1
|
Shams Z, Dai J, Gosselink M, Hoogduin H, van der Kemp W, Visser F, Klomp D, Wijnen J, Wiegers E. Interleaved Whole Brain 23Na-MRI and 31P-MRSI Acquisitions at 7 Tesla. NMR IN BIOMEDICINE 2025; 38:e70012. [PMID: 39956139 PMCID: PMC11830465 DOI: 10.1002/nbm.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/28/2025] [Accepted: 02/02/2025] [Indexed: 02/18/2025]
Abstract
Non-1H nuclei magnetic resonance spectroscopy (MRS) offers insights into metabolism, which may aid for example early stages of disease diagnosis, tissue characterization or therapy response evaluation. Sodium MRI can provide valuable information about tissue health and cellular function. When combined with 31P MR spectroscopic imaging (MRSI), complementary metabolic information on energy metabolism and cell proliferation can be obtained. However, sensitivity challenges stemming from low natural abundances and low gyromagnetic ratios of different nuclei have hindered progress. Besides, due to hardware constraints, different nuclei are often studied separately, and the need for dedicated hardware for x-nuclei imaging hampers clinical efficiency and patient-friendly assessments. This work introduces an interleaved acquisition scheme for 3D 31P-MRSI and 3D radial 23Na-MR imaging (23Na-MRI) at 7 Tesla (7T) and demonstrates the feasibility of interleaving these two nuclei acquisitions. The interleaved protocol effectively merged 31P-MRSI with 23Na-MRI, while remaining within specific absorption rate (SAR) limits. Results revealed comparable signal-to-noise ratios (SNRs) and spectral quality between interleaved and non-interleaved scans, highlighting the approach's efficiency without compromising data quality.
Collapse
Affiliation(s)
- Zahra Shams
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jiying Dai
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Tesla Dynamic Coils B.VZaltbommelThe Netherlands
| | - Mark W. J. Gosselink
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Hans J. M. Hoogduin
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Fredy Visser
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
- Philips HealthcareBestThe Netherlands
| | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Shams Z, van der Kemp WJM, Klomp DWJ, Wiegers EC, Wijnen JP. 31P multi-echo MRSI with low B 1 + dual-band refocusing RF pulses. NMR IN BIOMEDICINE 2025; 38:e5273. [PMID: 39390742 PMCID: PMC11602691 DOI: 10.1002/nbm.5273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 09/09/2024] [Accepted: 09/30/2024] [Indexed: 10/12/2024]
Abstract
31P magnetic resonance spectroscopy (MRS) can spectrally resolve metabolites involved in phospholipid metabolism whose levels are altered in many cancers. Ultra-high field facilitates the detection of phosphomonoesters (PMEs) and phosphodiesters (PDEs) with increased SNR and spectral resolution. Utilizing multi-echo MR spectroscopic imaging (MRSI) further enhances SNR and enables T2 information estimation per metabolite. To address the specific absorption rate (SAR) challenges associated with high-power demanding adiabatic or composite block pulses in multi-echo phosphorus imaging, we present a dual-band refocusing RF pulse designed for operation at B1 amplitudes of 14.8 μT which holds potential for integration into multi-echo sequences. Phantom and in vivo experiments conducted in the brain at 7 Tesla validated the effectiveness of this low-power dual-band RF pulse. Furthermore, we implemented the dual-band RF pulse into a multi-echo MRSI sequence where it offered the potential to increase the number of echo pulses within the same acquisition time compared to high-power adiabatic implementation, demonstrating its feasibility and practicality.
Collapse
Affiliation(s)
- Zahra Shams
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Dennis W. J. Klomp
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Evita C. Wiegers
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Jannie P. Wijnen
- Center for Image SciencesUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
3
|
van den Wildenberg L, Runderkamp BA, Seelen LWF, van Laarhoven HWM, Gosselink MWJM, van der Kemp WJM, Haj Mohammad N, Klomp DWJ, Prompers JJ. Measurement of metabolite levels and treatment-induced changes in hepatic metastases of gastro-esophageal cancer using 7-T phosphorus magnetic resonance spectroscopic imaging. NMR IN BIOMEDICINE 2024; 37:e5155. [PMID: 38616046 DOI: 10.1002/nbm.5155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 03/05/2024] [Accepted: 03/06/2024] [Indexed: 04/16/2024]
Abstract
Methods for early treatment response evaluation to systemic therapy of liver metastases are lacking. Tumor tissue often exhibits an increased ratio of phosphomonoesters to phosphodiesters (PME/PDE), which can be noninvasively measured by phosphorus magnetic resonance spectroscopy (31P MRS), and may be a marker for early therapy response assessment in liver metastases. However, with commonly used 31P surface coils for liver 31P MRS, the liver is not fully covered, and metastases may be missed. The objective of this study was to demonstrate the feasibility of 31P MRS imaging (31P MRSI) with full liver coverage to assess 31P metabolite levels and chemotherapy-induced changes in liver metastases of gastro-esophageal cancer, using a 31P whole-body birdcage transmit coil in combination with a 31P body receive array at 7 T. 3D 31P MRSI data were acquired in two patients with hepatic metastases of esophageal cancer, before the start of chemotherapy and after 2 (and 9 in patient 2) weeks of chemotherapy. 3D 31P MRSI acquisitions were performed using an integrated 31P whole-body transmit coil in combination with a 16-channel body receive array at 7 T, with a field of view covering the full abdomen and a nominal voxel size of 20-mm isotropic. From the 31P MRSI data, 12 31P metabolite signals were quantified. Prior to chemotherapy initiation, both PMEs, that is, phosphocholine (PC) and phosphoethanolamine (PE), were significantly higher in all metastases compared with the levels previously determined in the liver of healthy volunteers. After 2 weeks of chemotherapy, PC and PE levels remained high or even increased further, resulting in increased PME/PDE ratios compared with healthy liver tissue, in correspondence with the clinical assessment of progressive disease after 2 months of chemotherapy. The suggested approach may present a viable tool for early therapy (non)response assessment of tumor metabolism in patients with liver metastases.
Collapse
Affiliation(s)
| | - Bobby A Runderkamp
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Leonard W F Seelen
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
- Department of Surgery, UMC Utrecht Cancer Center, Utrecht, The Netherlands
- Sint Antonius Hospital Nieuwegein, Regional Academic Cancer Center Utrecht, Utrecht, The Netherlands
| | - Hanneke W M van Laarhoven
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Mark W J M Gosselink
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Wybe J M van der Kemp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Nadia Haj Mohammad
- Department of Medical Oncology, Utrecht Medical Center Utrecht, Utrecht, The Netherlands
| | - Dennis W J Klomp
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Jeanine J Prompers
- Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
4
|
Guo R, Yang S, Wiesner HM, Li Y, Zhao Y, Liang ZP, Chen W, Zhu XH. Mapping intracellular NAD content in entire human brain using phosphorus-31 MR spectroscopic imaging at 7 Tesla. Front Neurosci 2024; 18:1389111. [PMID: 38911598 PMCID: PMC11190064 DOI: 10.3389/fnins.2024.1389111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 05/20/2024] [Indexed: 06/25/2024] Open
Abstract
Introduction Nicotinamide adenine dinucleotide (NAD) is a crucial molecule in cellular metabolism and signaling. Mapping intracellular NAD content of human brain has long been of interest. However, the sub-millimolar level of cerebral NAD concentration poses significant challenges for in vivo measurement and imaging. Methods In this study, we demonstrated the feasibility of non-invasively mapping NAD contents in entire human brain by employing a phosphorus-31 magnetic resonance spectroscopic imaging (31P-MRSI)-based NAD assay at ultrahigh field (7 Tesla), in combination with a probabilistic subspace-based processing method. Results The processing method achieved about a 10-fold reduction in noise over raw measurements, resulting in remarkably reduced estimation errors of NAD. Quantified NAD levels, observed at approximately 0.4 mM, exhibited good reproducibility within repeated scans on the same subject and good consistency across subjects in group data (2.3 cc nominal resolution). One set of higher-resolution data (1.0 cc nominal resolution) unveiled potential for assessing tissue metabolic heterogeneity, showing similar NAD distributions in white and gray matter. Preliminary analysis of age dependence suggested that the NAD level decreases with age. Discussion These results illustrate favorable outcomes of our first attempt to use ultrahigh field 31P-MRSI and advanced processing techniques to generate a whole-brain map of low-concentration intracellular NAD content in the human brain.
Collapse
Affiliation(s)
- Rong Guo
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Siemens Medical Solutions USA, Inc., Urbana, IL, United States
| | - Shaolin Yang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Hannes M. Wiesner
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Yudu Li
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yibo Zhao
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Zhi-Pei Liang
- Beckman Institute of Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Wei Chen
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Xiao-Hong Zhu
- Department of Radiology, Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
5
|
Franke VL, Breitling J, Boyd PS, Feignier A, Bangert R, Weckesser N, Schlemmer HP, Ladd ME, Bachert P, Paech D, Korzowski A. A versatile look-up algorithm for mapping pH values and magnesium ion content using 31P MRSI. NMR IN BIOMEDICINE 2024; 37:e5113. [PMID: 38316107 DOI: 10.1002/nbm.5113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/21/2023] [Accepted: 01/11/2024] [Indexed: 02/07/2024]
Abstract
31P MRSI allows for the non-invasive mapping of pH and magnesium ion content (Mg) in vivo, by translating the chemical shifts of inorganic phosphate and adenosine-5'-triphosphate (ATP) to pH and Mg via suitable calibration equations, such as the modified Henderson-Hasselbalch equation. However, the required constants in these calibration equations are typically only determined for physiological conditions, posing a particular challenge for their application to diseased tissue, where the biochemical conditions might change manyfold. In this article, we propose a multi-parametric look-up algorithm aiming at the condition-independent determination of pH and Mg by employing multiple quantifiable 31P spectral properties simultaneously. To generate entries for an initial look-up table, measurements from 114 model solutions prepared with varying chemical properties were made at 9.4 T. The number of look-up table entries was increased by inter- and extrapolation using a multi-dimensional function developed based on the Hill equation. The assignment of biochemical parameters, that is, pH and Mg, is realized using probability distributions incorporating specific measurement uncertainties on the quantified spectral parameters, allowing for an estimation of most plausible output values. As proof of concept, we applied a version of the look-up algorithm employing only the chemical shifts of γ- and β-ATP for the determination of pH and Mg to in vivo 3D 31P MRSI data acquired at 7 T from (i) the lower leg muscles of healthy volunteers and (ii) the brains of patients with glioblastoma. The resulting volumetric maps showed plausible values for pH and Mg, partly revealing differences from maps generated using the conventional calibration equations.
Collapse
Affiliation(s)
- Vanessa L Franke
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Johannes Breitling
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Philip S Boyd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Antoine Feignier
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Renate Bangert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Nina Weckesser
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
| | - Mark E Ladd
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Medicine, Heidelberg University, Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Peter Bachert
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy, Heidelberg University, Heidelberg, Germany
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Division of Neuroradiology, University Hospital Bonn, Bonn, Germany
| | - Andreas Korzowski
- Division of Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| |
Collapse
|
6
|
Paech D, Weckesser N, Franke VL, Breitling J, Görke S, Deike-Hofmann K, Wick A, Scherer M, Unterberg A, Wick W, Bendszus M, Bachert P, Ladd ME, Schlemmer HP, Korzowski A. Whole-Brain Intracellular pH Mapping of Gliomas Using High-Resolution 31P MR Spectroscopic Imaging at 7.0 T. Radiol Imaging Cancer 2024; 6:e220127. [PMID: 38133553 PMCID: PMC10825708 DOI: 10.1148/rycan.220127] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/24/2023] [Accepted: 11/02/2023] [Indexed: 12/23/2023]
Abstract
Malignant tumors commonly exhibit a reversed pH gradient compared with normal tissue, with a more acidic extracellular pH and an alkaline intracellular pH (pHi). In this prospective study, pHi values in gliomas were quantified using high-resolution phosphorous 31 (31P) spectroscopic MRI at 7.0 T and were used to correlate pHi alterations with histopathologic findings. A total of 12 participants (mean age, 58 years ± 18 [SD]; seven male, five female) with histopathologically proven, newly diagnosed glioma were included between September 2018 and November 2019. The 31P spectroscopic MRI scans were acquired using a double-resonant 31P/1H phased-array head coil together with a three-dimensional (3D) 31P chemical shift imaging sequence (5.7-mL voxel volume) performed with a 7.0-T whole-body system. The 3D volumetric segmentations were performed for the whole-tumor volumes (WTVs); tumor subcompartments of necrosis, gadolinium enhancement, and nonenhancing T2 (NCE T2) hyperintensity; and normal-appearing white matter (NAWM), and pHi values were compared. Spearman correlation was used to assess association between pHi and the proliferation index Ki-67. For all study participants, mean pHi values were higher in the WTV (7.057 ± 0.024) compared with NAWM (7.006 ± 0.012; P < .001). In eight participants with high-grade gliomas, pHi was increased in all tumor subcompartments (necrosis, 7.075 ± 0.033; gadolinium enhancement, 7.075 ± 0.024; NCE T2 hyperintensity, 7.043 ± 0.015) compared with NAWM (7.004 ± 0.014; all P < .01). The pHi values of WTV positively correlated with Ki-67 (R2 = 0.74, r = 0.78, P = .001). In conclusion, 31P spectroscopic MRI at 7.0 T enabled high-resolution quantification of pHi in gliomas, with pHi alteration associated with the Ki-67 proliferation index, and may aid in diagnosis and treatment monitoring. Keywords: 31P MRSI, pH, Glioma, Glioblastoma, Ultra-High-Field MRI, Imaging Biomarker, 7 Tesla Supplemental material is available for this article. © RSNA, 2023.
Collapse
Affiliation(s)
| | | | - Vanessa L. Franke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Johannes Breitling
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Steffen Görke
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Katerina Deike-Hofmann
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Antje Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Moritz Scherer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Wolfgang Wick
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Martin Bendszus
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Peter Bachert
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Mark E. Ladd
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Heinz-Peter Schlemmer
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Korzowski
- From the Divisions of Radiology (D.P., N.W., K.D.H., H.P.S.) and
Medical Physics in Radiology (V.L.F., J.B., S.G., P.B., M.E.L., A.K.), German
Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg,
Germany; Faculties of Medicine (N.W., M.E.L.) and Physics and Astronomy (V.L.F.,
P.B., M.E.L.), University of Heidelberg, Heidelberg, Germany; and Departments of
Neurology (A.W., W.W.), Neurosurgery (M.S., A.U.), and Neuroradiology (M.B.),
Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
7
|
Bates S, Dumoulin SO, Folkers PJM, Formisano E, Goebel R, Haghnejad A, Helmich RC, Klomp D, van der Kolk AG, Li Y, Nederveen A, Norris DG, Petridou N, Roell S, Scheenen TWJ, Schoonheim MM, Voogt I, Webb A. A vision of 14 T MR for fundamental and clinical science. MAGMA (NEW YORK, N.Y.) 2023; 36:211-225. [PMID: 37036574 PMCID: PMC10088620 DOI: 10.1007/s10334-023-01081-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 04/11/2023]
Abstract
OBJECTIVE We outline our vision for a 14 Tesla MR system. This comprises a novel whole-body magnet design utilizing high temperature superconductor; a console and associated electronic equipment; an optimized radiofrequency coil setup for proton measurement in the brain, which also has a local shim capability; and a high-performance gradient set. RESEARCH FIELDS The 14 Tesla system can be considered a 'mesocope': a device capable of measuring on biologically relevant scales. In neuroscience the increased spatial resolution will anatomically resolve all layers of the cortex, cerebellum, subcortical structures, and inner nuclei. Spectroscopic imaging will simultaneously measure excitatory and inhibitory activity, characterizing the excitation/inhibition balance of neural circuits. In medical research (including brain disorders) we will visualize fine-grained patterns of structural abnormalities and relate these changes to functional and molecular changes. The significantly increased spectral resolution will make it possible to detect (dynamic changes in) individual metabolites associated with pathological pathways including molecular interactions and dynamic disease processes. CONCLUSIONS The 14 Tesla system will offer new perspectives in neuroscience and fundamental research. We anticipate that this initiative will usher in a new era of ultra-high-field MR.
Collapse
Affiliation(s)
- Steve Bates
- Tesla Engineering Ltd., Water Lane, Storrington, West Sussex, RH20 3EA, UK
| | - Serge O Dumoulin
- Spinoza Centre for Neuroimaging, Amsterdam, The Netherlands
- Computational Cognitive Neuroscience and Neuroimaging, Netherlands Institute for Neuroscience, Amsterdam, The Netherlands
- Experimental and Applied Psychology, Vrije University Amsterdam, Amsterdam, The Netherlands
- Experimental Psychology, Utrecht University, Utrecht, The Netherlands
| | | | - Elia Formisano
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | - Rainer Goebel
- Department of Cognitive Neuroscience, Maastricht University, Maastricht, The Netherlands
- Maastricht Brain Imaging Centre (MBIC), Maastricht University, Maastricht, The Netherlands
| | | | - Rick C Helmich
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands
- Department of Neurology, Center of Expertise for Parkinson and Movement Disorders, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Dennis Klomp
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Anja G van der Kolk
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Yi Li
- Independent Researcher, Magdeburg, Germany
| | - Aart Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, Amsterdam Cardiovascular Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - David G Norris
- Donders Institute for Brain, Cognition and Behaviour, Centre for Cognitive Neuroimaging, Radboud University, Nijmegen, The Netherlands.
- Erwin L. Hahn Institute for Magnetic Resonance Imaging UNESCO World Cultural Heritage Zollverein, Kokereiallee 7, Building C84, 45141, Essen, Germany.
- Department of Clinical Neurophysiology (CNPH), Faculty Science and Technology, University of Twente, Enschede, The Netherlands.
| | - Natalia Petridou
- Radiology Department, Center for Image Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Stefan Roell
- Neoscan Solutions GmbH, Joseph-von-Fraunhofer-Str. 6, 39106, Magdeburg, Germany
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Menno M Schoonheim
- Department of Anatomy and Neurosciences, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam UMC, Vrije Universiteit Amsterdam, Location VUmc, P.O. Box 7057, 1007 MB, Amsterdam, The Netherlands
| | - Ingmar Voogt
- Wavetronica, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Andrew Webb
- Department of Radiology, C.J. Gorter MRI Centre, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| |
Collapse
|
8
|
Jennings ML. Role of transporters in regulating mammalian intracellular inorganic phosphate. Front Pharmacol 2023; 14:1163442. [PMID: 37063296 PMCID: PMC10097972 DOI: 10.3389/fphar.2023.1163442] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/17/2023] [Indexed: 03/31/2023] Open
Abstract
This review summarizes the current understanding of the role of plasma membrane transporters in regulating intracellular inorganic phosphate ([Pi]In) in mammals. Pi influx is mediated by SLC34 and SLC20 Na+-Pi cotransporters. In non-epithelial cells other than erythrocytes, Pi influx via SLC20 transporters PiT1 and/or PiT2 is balanced by efflux through XPR1 (xenotropic and polytropic retrovirus receptor 1). Two new pathways for mammalian Pi transport regulation have been described recently: 1) in the presence of adequate Pi, cells continuously internalize and degrade PiT1. Pi starvation causes recycling of PiT1 from early endosomes to the plasma membrane and thereby increases the capacity for Pi influx; and 2) binding of inositol pyrophosphate InsP8 to the SPX domain of XPR1 increases Pi efflux. InsP8 is degraded by a phosphatase that is strongly inhibited by Pi. Therefore, an increase in [Pi]In decreases InsP8 degradation, increases InsP8 binding to SPX, and increases Pi efflux, completing a feedback loop for [Pi]In homeostasis. Published data on [Pi]In by magnetic resonance spectroscopy indicate that the steady state [Pi]In of skeletal muscle, heart, and brain is normally in the range of 1–5 mM, but it is not yet known whether PiT1 recycling or XPR1 activation by InsP8 contributes to Pi homeostasis in these organs. Data on [Pi]In in cultured cells are variable and suggest that some cells can regulate [Pi] better than others, following a change in [Pi]Ex. More measurements of [Pi]In, influx, and efflux are needed to determine how closely, and how rapidly, mammalian [Pi]In is regulated during either hyper- or hypophosphatemia.
Collapse
|
9
|
Ren J, Yu F, Greenberg BM. ATP line splitting in association with reduced intracellular magnesium and pH: a brain 31 P MR spectroscopic imaging (MRSI) study of pediatric patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs). NMR IN BIOMEDICINE 2023; 36:e4836. [PMID: 36150743 DOI: 10.1002/nbm.4836] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 09/06/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Over the past four decades, ATP, the obligatory energy molecule for keeping all cells alive and functioning, has been thought to contribute only one set of signals in brain 31 P MR spectra. Here we report for the first time the observation of two separate β-ATP peaks in brain spectra acquired from patients with myelin oligodendrocyte glycoprotein antibody-associated disorders (MOGADs) using 3D MRSI at 7 T. In voxel spectra with β-ATP line splitting, these two peaks are separated by 0.46 ± 0.18 ppm (n = 6). Spectral lineshape analysis indicates that the upper field β-ATP peak is smaller in relative intensity (24 ± 11% versus 76 ± 11%), and narrower in linewidth (56.8 ± 10.3 versus 41.2 ± 10.3 Hz) than the downfield one. Data analysis also reveals a similar line splitting for the intracellular inorganic phosphate (Pi ) signal, which is characterized by two components with a smaller separation (0.16 ± 0.09 ppm) and an intensity ratio (26 ± 7%:74 ± 7%) comparable to that of β-ATP. While the major components of Pi and β-ATP correspond to a neutral intracellular pH (6.99 ± 0.01) and a free Mg2+ level (0.18 ± 0.02 mM, by Iotti's conversion formula) as found in healthy subjects, their minor counterparts relate to a slightly acidic pH (6.86 ± 0.07) and a 50% lower [Mg2+ ] (0.09 ± 0.02 mM), respectively. Data correlation between β-ATP and Pi signals appears to suggest an association between an increased [H+ ] and a reduced [Mg2+ ] in MOGAD patients.
Collapse
Affiliation(s)
- Jimin Ren
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Fang Yu
- Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Benjamin M Greenberg
- Department of Neurology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
10
|
Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, Arnold PM, Hassaneen W. Ultra-High-Field MRI in the Diagnosis and Management of Gliomas: A Systematic Review. Front Neurol 2022; 13:857825. [PMID: 35449515 PMCID: PMC9016277 DOI: 10.3389/fneur.2022.857825] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
Importance: Gliomas, tumors of the central nervous system, are classically diagnosed through invasive surgical biopsy and subsequent histopathological study. Innovations in ultra-high field (UHF) imaging, namely 7-Tesla magnetic resonance imaging (7T MRI) are advancing preoperative tumor grading, visualization of intratumoral structures, and appreciation of small brain structures and lesions. Objective Summarize current innovative uses of UHF imaging techniques in glioma diagnostics and treatment. Methods A systematic review in accordance with PRISMA guidelines was performed utilizing PubMed. Case reports and series, observational clinical trials, and randomized clinical trials written in English were included. After removing unrelated studies and those with non-human subjects, only those related to 7T MRI were independently reviewed and summarized for data extraction. Some preclinical animal models are briefly described to demonstrate future usages of ultra-high-field imaging. Results We reviewed 46 studies (43 human and 3 animal models) which reported clinical usages of UHF MRI in the diagnosis and management of gliomas. Current literature generally supports greater resolution imaging from 7T compared to 1.5T or 3T MRI, improving visualization of cerebral microbleeds and white and gray matter, and providing more precise localization for radiotherapy targeting. Additionally, studies found that diffusion or susceptibility-weighted imaging techniques applied to 7T MRI, may be used to predict tumor grade, reveal intratumoral structures such as neovasculature and microstructures like axons, and indicate isocitrate dehydrogenase 1 mutation status in preoperative imaging. Similarly, newer imaging techniques such as magnetic resonance spectroscopy and chemical exchange saturation transfer imaging can be performed on 7T MRI to predict tumor grading and treatment efficacy. Geometrical distortion, a known challenge of 7T MRI, was at a tolerable level in all included studies. Conclusion UHF imaging has the potential to preoperatively and non-invasively grade gliomas, provide precise therapy target areas, and visualize lesions not seen on conventional MRI.
Collapse
Affiliation(s)
- Annabelle Shaffer
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Susanna S Kwok
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Anant Naik
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Aaron T Anderson
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Fan Lam
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Department of Bioengineering, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Champaign, IL, United States
| | - Tracey Wszalek
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Illinois Advanced Imaging Center, University of Illinois and Carle Health, Urbana, IL, United States
| | - Paul M Arnold
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| | - Wael Hassaneen
- Carle Illinois College of Medicine, University of Illinois at Urbana-Champaign, Champaign, IL, United States.,Carle Department of Neurosurgery, Carle Foundation Hospital, Urbana, IL, United States
| |
Collapse
|