAP-mediated acetylation on Sp1 regulates adult neurogenesis. Comput Struct Biotechnol J 2022; 21:472-484. [PMID: 36618986 PMCID: PMC9804013 DOI: 10.1016/j.csbj.2022.12.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 12/15/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The adult hippocampal neurogenesis plays a vital role in the function of the central nervous system (CNS), including memory consolidation, cognitive flexibility, emotional function, and social behavior. The deficiency of adult neural stem cells (aNSCs) in maintaining the quiescence and entering cell cycle, self-renewal and differentiation capacity is detrimental to the functional integrity of neurons and cognition of the adult brain. Histone acetyltransferase (HAT) and histone deacetylase (HDAC) have been shown to modulate brain functionality and are important for embryonic neurogenesis via regulation of gene transcription. We showed previously that Trrap, an adapter for several HAT complexes, is required for Sp1 transcriptional control of the microtubule dynamics in neuronal cells. Here, we find that Trrap deletion compromises self-renewal and differentiation of aNSCs in mice and in cultures. We find that the acetylation status of lysine residues K16, K19, K703 and K639 all fail to overcome Trrap-deficiency-incurred instability of Sp1, indicating a scaffold role of Trrap. Interestingly, the deacetylation of Sp1 at K639 and K703 greatly increases Sp1 binding to the promoter of target genes, which antagonizes Trrap binding, and thereby elevates Sp1 activity. However, only deacetylated K639 is refractory to Trrap deficiency and corrects the differentiation defects of Trrap-deleted aNSCs. We demonstrate that the acetylation pattern at K639 by HATs dictates the role of Sp1 in the regulation of adult neurogenesis.
Collapse
Affiliation(s)
- Bo-Kun Yin
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - David Lázaro
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany
| | - Zhao-Qi Wang
- Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,Faculty of Biological Sciences, Friedrich-Schiller-University of Jena, Bachstrasse 18k, 07743 Jena, Germany,Corresponding author at: Leibniz Institute on Aging – Fritz Lipmann Institute (FLI), Beutenbergstrasse 11, 07745 Jena, Germany,.
| |
Collapse
|
8
|
Vaz A, Ribeiro I, Pinto L. Frontiers in Neurogenesis. Cells 2022; 11:cells11223567. [PMID: 36428996 PMCID: PMC9688671 DOI: 10.3390/cells11223567] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
One of the most intriguing dogmas in neurosciences-the empirical lack of brain neuronal regeneration in adulthood onwards to late life-began to be debunked initially by research groups focused on understanding postnatal (early days/weeks of murine and guinea pigs) neurodevelopmental and neuroplastic events [...].
Collapse
Affiliation(s)
- Andreia Vaz
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Bn’ML, Behavioral and Molecular Lab, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Inês Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
| | - Luísa Pinto
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s–PT Government Associate Laboratory, 4710-057 Braga, Portugal
- Bn’ML, Behavioral and Molecular Lab, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence:
| |
Collapse
|
9
|
Abstract
Epilepsy is a common neurological disease in both humans and domestic dogs, making dogs an ideal translational model of epilepsy. In both species, epilepsy is a complex brain disease characterized by an enduring predisposition to generate spontaneous recurrent epileptic seizures. Furthermore, as in humans, status epilepticus is one of the more common neurological emergencies in dogs with epilepsy. In both species, epilepsy is not a single disease but a group of disorders characterized by a broad array of clinical signs, age of onset, and underlying causes. Brain imaging suggests that the limbic system, including the hippocampus and cingulate gyrus, is often affected in canine epilepsy, which could explain the high incidence of comorbid behavioral problems such as anxiety and cognitive alterations. Resistance to antiseizure medications is a significant problem in both canine and human epilepsy, so dogs can be used to study mechanisms of drug resistance and develop novel therapeutic strategies to benefit both species. Importantly, dogs are large enough to accommodate intracranial EEG and responsive neurostimulation devices designed for humans. Studies in epileptic dogs with such devices have reported ictal and interictal events that are remarkably similar to those occurring in human epilepsy. Continuous (24/7) EEG recordings in a select group of epileptic dogs for >1 year have provided a rich dataset of unprecedented length for studying seizure periodicities and developing new methods for seizure forecasting. The data presented in this review substantiate that canine epilepsy is an excellent translational model for several facets of epilepsy research. Furthermore, several techniques of inducing seizures in laboratory dogs are discussed as related to therapeutic advances. Importantly, the development of vagus nerve stimulation as a novel therapy for drug-resistant epilepsy in people was based on a series of studies in dogs with induced seizures. Dogs with naturally occurring or induced seizures provide excellent large-animal models to bridge the translational gap between rodents and humans in the development of novel therapies. Furthermore, because the dog is not only a preclinical species for human medicine but also a potential patient and pet, research on this species serves both veterinary and human medicine.
Collapse
Affiliation(s)
- Wolfgang Löscher
- Department of Pharmacology, Toxicology and Pharmacy, University of Veterinary Medicine, Hannover, Germany
- Center for Systems Neuroscience, Hannover, Germany
| |
Collapse
|