1
|
Shen B, Yao Q, Li W, Dong S, Zhang H, Zhao Y, Pan Y, Jiang X, Li D, Chen Y, Yan J, Zhang W, Zhu Q, Zhang D, Zhang L, Wu Y. Dynamic cerebellar and sensorimotor network compensation in tremor-dominated Parkinson's disease. Neurobiol Dis 2024; 201:106659. [PMID: 39243826 DOI: 10.1016/j.nbd.2024.106659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/30/2024] [Accepted: 09/04/2024] [Indexed: 09/09/2024] Open
Abstract
AIM Parkinson's disease (PD) tremor is associated with dysfunction in the basal ganglia (BG), cerebellum (CB), and sensorimotor networks (SMN). We investigated tremor-related static functional network connectivity (SFNC) and dynamic functional network connectivity (DFNC) in PD patients. METHODS We analyzed the resting-state functional MRI data of 21 tremor-dominant Parkinson's disease (TDPD) patients and 29 healthy controls. We compared DFNC and SFNC between the three networks and assessed their associations with tremor severity. RESULTS TDPD patients exhibited increased SFNC between the SMN and BG networks. In addition, they spent more mean dwell time (MDT) in state 2, characterized by sparse connections, and less MDT in state 4, indicating stronger connections. Furthermore, enhanced DFNC between the CB and SMN was observed in state 2. Notably, the MDT of state 2 was positively associated with tremor scores. CONCLUSION The enhanced dynamic connectivity between the CB and SMN in TDPD patients suggests a potential compensatory mechanism. However, the tendency to remain in a state of sparse connectivity may contribute to the severity of tremor symptoms.
Collapse
Affiliation(s)
- Bo Shen
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China; Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China; Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Qun Yao
- Department of Neurology, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Li
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Shuangshuang Dong
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Haiying Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Zhao
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Pan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xu Jiang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Dongfeng Li
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yaning Chen
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Jun Yan
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Wenbin Zhang
- Department of Neurosurgery, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qi Zhu
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Daoqiang Zhang
- Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, Nanjing University of Aeronautics and Astronautics, Nanjing, China; College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, China
| | - Li Zhang
- Department of Geriatrics, Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China.
| | - Yuncheng Wu
- Department of Neurology, Shanghai General Hospital of Nanjing Medical University, Shanghai, China.
| |
Collapse
|
2
|
Wei Y, Wang P, Zhang Y, Miao P, Liu J, Wei S, Wang X, Wang Y, Wu L, Han S, Wei Y, Wang K, Cheng J, Wang C. Altered static and dynamic cerebellar-cerebral functional connectivity in acute pontine infarction. Cereb Cortex 2024; 34:bhae182. [PMID: 38741271 DOI: 10.1093/cercor/bhae182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 05/16/2024] Open
Abstract
This study investigates abnormalities in cerebellar-cerebral static and dynamic functional connectivity among patients with acute pontine infarction, examining the relationship between these connectivity changes and behavioral dysfunction. Resting-state functional magnetic resonance imaging was utilized to collect data from 45 patients within seven days post-pontine infarction and 34 normal controls. Seed-based static and dynamic functional connectivity analyses identified divergences in cerebellar-cerebral connectivity features between pontine infarction patients and normal controls. Correlations between abnormal functional connectivity features and behavioral scores were explored. Compared to normal controls, left pontine infarction patients exhibited significantly increased static functional connectivity within the executive, affective-limbic, and motor networks. Conversely, right pontine infarction patients demonstrated decreased static functional connectivity in the executive, affective-limbic, and default mode networks, alongside an increase in the executive and motor networks. Decreased temporal variability of dynamic functional connectivity was observed in the executive and default mode networks among left pontine infarction patients. Furthermore, abnormalities in static and dynamic functional connectivity within the executive network correlated with motor and working memory performance in patients. These findings suggest that alterations in cerebellar-cerebral static and dynamic functional connectivity could underpin the behavioral dysfunctions observed in acute pontine infarction patients.
Collapse
Affiliation(s)
- Ying Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Peipei Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Peifang Miao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Jingchun Liu
- Department of Radiology and Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, No. 154 Anshan Road, Heping District, Tianjin 300052, China
| | - Sen Wei
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Xin Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yingying Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
- Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, Department of Radiology, West China Hospital, No. 37 Guoxue Lane, Wuhou District, Chengdu 610041, China
| | - Luobing Wu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
- Department of Radiology, The First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Kaiyu Wang
- GE Healthcare MR Research, Tongji South Road, Daxing District, Beijing 100176, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, No. 1 Jianshe Dong Road, Erqi District, Zhengzhou 450052, China
| |
Collapse
|
3
|
Bu S, Pang H, Li X, Zhao M, Wang J, Liu Y, Yu H, Fan G. Structural and Functional Alterations of Motor-Thalamus in Different Motor Subtype of Parkinson's Disease: An Individual Study. Acad Radiol 2024; 31:1605-1614. [PMID: 37863779 DOI: 10.1016/j.acra.2023.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/23/2023] [Accepted: 09/24/2023] [Indexed: 10/22/2023]
Abstract
RATIONALE AND OBJECTIVES This study aimed to investigate the structural and functional alterations occurring within bilateral premotor thalamus (mPMtha) in motor subtypes of Parkinson's disease (PD). MATERIALS AND METHODS Sixty-one individuals with instability and gait difficulty (PIGD) subtype, 60 individuals with tremor-dominant (TD) subtype and 66 healthy controls (HCs) participated in the study. All participants underwent resting-state functional magnetic resonance imaging (rs-fMRI) and 3D T1-weighted (3DT1) scans. Functional connectivity (FC) analysis and Voxel-based morphometry (VBM) analysis were performed to evaluate the function and volume of mPMtha. Additionally, correlations between motor performance and FC values, volumes were examined separately. Support vector machine (SVM) model based on FC values and thalamic volumes was conducted to assist in the clinical diagnosis of PD motor subtype. RESULTS Compared to HCs and PIGD, TD subtype showed increased FC between the bilateral mPMtha and left middle occipital gyrus, left inferior parietal lobule (IPL). While PIGD subtype demonstrated decreased FC between right mPMtha and precentral gyrus (PreCG), supramarginal, IPL and superior parietal lobule. FC of bilateral mPMtha with the identified regions were significantly correlated with motor performance scores in PD patients. The SVM classification based on FC values demonstrated a high level of efficiency (AUC=0.874). The volumes of the bilateral mPMtha were indifferent among three groups. CONCLUSION We noted distinct FC alterations of mPMtha in TD and PIGD subtypes, and these changes were correlated with motor performance. Furthermore, the machine learning based on statistically significant FC might be served as an alternative approach for automatically classifying PD motor subtypes individually.
Collapse
Affiliation(s)
- Shuting Bu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Huize Pang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Xiaolu Li
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Mengwan Zhao
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Juzhou Wang
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Yu Liu
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.)
| | - Hongmei Yu
- Department of Neurology, The First Hospital of China Medical University, Shenyang, China (H.Y.)
| | - Guoguang Fan
- Department of Radiology, The First Hospital of China Medical University, 155 Nanjing North Street, Shenyang, 110001, Liaoning, PR China (S.B., H.P., X.L., M.Z., J.W., Y.L., G.F.).
| |
Collapse
|
4
|
Delavari F, Sandini C, Kojovic N, Saccaro LF, Eliez S, Van De Ville D, Bolton TAW. Thalamic contributions to psychosis susceptibility: Evidence from co-activation patterns accounting for intra-seed spatial variability (μCAPs). Hum Brain Mapp 2024; 45:e26649. [PMID: 38520364 PMCID: PMC10960557 DOI: 10.1002/hbm.26649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 02/20/2024] [Accepted: 02/22/2024] [Indexed: 03/25/2024] Open
Abstract
The temporal variability of the thalamus in functional networks may provide valuable insights into the pathophysiology of schizophrenia. To address the complexity of the role of the thalamic nuclei in psychosis, we introduced micro-co-activation patterns (μCAPs) and employed this method on the human genetic model of schizophrenia 22q11.2 deletion syndrome (22q11.2DS). Participants underwent resting-state functional MRI and a data-driven iterative process resulting in the identification of six whole-brain μCAPs with specific activity patterns within the thalamus. Unlike conventional methods, μCAPs extract dynamic spatial patterns that reveal partially overlapping and non-mutually exclusive functional subparts. Thus, the μCAPs method detects finer foci of activity within the initial seed region, retaining valuable and clinically relevant temporal and spatial information. We found that a μCAP showing co-activation of the mediodorsal thalamus with brain-wide cortical regions was expressed significantly less frequently in patients with 22q11.2DS, and its occurrence negatively correlated with the severity of positive psychotic symptoms. Additionally, activity within the auditory-visual cortex and their respective geniculate nuclei was expressed in two different μCAPs. One of these auditory-visual μCAPs co-activated with salience areas, while the other co-activated with the default mode network (DMN). A significant shift of occurrence from the salience+visuo-auditory-thalamus to the DMN + visuo-auditory-thalamus μCAP was observed in patients with 22q11.2DS. Thus, our findings support existing research on the gatekeeping role of the thalamus for sensory information in the pathophysiology of psychosis and revisit the evidence of geniculate nuclei hyperconnectivity with the audio-visual cortex in 22q11.2DS in the context of dynamic functional connectivity, seen here as the specific hyper-occurrence of these circuits with the task-negative brain networks.
Collapse
Affiliation(s)
- Farnaz Delavari
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
| | - Corrado Sandini
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Nada Kojovic
- Autism Brain and Behavior Lab, Faculty of MedicineUniversity of GenevaGenevaSwitzerland
| | - Luigi F. Saccaro
- Faculty of Medicine, Psychiatry DepartmentUniversity of GenevaGenevaSwitzerland
- Psychiatry DepartmentGeneva University HospitalGenevaSwitzerland
| | - Stephan Eliez
- Developmental Imaging and Psychopathology LaboratoryUniversity of Geneva School of MedicineGenevaSwitzerland
- Department of Genetic Medicine and DevelopmentUniversity of Geneva School of MedicineGenevaSwitzerland
| | - Dimitri Van De Ville
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Department of Radiology and Medical InformaticsUniversity of Geneva (UNIGE)GenevaSwitzerland
| | - Thomas A. W. Bolton
- Neuro‐X InstituteÉcole Polytechnique FÉdÉrale de LausanneGenevaSwitzerland
- Connectomics Laboratory, Department of RadiologyCentre Hospitalier Universitaire Vaudois (CHUV)LausanneSwitzerland
| |
Collapse
|
5
|
Wang Y, Lu M, Liu R, Wang L, Wang Y, Xu L, Wu K, Chen C, Chen T, Shi X, Li K, Zou Y. Acupuncture Alters Brain's Dynamic Functional Network Connectivity in Stroke Patients with Motor Dysfunction: A Randomised Controlled Neuroimaging Trial. Neural Plast 2023; 2023:8510213. [PMID: 37383656 PMCID: PMC10299883 DOI: 10.1155/2023/8510213] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/19/2023] [Accepted: 05/25/2023] [Indexed: 06/30/2023] Open
Abstract
Objectives Neuroimaging studies have confirmed that acupuncture can promote static functional reorganization in poststroke patients with motor dysfunction. But its effect on dynamic brain networks remains unclear. This study is aimed at investigating how acupuncture affected the brain's dynamic functional network connectivity (dFNC) after ischemic stroke. Methods We conducted a single-center, randomised controlled neuroimaging study in ischemic stroke patients. A total of 53 patients were randomly divided into the true acupoint treatment group (TATG) and the sham acupoint treatment group (SATG) at a ratio of 2 : 1. Clinical assessments and magnetic resonance imaging (MRI) scans were performed on subjects before and after treatment. We used dFNC analysis to estimate distinct dynamic connectivity states. Then, the temporal properties and strength of functional connectivity (FC) matrix were compared within and between the two groups. The correlation analysis between dynamic characteristics and clinical scales was also calculated. Results All functional network connectivity (FNC) matrices were clustered into 3 connectivity states. After treatment, the TATG group showed a reduced mean dwell time and found attenuated FC between the sensorimotor network (SMN) and the frontoparietal network (FPN) in state 3, which was a sparsely connected state. The FC between the dorsal attention network (DAN) and the default mode network (DMN) was higher after treatment in the TATG group in state 1, which was a relative segregated state. The SATG group preferred to increase the mean dwell time and FC within FPN in state 2, which displayed a local tightly connected state. In addition, we found that the FC value increased between DAN and right frontoparietal network (RFPN) in state 1 in the TATG group after treatment compared to the SATG group. Correlation analyses before treatment showed that the Fugl-Meyer Assessment (FMA) lower score was negatively correlated with the mean dwell time in state 3. FMA score showed positive correlation with FC in RFPN-SMN in state 3. FMA-lower score was positively correlated with FC in DAN-DMN and DAN-RFPN in state 1. Conclusions Acupuncture has the potential to modulate abnormal temporal properties and promote the balance of separation and integration of brain function. True acupoint stimulation may have a more positive effect on regulating the brain's dynamic function. Clinical Trial Registration. This trial is registered with Chinese Clinical Trials Registry (ChiCTR1800016263).
Collapse
Affiliation(s)
- Yahui Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Department of Rehabilitation Medicine, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Mengxin Lu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Ruoyi Liu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Liping Wang
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yue Wang
- China-Japan Friendship Hospital, Beijing, China
| | - Lingling Xu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kang Wu
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Chen Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Tianzhu Chen
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyue Shi
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Kuangshi Li
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yihuai Zou
- Department of Neurology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
6
|
Bohnen NI, Kanel P, Roytman S, Scott PJH, Koeppe RA, Albin RL, Kerber KA, Müller MLTM. Cholinergic brain network deficits associated with vestibular sensory conflict deficits in Parkinson's disease: correlation with postural and gait deficits. J Neural Transm (Vienna) 2022; 129:1001-1009. [PMID: 35753016 PMCID: PMC9308723 DOI: 10.1007/s00702-022-02523-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 06/07/2022] [Indexed: 11/28/2022]
Abstract
To examine regional cerebral vesicular acetylcholine transporter (VAChT) ligand [18F]fluoroethoxybenzovesamicol ([18F]-FEOBV) PET binding in Parkinson' disease (PD) patients with and without vestibular sensory conflict deficits (VSCD). To examine associations between VSCD-associated cholinergic brain deficits and postural instability and gait difficulties (PIGD). PD persons (M70/F22; mean age 67.6 ± 7.4 years) completed clinical assessments for imbalance, falls, freezing of gait (FoG), modified Romberg sensory conflict testing, and underwent VAChT PET. Volumes of interest (VOI)-based analyses included detailed thalamic and cerebellar parcellations. VSCD-associated VAChT VOI selection used stepwise logistic regression analysis. Vesicular monoamine transporter type 2 (VMAT2) [11C]dihydrotetrabenazine (DTBZ) PET imaging was available in 54 patients. Analyses of covariance were performed to compare VSCD-associated cholinergic deficits between patients with and without PIGD motor features while accounting for confounders. PET sampling passed acceptance criteria in 73 patients. This data-driven analysis identified cholinergic deficits in five brain VOIs associating with the presence of VSCD: medial geniculate nucleus (MGN) (P < 0.0001), para-hippocampal gyrus (P = 0.0043), inferior nucleus of the pulvinar (P = 0.047), fusiform gyrus (P = 0.035) and the amygdala (P = 0.019). Composite VSCD-associated [18F]FEOBV-binding deficits in these 5 regions were significantly lower in patients with imbalance (- 8.3%, F = 6.5, P = 0.015; total model: F = 5.1, P = 0.0008), falls (- 6.9%, F = 4.9, P = 0.03; total model F = 4.7, P = 0.0015), and FoG (- 14.2%, F = 9.0, P = 0.0043; total model F = 5.8, P = 0.0003), independent of age, duration of disease, gender and nigrostriatal dopaminergic losses. Post hoc analysis using MGN VAChT binding as the single cholinergic VOI demonstrated similar significant associations with imbalance, falls and FoG. VSCD-associated cholinergic network changes localize to distinct structures involved in multi-sensory, in particular vestibular, and multimodal cognitive and motor integration brain regions. Relative clinical effects of VSCD-associated cholinergic network deficits were largest for FoG followed by postural imbalance and falls. The MGN was the most significant region identified.
Collapse
Affiliation(s)
- Nicolaas I Bohnen
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA. .,Department of Neurology, University of Michigan, Ann Arbor, MI, USA. .,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA. .,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA. .,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA. .,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA.
| | - Prabesh Kanel
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| | - Stiven Roytman
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| | - Peter J H Scott
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Robert A Koeppe
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA
| | - Roger L Albin
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Parkinson's Foundation Research Center of Excellence, University of Michigan, Ann Arbor, MI, USA
| | - Kevin A Kerber
- Department of Neurology, University of Michigan, Ann Arbor, MI, USA.,Neurology Service and GRECC, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA
| | - Martijn L T M Müller
- Department of Radiology, University of Michigan, Ann Arbor, MI, USA.,Morris K. Udall Center of Excellence for Parkinson's Disease Research, University of Michigan, Ann Arbor, MI, USA.,Functional Neuroimaging, Cognitive and Mobility Laboratory, Departments of Radiology and Neurology, University of Michigan, 24 Frank Lloyd Wright Drive, Box 362, Ann Arbor, MI, 48105-9755, USA
| |
Collapse
|
7
|
Oh JY, Lee YS, Hwang TY, Cho SJ, Jang JH, Ryu Y, Park HJ. Acupuncture Regulates Symptoms of Parkinson’s Disease via Brain Neural Activity and Functional Connectivity in Mice. Front Aging Neurosci 2022; 14:885396. [PMID: 35774113 PMCID: PMC9237259 DOI: 10.3389/fnagi.2022.885396] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/19/2022] [Indexed: 11/13/2022] Open
Abstract
Parkinson’s disease (PD) is a multilayered progressive brain disease characterized by motor dysfunction and a variety of other symptoms. Although acupuncture has been used to ameliorate various symptoms of neurodegenerative disorders, including PD, the underlying mechanisms are unclear. Here, we investigated the mechanism of acupuncture by revealing the effects of acupuncture treatment on brain neural responses and its functional connectivity in an animal model of PD. We observed that destruction of neuronal network between many brain regions in PD mice were reversed by acupuncture. Using machine learning analysis, we found that the key region associated with the improvement of abnormal behaviors might be related to the neural activity of M1, suggesting that the changes of c-Fos in M1 could predict the improvement of motor function induced by acupuncture treatment. In addition, acupuncture treatment was shown to significantly normalize the brain neural activity not only in M1 but also in other brain regions related to motor behavior (striatum, substantia nigra pars compacta, and globus pallidus) and non-motor symptoms (hippocampus, lateral hypothalamus, and solitary tract) of PD. Taken together, our results demonstrate that acupuncture treatment might improve the PD symptoms by normalizing the brain functional connectivity in PD mice model and provide new insights that enhance our current understanding of acupuncture mechanisms for non-motor symptoms.
Collapse
Affiliation(s)
- Ju-Young Oh
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Ye-Seul Lee
- Jaseng Spine and Joint Research Institute, Jaseng Medical Foundation, Seoul, South Korea
| | - Tae-Yeon Hwang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Seong-Jin Cho
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Jae-Hwan Jang
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
| | - Yeonhee Ryu
- Korean Medicine Fundamental Research Division, Korea Institute of Oriental Medicine (KIOM), Daejeon, South Korea
| | - Hi-Joon Park
- Department of Korean Medical Science, Graduate School of Korean Medicine, Kyung Hee University, Seoul, South Korea
- Studies of Translational Acupuncture Research (STAR), Acupuncture and Meridian Science Research Center (AMSRC), Kyung Hee University, Seoul, South Korea
- *Correspondence: Hi-Joon Park
| |
Collapse
|
8
|
Wei Y, Han S, Chen J, Wang C, Wang W, Li H, Song X, Xue K, Zhang Y, Cheng J. Abnormal interhemispheric and intrahemispheric functional connectivity dynamics in drug-naïve first-episode schizophrenia patients with auditory verbal hallucinations. Hum Brain Mapp 2022; 43:4347-4358. [PMID: 35611547 PMCID: PMC9435010 DOI: 10.1002/hbm.25958] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 04/15/2022] [Accepted: 05/08/2022] [Indexed: 11/23/2022] Open
Abstract
Numerous studies indicate altered static local and long‐range functional connectivity of multiple brain regions in schizophrenia patients with auditory verbal hallucinations (AVHs). However, the temporal dynamics of interhemispheric and intrahemispheric functional connectivity patterns remain unknown in schizophrenia patients with AVHs. We analyzed resting‐state functional magnetic resonance imaging data for drug‐naïve first‐episode schizophrenia patients, 50 with AVHs and 50 without AVH (NAVH), and 50 age‐ and sex‐matched healthy controls. Whole‐brain functional connectivity was decomposed into ipsilateral and contralateral parts, and sliding‐window analysis was used to calculate voxel‐wise interhemispheric and intrahemispheric dynamic functional connectivity density (dFCD). Finally, the correlation analysis was performed between abnormal dFCD variance and clinical measures in the AVH and NAVH groups. Compared with the NAVH group and healthy controls, the AVH group showed weaker interhemispheric dFCD variability in the left middle temporal gyrus (p < .01; p < .001), as well as stronger interhemispheric dFCD variability in the right thalamus (p < .001; p < .001) and right inferior temporal gyrus (p < .01; p < .001) and stronger intrahemispheric dFCD variability in the left inferior frontal gyrus (p < .001; p < .01). Moreover, abnormal contralateral dFCD variability of the left middle temporal gyrus correlated with the severity of AVHs in the AVH group (r = −.319, p = .024). The findings demonstrate that abnormal temporal variability of interhemispheric and intrahemispheric dFCD in schizophrenia patients with AVHs mainly focus on the temporal and frontal cortices and thalamus that are pivotal components of auditory and language pathways.
Collapse
Affiliation(s)
- Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingli Chen
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Caihong Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Hong Li
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Xueqin Song
- Department of Psychiatry, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kangkang Xue
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
9
|
Bardakan MM, Fink GR, Zapparoli L, Bottini G, Paulesu E, Weiss PH. Imaging the neural underpinnings of freezing of gait in Parkinson’s disease. NEUROIMAGE: CLINICAL 2022; 35:103123. [PMID: 35917720 PMCID: PMC9421505 DOI: 10.1016/j.nicl.2022.103123] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/09/2022] [Accepted: 07/20/2022] [Indexed: 11/04/2022] Open
Abstract
Review of recent (after 2012) imaging studies on Parkinsonian freezing of gait. Virtual reality studies report functional decoupling of cortico-striatal circuits. Motor imagery studies reveal increased recruitment of parieto-occipital regions. fNIRS studies converge on reporting higher activity within prefrontal regions. Imaging findings support pathophysiological models of freezing of gait.
Freezing of gait (FoG) is a paroxysmal and sporadic gait impairment that severely affects PD patients’ quality of life. This review summarizes current neuroimaging investigations that characterize the neural underpinnings of FoG in PD. The review presents and discusses the latest advances across multiple methodological domains that shed light on structural correlates, connectivity changes, and activation patterns associated with the different pathophysiological models of FoG in PD. Resting-state fMRI studies mainly report cortico-striatal decoupling and disruptions in connectivity along the dorsal stream of visuomotor processing, thus supporting the ‘interference’ and the ‘perceptual dysfunction’ models of FoG. Task-based MRI studies employing virtual reality and motor imagery paradigms reveal a disruption in functional connectivity between cortical and subcortical regions and an increased recruitment of parieto-occipital regions, thus corroborating the ‘interference’ and ‘perceptual dysfunction’ models of FoG. The main findings of fNIRS studies of actual gait primarily reveal increased recruitment of frontal areas during gait, supporting the ‘executive dysfunction’ model of FoG. Finally, we discuss how identifying the neural substrates of FoG may open new avenues to develop efficient treatment strategies.
Collapse
|