1
|
De Jager P, Zeng L, Khan A, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. RESEARCH SQUARE 2025:rs.3.rs-5644532. [PMID: 39866869 PMCID: PMC11760239 DOI: 10.21203/rs.3.rs-5644532/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type. The expression of IL7 and STAT3 are affected only in inhibitory neurons, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
| | - Lu Zeng
- Columbia University Irving Medical Center
| | | | | | | | | | | | | | - Frauke Zipp
- University Medical Center of the Johannes Gutenberg University Mainz
| | - Mariko Taga
- Center for Translational & Computational Neuroimmunology
| | | |
Collapse
|
2
|
Valdes P, Caldwell AB, Liu Q, Fitzgerald MQ, Ramachandran S, Karch CM, Galasko DR, Yuan SH, Wagner SL, Subramaniam S. Integrative multiomics reveals common endotypes across PSEN1, PSEN2, and APP mutations in familial Alzheimer's disease. Alzheimers Res Ther 2025; 17:5. [PMID: 39754192 PMCID: PMC11699654 DOI: 10.1186/s13195-024-01659-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 12/20/2024] [Indexed: 01/06/2025]
Abstract
BACKGROUND PSEN1, PSEN2, and APP mutations cause Alzheimer's disease (AD) with an early age at onset (AAO) and progressive cognitive decline. PSEN1 mutations are more common and generally have an earlier AAO; however, certain PSEN1 mutations cause a later AAO, similar to those observed in PSEN2 and APP. METHODS We examined whether common disease endotypes exist across these mutations with a later AAO (~ 55 years) using hiPSC-derived neurons from familial Alzheimer's disease (FAD) patients harboring mutations in PSEN1A79V, PSEN2N141I, and APPV717I and mechanistically characterized by integrating RNA-seq and ATAC-seq. RESULTS We identified common disease endotypes, such as dedifferentiation, dysregulation of synaptic signaling, repression of mitochondrial function and metabolism, and inflammation. We ascertained the master transcriptional regulators associated with these endotypes, including REST, ASCL1, and ZIC family members (activation), and NRF1 (repression). CONCLUSIONS FAD mutations share common regulatory changes within endotypes with varying severity, resulting in reversion to a less-differentiated state. The regulatory mechanisms described offer potential targets for therapeutic interventions.
Collapse
Affiliation(s)
- Phoebe Valdes
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Andrew B Caldwell
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Qing Liu
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Michael Q Fitzgerald
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA
- Bioengineering Graduate Program, University of California, San Diego, La Jolla, CA, 92093, USA
| | | | - Celeste M Karch
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, MO, 63110, USA
| | - Douglas R Galasko
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
| | - Shauna H Yuan
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- Present Address: N. Bud Grossman Center for Memory Research and Care, Department of Neurology, University of Minnesota, GRECC, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Steven L Wagner
- Department of Neurosciences, University of California, San Diego, La Jolla, CA, 92093, USA
- VA San Diego Healthcare System, San Diego, CA, 92161, USA
| | - Shankar Subramaniam
- Department of Bioengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Cellular and Molecular Medicine, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Nanoengineering, University of California, San Diego, La Jolla, CA, 92093, USA.
- Department of Computer Science and Engineering, University of California, San Diego, La Jolla, CA, 92093, USA.
| |
Collapse
|
3
|
Zeng L, Atlas K, Lama T, Chitnis T, Weiner H, Wang G, Fujita M, Zipp F, Taga M, Kiryluk K, De Jager PL. GWAS highlights the neuronal contribution to multiple sclerosis susceptibility. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.12.04.24318500. [PMID: 39677438 PMCID: PMC11643295 DOI: 10.1101/2024.12.04.24318500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory and neurodegenerative disease affecting the brain and spinal cord. Genetic studies have identified many risk loci, that were thought to primarily impact immune cells and microglia. Here, we performed a multi-ancestry genome-wide association study with 20,831 MS and 729,220 control participants, identifying 236 susceptibility variants outside the Major Histocompatibility Complex, including four novel loci. We derived a polygenic score for MS and, optimized for European ancestry, it is informative for African-American and Latino participants. Integrating single-cell data from blood and brain tissue, we identified 76 genes affected by MS risk variants. Notably, while T cells showed the strongest enrichment, inhibitory neurons emerged as a key cell type, highlighting the importance of neuronal and glial dysfunction in MS susceptibility.
Collapse
Affiliation(s)
- Lu Zeng
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Khan Atlas
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Tsering Lama
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Tanuja Chitnis
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Howard Weiner
- Anne Romney Center for Neurologic Diseases and Brigham Multiple Sclerosis Center, Department of Neurology, Brigham & Women’s Hospital, Boston MA
| | - Gao Wang
- The Gertrude H. Sergievsky Center and the Department of Neurology, Columbia University, New York, NY, USA
| | - Masashi Fujita
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Frauke Zipp
- Department of Neurology and Focus Program Translational Neuroscience (FTN), Rhine Main Neuroscience Network (rmn2), University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Mariko Taga
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| | - Krzysztof Kiryluk
- Division of Nephrology, Dept of Medicine, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Philip L. De Jager
- Center for Translational and Computational Neuroimmunology & Columbia Multiple Sclerosis Center, Department of Neurology, Columbia University Irving Medical Center, New York, NY, USA
| |
Collapse
|
4
|
Machold R, Rudy B. Genetic approaches to elucidating cortical and hippocampal GABAergic interneuron diversity. Front Cell Neurosci 2024; 18:1414955. [PMID: 39113758 PMCID: PMC11303334 DOI: 10.3389/fncel.2024.1414955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/08/2024] [Indexed: 08/10/2024] Open
Abstract
GABAergic interneurons (INs) in the mammalian forebrain represent a diverse population of cells that provide specialized forms of local inhibition to regulate neural circuit activity. Over the last few decades, the development of a palette of genetic tools along with the generation of single-cell transcriptomic data has begun to reveal the molecular basis of IN diversity, thereby providing deep insights into how different IN subtypes function in the forebrain. In this review, we outline the emerging picture of cortical and hippocampal IN speciation as defined by transcriptomics and developmental origin and summarize the genetic strategies that have been utilized to target specific IN subtypes, along with the technical considerations inherent to each approach. Collectively, these methods have greatly facilitated our understanding of how IN subtypes regulate forebrain circuitry via cell type and compartment-specific inhibition and thus have illuminated a path toward potential therapeutic interventions for a variety of neurocognitive disorders.
Collapse
Affiliation(s)
- Robert Machold
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
| | - Bernardo Rudy
- Neuroscience Institute, New York University Grossman School of Medicine, New York, NY, United States
- Department of Neuroscience and Physiology, New York University Grossman School of Medicine, New York, NY, United States
- Department of Anesthesiology, Perioperative Care and Pain Medicine, New York University Grossman School of Medicine, New York, NY, United States
| |
Collapse
|
5
|
Lee HHC, Latzer IT, Bertoldi M, Gao G, Pearl PL, Sahin M, Rotenberg A. Gene replacement therapies for inherited disorders of neurotransmission: Current progress in succinic semialdehyde dehydrogenase deficiency. J Inherit Metab Dis 2024; 47:476-493. [PMID: 38581234 PMCID: PMC11096052 DOI: 10.1002/jimd.12735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 03/06/2024] [Accepted: 03/20/2024] [Indexed: 04/08/2024]
Abstract
Neurodevelopment is a highly organized and complex process involving lasting and often irreversible changes in the central nervous system. Inherited disorders of neurotransmission (IDNT) are a group of genetic disorders where neurotransmission is primarily affected, resulting in abnormal brain development from early life, manifest as neurodevelopmental disorders and other chronic conditions. In principle, IDNT (particularly those of monogenic causes) are amenable to gene replacement therapy via precise genetic correction. However, practical challenges for gene replacement therapy remain major hurdles for its translation from bench to bedside. We discuss key considerations for the development of gene replacement therapies for IDNT. As an example, we describe our ongoing work on gene replacement therapy for succinic semialdehyde dehydrogenase deficiency, a GABA catabolic disorder.
Collapse
Affiliation(s)
- Henry HC Lee
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Itay Tokatly Latzer
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
- Tel-Aviv University Faculty of Medicine, Tel-Aviv, Israel
| | - Mariarita Bertoldi
- Dept. of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Guangping Gao
- The Horae Gene Therapy Center, UMass Medical School, MA 01605, USA
| | - Phillip L Pearl
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Mustafa Sahin
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Rosamund Stone Zander Translational Neuroscience Center, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Alexander Rotenberg
- F.M. Kirby Neurobiology Center, Boston Children’s Hospital, Boston, MA 02115, USA
- Division of Epilepsy & Clinical Neurophysiology, Department of Neurology, Boston Children’s Hospital, Boston, MA 02115, USA
| |
Collapse
|
6
|
Johnston KJA, Cote AC, Hicks E, Johnson J, Huckins LM. Genetically Regulated Gene Expression in the Brain Associated With Chronic Pain: Relationships With Clinical Traits and Potential for Drug Repurposing. Biol Psychiatry 2024; 95:745-761. [PMID: 37678542 PMCID: PMC10924073 DOI: 10.1016/j.biopsych.2023.08.023] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 07/20/2023] [Accepted: 08/28/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Chronic pain is a common, poorly understood condition. Genetic studies including genome-wide association studies have identified many relevant variants, which have yet to be translated into full understanding of chronic pain. Transcriptome-wide association studies using transcriptomic imputation methods such as S-PrediXcan can help bridge this genotype-phenotype gap. METHODS We carried out transcriptomic imputation using S-PrediXcan to identify genetically regulated gene expression associated with multisite chronic pain in 13 brain tissues and whole blood. Then, we imputed genetically regulated gene expression for over 31,000 Mount Sinai BioMe participants and performed a phenome-wide association study to investigate clinical relationships in chronic pain-associated gene expression changes. RESULTS We identified 95 experiment-wide significant gene-tissue associations (p < 7.97 × 10-7), including 36 unique genes and an additional 134 gene-tissue associations reaching within-tissue significance, including 53 additional unique genes. Of the 89 unique genes in total, 59 were novel for multisite chronic pain and 18 are established drug targets. Chronic pain genetically regulated gene expression for 10 unique genes was significantly associated with cardiac dysrhythmia, metabolic syndrome, disc disorders/dorsopathies, joint/ligament sprain, anemias, and neurologic disorder phecodes. Phenome-wide association study analyses adjusting for mean pain score showed that associations were not driven by mean pain score. CONCLUSIONS We carried out the largest transcriptomic imputation study of any chronic pain trait to date. Results highlight potential causal genes in chronic pain development and tissue and direction of effect. Several gene results were also drug targets. Phenome-wide association study results showed significant associations for phecodes including cardiac dysrhythmia and metabolic syndrome, thereby indicating potential shared mechanisms.
Collapse
Affiliation(s)
- Keira J A Johnston
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| | - Alanna C Cote
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Emily Hicks
- Pamela Sklar Division of Psychiatric Genetics, Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jessica Johnson
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura M Huckins
- Department of Psychiatry, Yale University School of Medicine, New Haven, Connecticut.
| |
Collapse
|
7
|
Li L, Liu Z. Genetic Approaches for Neural Circuits Dissection in Non-human Primates. Neurosci Bull 2023; 39:1561-1576. [PMID: 37258795 PMCID: PMC10533465 DOI: 10.1007/s12264-023-01067-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/27/2023] [Indexed: 06/02/2023] Open
Abstract
Genetic tools, which can be used for the morphology study of specific neurons, pathway-selective connectome mapping, neuronal activity monitoring, and manipulation with a spatiotemporal resolution, have been widely applied to the understanding of complex neural circuit formation, interactions, and functions in rodents. Recently, similar genetic approaches have been tried in non-human primates (NHPs) in neuroscience studies for dissecting the neural circuits involved in sophisticated behaviors and clinical brain disorders, although they are still very preliminary. In this review, we introduce the progress made in the development and application of genetic tools for brain studies on NHPs. We also discuss the advantages and limitations of each approach and provide a perspective for using genetic tools to study the neural circuits of NHPs.
Collapse
Affiliation(s)
- Ling Li
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Liu
- Institute of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, CAS Key Laboratory of Primate Neurobiology, State Key Laboratory of Neuroscience, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 200031, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
8
|
In silico prediction and in vivo testing of promoters targeting GABAergic inhibitory neurons. Mol Ther Methods Clin Dev 2023; 28:330-343. [PMID: 36874244 PMCID: PMC9974971 DOI: 10.1016/j.omtm.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 01/31/2023] [Indexed: 02/07/2023]
Abstract
Impairment of GABAergic inhibitory neuronal function is linked to epilepsy and other neurological and psychiatric disorders. Recombinant adeno-associated virus (rAAV)-based gene therapy targeting GABAergic neurons is a promising treatment for GABA-associated disorders. However, there is a need to develop rAAV-compatible gene-regulatory elements capable of selectively driving expression in GABAergic neurons throughout the brain. Here, we designed several novel GABAergic gene promoters. In silico analyses, including evolutionarily conserved DNA sequence alignments and transcription factor binding site searches among GABAergic neuronal genes, were carried out to reveal novel sequences for use as rAAV-compatible promoters. rAAVs (serotype 9) were injected into the CSF of neonatal mice and into the brain parenchyma of adult mice to assess promoter specificity. In mice injected neonatally, transgene expression was detected in multiple brain regions with very high neuronal specificity and moderate-to-high GABAergic neuronal selectivity. The GABA promoters differed greatly in their levels of expression and, in some brain regions, showed strikingly different patterns of GABAergic neuron transduction. This study is the first report of rAAV vectors that are functional in multiple brain regions using promoters designed by in silico analyses from multiple GABAergic genes. These novel GABA-targeting vectors may be useful tools to advance gene therapy for GABA-associated disorders.
Collapse
|