1
|
Lemche E, Hortobágyi T, Kiecker C, Turkheimer F. Neuropathological links between T2DM and LOAD: systematic review and meta-analysis. Physiol Rev 2025; 105:1429-1486. [PMID: 40062731 DOI: 10.1152/physrev.00040.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 02/01/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025] Open
Abstract
Recent decades have described parallel neuropathological mechanisms increasing the risk for developing late-onset Alzheimer's dementia (LOAD) in type 2 diabetes mellitus (T2DM); however, still little is known of the role of diabetic encephalopathy and brain atrophy in LOAD. The aim of this systematic review is to provide a comprehensive view on diabetic encephalopathy/cerebral atrophy, taking into account neuroimaging data, neuropathology, metabolic and endocrine mechanisms, amyloid formation, brain perfusion impairments, neuroimmunology, and inflammasome activation. Key switches were identified, to further meta-analyze genomic candidate loci and epigenetic modifications. For the qualitative meta-analysis of genomic bases extracted, human linkage studies were examined; for epigenetic mechanisms, data from both human and animal studies are described. For the systematic review of pathophysiological mechanisms, 1,259 publications were evaluated and 93 gene loci extracted for candidate risk linkages. Sixty-six publications were evaluated for genomic association and descriptions of epigenomic modifications. Overall accumulated results highlight the insulin signaling system, vascular markers, inflammation and inflammasome pathways, amylin interactions, and glycosylation mechanisms. The protocol was registered with PROSPERO (ID: CRD42023440535).
Collapse
Affiliation(s)
- Erwin Lemche
- Section of Cognitive Neuropsychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Tibor Hortobágyi
- Institute of Neuropathology, University Hospital Zurich, Zurich, Switzerland
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Clemens Kiecker
- Department for Developmental Neurobiology, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| | - Federico Turkheimer
- Centre for Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, United Kingdom
| |
Collapse
|
2
|
Yan XD, Yang Y, Zhang WT, Kong QQ, Zheng XT, Li LS, Yu Q. Senegenin ameliorates diabetic encephalopathy via promoting mitophagy and repressing NLRP3 inflammasome activation. Psychopharmacology (Berl) 2025:10.1007/s00213-025-06796-w. [PMID: 40281338 DOI: 10.1007/s00213-025-06796-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
RATIONALE Diabetic encephalopathy (DE) remains a severe complication of diabetes in central nervous system with limited effective therapy. OBJECTIVES This study investigated the beneficial effect of senegenin on DE and its possible mechanisms. METHODS Type 2 diabetes mellitus mouse model and high-glucose (HG)-stimulated PC-12 cells were used as the in vivo and in vitro DE models. Learning and memory ability was evaluated by MWM test. Pathological changes in the brain tissues were determined by HE staining. Cell viability was detected by CCK-8. Mitochondrial membrane potential was measured by JC-1 probe. Target protein levels were assessed by Western blotting. Nucleotide-binding domain-like receptor protein 3 (NLRP3) expression was observed by immunofluorescent staining. RESULTS Cognitive impairment and obvious pathological changes were found in DE mice, which were effectively attenuated by senegenin treatment. In addition, senegenin induced mitophagy and maintained homeostasis of mitochondrial dynamics to relieve mitochondrial dysfunction. Moreover, NLRP3 inflammation activation induced by DE was inhibited by senegenin. Finally, inhibition of mitophagy counteracted senegenin-mediated inactivation of NLRP3 inflammation and neuroprotection. CONCLUSIONS Senegenin relieved diabetic encephalopathy via inducing mitophagy to inactivate NLRP3 inflammasome. Senegenin might be an effective therapy for treating DE.
Collapse
Affiliation(s)
- Xiao-Dan Yan
- School of Life Sciences and Biopharmaceuticals, Shenyang Pharmaceutical University, Shenyang, 110016, Liaoning Province, People's Republic of China
| | - Yu Yang
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Wan-Ting Zhang
- Functional Nano & Soft Materials Laboratory, Soochow University, Suzhou, 215127, Jiangsu Province, People's Republic of China
| | - Qing-Quan Kong
- College of Basic Medical Sciences, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Xi-Tong Zheng
- Department of Medical and Health Industry, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China
| | - Lin-Sen Li
- Graduate School, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China.
| | - Qing Yu
- Department of Medical and Health Industry, Shenyang Medical College, Shenyang, 110034, Liaoning Province, People's Republic of China.
| |
Collapse
|
3
|
Zhou M, Zhou Y, Jing J, Wang M, Jin A, Cai X, Meng X, Liu T, Wang Y, Wang Y, Pan Y. Insulin resistance and white matter microstructural abnormalities in nondiabetic adult: A population-based study. Int J Stroke 2024; 19:1162-1171. [PMID: 38916129 DOI: 10.1177/17474930241266796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
BACKGROUND Insulin resistance (IR) is of growing concern yet its association with white matter integrity remains controversial. We aimed to investigate the association between IR and white matter integrity in nondiabetic adults. METHODS This cross-sectional analysis was conducted based on the PolyvasculaR Evaluation for Cognitive Impairment and vaScular Events (PRECISE) study. A total of 1709 nondiabetic community-dwelling adults with available diffusion-weighted imaging based on brain magnetic resonance imaging and completed oral glucose tolerance test were included. IR was measured noninvasively by insulin sensitivity indices (ISI), including ISIcomposite and ISI0,120, as well as homeostasis model assessment of insulin resistance (HOMA-IR). White matter microstructure abnormalities were identified by diffusion-weighted imaging along with tract-based spatial statistical analysis to compare diffusion metrics between groups. The multivariable linear regression models were applied to measure the association between white matter microstructure abnormalities and IR. RESULTS A total of 1709 nondiabetic individuals with a mean age of 60.8 ± 6.4 years and 54.1% female were included. We found that IR was associated with a significant increase in mean diffusivity, axial diffusivity, and radial diffusivity extensively in cerebral white matter in regions such as the anterior corona radiata, superior corona radiata, anterior limb of internal capsule, external capsule, and body of corpus callosum. The pattern of associations was more marked for ISIcomposite and ISI0,120. However, the effect of IR on white matter integrity was attenuated after, in addition, adjustment for history of hypertension and cardiovascular disease and antihypertensive medication use. CONCLUSION Our findings indicate a significant association between IR and white matter microstructural abnormalities in nondiabetic middle-aged community residents, while these associations were greatly influenced by the history of hypertension and cardiovascular disease, and antihypertensive medication use. Further investigation is needed to clarify the role of IR in white matter integrity, whereas prophylactic strategies of maintaining a low IR status may ameliorate disturbances in white matter integrity. DATA ACCESSIBILITY STATEMENT The data that support the findings of this study are available from the corresponding authors upon reasonable request.
Collapse
Affiliation(s)
- Mengyuan Zhou
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Yijun Zhou
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Jing
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Mengxing Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Aoming Jin
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Xueli Cai
- Department of Neurology, Lishui Central Hospital and Fifth Affiliated Hospital of Wenzhou Medical College, Lishui, China
| | - Xia Meng
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yongjun Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yilong Wang
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
- Chinese Institute for Brain Research, Beijing, China
- National Center for Neurological Diseases, Beijing, China
- Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, China
| | - Yuesong Pan
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
- China National Clinical Research Center for Neurological Diseases, Beijing, China
| |
Collapse
|
4
|
Kim JS, Chun BC, Lee K. Association between elevated glycosylated hemoglobin and cognitive impairment in older Korean adults: 2009-2010 Ansan cohort of the Korean genome and epidemiology study. Front Public Health 2024; 12:1417236. [PMID: 39588159 PMCID: PMC11586203 DOI: 10.3389/fpubh.2024.1417236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 10/09/2024] [Indexed: 11/27/2024] Open
Abstract
Objective Cohort studies on the risk of cognitive impairment in the older population of S. Korea based on glycosylated hemoglobin (HbA1c) levels are exceedingly rare. This study aimed to analyze the association between HbA1c levels and cognitive impairment in older Korean adults without dementia. Methods We conducted a cross-sectional study using data from a community-based Ansan cohort (2009-2010), which was part of the Korea Genome Epidemiology Study. The study included 853 cohort participants aged ≥59 years living in Ansan city. Cognitive function was evaluated using the Korean version of the Mini-Mental State Examination (MMSE) and Montreal Cognitive Assessment (MoCA). The MMSE and MoCA scores were categorized into normal cognition (≥24 and ≥ 23, respectively) and cognitive impairment (≤23 and ≤ 22, respectively). Multiple logistic regression analysis was used to estimate the association between HbA1c levels and cognitive impairment, with adjustments for covariates. Results The mean age of the participants was 66 years, and 433 (50.8%) were female. Cognitive impairment was observed in 12.5 and 44.3% of participants, based on the MMSE and MoCA, respectively. Regarding the MMSE scores, HbA1c level was a risk factor for cognitive impairment in women. Compared to normal HbA1c (≤5.6%) levels, adjusted odds ratios of MMSE decline for HbA1c 5.7-6.4% and HbA1c ≥6.5% were high: 2.16 (95% confidence interval [CI] 1.04-4.49) and 2.96 (95% CI, 1.04-8.39), respectively. Conclusion By improving glycemic control, the risk of cognitive impairment in the older population can be reduced. Further research on the role of sex differences in cognitive impairment is needed.
Collapse
Affiliation(s)
- Jung Sook Kim
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Byung Chul Chun
- Department of Preventive Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Kyoungho Lee
- Division of Population Health Research, Department of Precision Medicine, Korea National Institute of Health, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| |
Collapse
|
5
|
Uchida Y, Nishimaki K, Soldan A, Moghekar A, Albert M, Oishi K. Acceleration of Brain Atrophy and Progression From Normal Cognition to Mild Cognitive Impairment. JAMA Netw Open 2024; 7:e2441505. [PMID: 39476236 PMCID: PMC11525609 DOI: 10.1001/jamanetworkopen.2024.41505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 08/27/2024] [Indexed: 11/02/2024] Open
Abstract
Importance It remains unclear which risk factors accelerate brain atrophy along with a progression from normal cognition to mild cognitive impairment (MCI). Objective To examine risk factors associated with the acceleration of brain atrophy and progression from normal cognition to MCI based on long-term longitudinal data for middle-aged and older adults. Design, Setting, and Participants Data for this cohort study were extracted from the Biomarkers for Older Controls at Risk for Dementia (BIOCARD) cohort, initiated at the National Institutes of Health from January 1, 1995, to December 31, 2005, and continued at Johns Hopkins University from January 1, 2015, to October 31, 2023. All participants were cognitively normal at baseline. The participants whose structural magnetic brain imaging (MRI) of the brain and cerebrospinal fluid (CSF) measures were available for over 10 years were included. Exposures Longitudinal structural MRI of the brain and measurement of CSF biomarkers for Alzheimer disease pathology (ratio of amyloid β peptide 42 [Aβ42] to Aβ40, tau phosphorylated at threonine 181, and total tau). Main Outcomes and Measures Annual change rates of segmental brain volumes, Kaplan-Meier survival curves plotting time to event for progression to MCI symptom onset, and hazard ratios (HRs) determined by Cox proportional hazards regression models. Results A total of 185 participants (mean [SD] age, 55.4 [8.4] years; 116 women [63%]) were included and followed up for a maximum of 27 years (median, 20 [IQR, 18-22] years). The groups with high levels of atrophy in the white matter and enlargement in the ventricles had an earlier progression from normal cognition to MCI symptom onset (HR for white matter, 1.86 [95% CI, 1.24-2.49]; P = .001; HR for ventricles, 1.71 [95% CI, 1.19-2.24]; P = .009). Diabetes was associated with progression to MCI (HR, 1.41 [95% CI, 1.06-1.76]; P = .04), as was a low CSF Aβ42:Aβ40 ratio (HR, 1.48 [95% CI, 1.09-1.88]; P = .04), and their combination had a higher HR of 1.55 (95% CI, 1.13-1.98]; P = .03), indicating a synergic association of diabetes and amyloid pathology with MCI progression. Conclusions and Relevance In this cohort study of middle-aged and older adults, higher rates of volume change in the white matter and ventricles, along with the presence of diabetes and a low CSF Aβ42:Aβ40 ratio, were identified as important risk factors for the progression to MCI. These results support the importance of identifying individuals who have accelerated brain atrophy to optimize preventive strategies for progression to MCI.
Collapse
Affiliation(s)
- Yuto Uchida
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kei Nishimaki
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Abhay Moghekar
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Baltimore, Maryland
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Kenichi Oishi
- Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Baltimore, Maryland
| |
Collapse
|
6
|
Daugherty JC, García-Navas-Menchero M, Fernández-Fillol C, Hidalgo-Ruzzante N, Pérez-García M. Tentative Causes of Brain and Neuropsychological Alterations in Women Victims of Intimate Partner Violence. Brain Sci 2024; 14:996. [PMID: 39452010 PMCID: PMC11505674 DOI: 10.3390/brainsci14100996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/17/2024] [Accepted: 09/26/2024] [Indexed: 10/26/2024] Open
Abstract
Victims of Intimate Partner Violence Against Women (IPVAW) experience neuropsychological and cerebral changes, which have been linked to several tentative causal mechanisms, including elevated cortisol levels, psychopathological disorders, traumatic brain injury (TBI), hypoxic/ischemic brain damage, and medical conditions related to IPVAW. While these mechanisms and their effects on brain function and neuropsychological health are well-documented in other clinical populations, they manifest with unique characteristics in women affected by IPVAW. Specifically, IPVAW is chronic and repeated in nature, and mechanisms are often cumulative and may interact with other comorbid conditions. Thus, in light of existing literature on neuropsychological alterations in other populations, and recognizing the distinct features in women who experience IPVAW, we propose a new theoretical model-the Neuro-IPVAW model. This framework aims to explain the complex interplay between these mechanisms and their impact on cognitive and brain health in IPVAW victims. We anticipate that this theoretical model will be valuable for enhancing our understanding of neuropsychological and brain changes related to intimate partner violence, identifying research gaps in these mechanisms, and guiding future research directions in this area.
Collapse
Affiliation(s)
- Julia C. Daugherty
- Laboratory of Social and Cognitive Psychology (UCA-LAPSCO), CNRS, University of Clermont Auvergne, 63000 Clermont-Ferrand, France;
| | - Maripaz García-Navas-Menchero
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
| | - Carmen Fernández-Fillol
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Health Sciences, Valencian International University, 46002 Valencia, Spain
- Faculty of Health Sciences, Isabel I University, 09003 Burgos, Spain
| | - Natalia Hidalgo-Ruzzante
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Developmental and Educational Psychology, University of Granada, 18011 Granada, Spain
| | - Miguel Pérez-García
- Mind, Brain and Behavior Research Center (CIMCYC), University of Granada, 18011 Granada, Spain; (C.F.-F.); (N.H.-R.); (M.P.-G.)
- Department of Personality, Evaluation and Psychological Treatment, University of Granada, 18011 Granada, Spain
| |
Collapse
|
7
|
Wątroba M, Grabowska AD, Szukiewicz D. Chemokine CX3CL1 (Fractalkine) Signaling and Diabetic Encephalopathy. Int J Mol Sci 2024; 25:7527. [PMID: 39062768 PMCID: PMC11277241 DOI: 10.3390/ijms25147527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/04/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Diabetes mellitus (DM) is the most common metabolic disease in humans, and its prevalence is increasing worldwide in parallel with the obesity pandemic. A lack of insulin or insulin resistance, and consequently hyperglycemia, leads to many systemic disorders, among which diabetic encephalopathy (DE) is a long-term complication of the central nervous system (CNS), characterized by cognitive impairment and motor dysfunctions. The role of oxidative stress and neuroinflammation in the pathomechanism of DE has been proven. Fractalkine (CX3CL1) has unique properties as an adhesion molecule and chemoattractant, and by acting on its only receptor, CX3CR1, it regulates the activity of microglia in physiological states and neuroinflammation. Depending on the clinical context, CX3CL1-CX3CR1 signaling may have neuroprotective effects by inhibiting the inflammatory process in microglia or, conversely, maintaining/intensifying inflammation and neurotoxicity. This review discusses the evidence supporting that the CX3CL1-CX3CR1 pair is neuroprotective and other evidence that it is neurotoxic. Therefore, interrupting the vicious cycle within neuron-microglia interactions by promoting neuroprotective effects or inhibiting the neurotoxic effects of the CX3CL1-CX3CR1 signaling axis may be a therapeutic goal in DE by limiting the inflammatory response. However, the optimal approach to prevent DE is simply tight glycemic control, because the elimination of dysglycemic states in the CNS abolishes the fundamental mechanisms that induce this vicious cycle.
Collapse
Affiliation(s)
| | | | - Dariusz Szukiewicz
- Laboratory of the Blood-Brain Barrier, Department of Biophysics, Physiology & Pathophysiology, Medical University of Warsaw, Chałubińskiego 5, 02-400 Warsaw, Poland; (M.W.); (A.D.G.)
| |
Collapse
|
8
|
Chen Y, Li Z, Chen Y, Dang M, Chen K, Sang F, Fang H, Zhang Z. Cerebellar gray matter and white matter damage among older adults with prediabetes. Diabetes Res Clin Pract 2024; 213:111731. [PMID: 38851538 DOI: 10.1016/j.diabres.2024.111731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 05/16/2024] [Accepted: 06/02/2024] [Indexed: 06/10/2024]
Abstract
AIMS To investigate alterations in cerebrum and cerebellum in prediabetes. Cerebellar injury in diabetes is traceable, but it has not been systematically studied, and whether cerebellar injury occurs and the degree of damage in prediabetes are not known. METHODS The current study investigated cerebral and cerebellar gray matter volume, white matter volume, white matter microstructure and white matter hyperintensity on T1-weighted, T2-weighted fluid-attenuated inversion recovery and diffusion tensor imaging scans in 78 individuals with normal glucose metabolism, 92 with prediabetes, and 108 with type 2 diabetes. RESULTS Participants with prediabetes showed significant gray matter and white matter atrophy, microstructural damage in the cerebellar and cerebral regions. Additionally, widespread structural alterations were observed in the diabetic stage. The function of the damaged brain area was further decoded in Neurosynth, and the damaged cerebellar area with prediabetic lesions was closely related to motor function, while the area affected by diabetes was related to complex cognitive function in addition to motor function. CONCLUSIONS Cerebellar injury had already appeared in the prediabetic stage, and cerebellar injury was aggravated in the diabetic stage; therefore, the cerebellum is a key area that is damaged early in the development of diabetes.
Collapse
Affiliation(s)
- Yaojing Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China.
| | - Ziyun Li
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Yuan Chen
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Mingxi Dang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Kewei Chen
- Banner Alzheimer's Institute, Phoenix, AZ 85006, USA
| | - Feng Sang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China
| | - Hongjuan Fang
- Department of Endocrinology, Civil Aviation General Hospital, Beijing 100012, China
| | - Zhanjun Zhang
- State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University, Beijing 100875, China; BABRI Centre, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
9
|
Llorián-Salvador M, Cabeza-Fernández S, Gomez-Sanchez JA, de la Fuente AG. Glial cell alterations in diabetes-induced neurodegeneration. Cell Mol Life Sci 2024; 81:47. [PMID: 38236305 PMCID: PMC10796438 DOI: 10.1007/s00018-023-05024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/09/2023] [Accepted: 10/29/2023] [Indexed: 01/19/2024]
Abstract
Type 2 diabetes mellitus is a global epidemic that due to its increasing prevalence worldwide will likely become the most common debilitating health condition. Even if diabetes is primarily a metabolic disorder, it is now well established that key aspects of the pathogenesis of diabetes are associated with nervous system alterations, including deleterious chronic inflammation of neural tissues, referred here as neuroinflammation, along with different detrimental glial cell responses to stress conditions and neurodegenerative features. Moreover, diabetes resembles accelerated aging, further increasing the risk of developing age-linked neurodegenerative disorders. As such, the most common and disabling diabetic comorbidities, namely diabetic retinopathy, peripheral neuropathy, and cognitive decline, are intimately associated with neurodegeneration. As described in aging and other neurological disorders, glial cell alterations such as microglial, astrocyte, and Müller cell increased reactivity and dysfunctionality, myelin loss and Schwann cell alterations have been broadly described in diabetes in both human and animal models, where they are key contributors to chronic noxious inflammation of neural tissues within the PNS and CNS. In this review, we aim to describe in-depth the common and unique aspects underlying glial cell changes observed across the three main diabetic complications, with the goal of uncovering shared glial cells alterations and common pathological mechanisms that will enable the discovery of potential targets to limit neuroinflammation and prevent neurodegeneration in all three diabetic complications. Diabetes and its complications are already a public health concern due to its rapidly increasing incidence, and thus its health and economic impact. Hence, understanding the key role that glial cells play in the pathogenesis underlying peripheral neuropathy, retinopathy, and cognitive decline in diabetes will provide us with novel therapeutic approaches to tackle diabetic-associated neurodegeneration.
Collapse
Affiliation(s)
- María Llorián-Salvador
- Diabetes and Metabolism Research Unit, Vall d'Hebron Research Institute, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Wellcome-Wolfson Institute for Experimental Medicine, Queen's University, Belfast, UK.
| | - Sonia Cabeza-Fernández
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Jose A Gomez-Sanchez
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain
| | - Alerie G de la Fuente
- Institute for Health and Biomedical Research of Alicante (ISABIAL), Alicante, Spain.
- Institute of Neuroscience CSIC-UMH, San Juan de Alicante, Spain.
| |
Collapse
|
10
|
Novak V, Mantzoros CS, Novak P, McGlinchey R, Dai W, Lioutas V, Buss S, Fortier CB, Khan F, Aponte Becerra L, Ngo LH. MemAID: Memory advancement with intranasal insulin vs. placebo in type 2 diabetes and control participants: a randomized clinical trial. J Neurol 2022; 269:4817-4835. [PMID: 35482079 PMCID: PMC9046533 DOI: 10.1007/s00415-022-11119-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 01/21/2023]
Abstract
BACKGROUND This study aimed at assessing the long-term effects of intranasal insulin (INI) on cognition and gait in older people with and without type 2 diabetes mellitus (T2DM). METHODS Phase 2 randomized, double-blinded trial consisted of 24 week treatment with 40 IU of INI (Novolin® R, off-label use) or placebo (sterile saline) once daily and 24 week follow-up. Primary outcomes were cognition, normal (NW), and dual-task (DTW) walking speeds. Of 244 randomized, 223 completed baseline (51 DM-INI, 55 DM-Placebo, 58 Control-INI, 59 Control-Placebo; 109 female, 65.8 ± 9.1; 50-85 years old); 174 completed treatment (84 DM, 90 Controls); 156 completed follow-up (69 DM). RESULTS DM-INI had faster NW (~ 7 cm/s; p = 0.025) and DTW on-treatment (p = 0.007; p = 0.812 adjusted for baseline difference) than DM-Placebo. Control-INI had better executive functioning on-treatment (p = 0.008) and post-treatment (p = 0.007) and verbal memory post-treatment (p = 0.004) than Control-Placebo. DM-INI increased cerebral blood flow in medio-prefrontal cortex (p < 0.001) on MRI. Better vasoreactivity was associated with faster DTW (p < 0.008). In DM-INI, plasma insulin (p = 0.006) and HOMA-IR (p < 0.013) decreased post-treatment. Overall INI effect demonstrated faster walking (p = 0.002) and better executive function (p = 0.002) and verbal memory (p = 0.02) (combined DM-INI and Control-INI cohort, hemoglobin A1c-adjusted). INI was not associated with serious adverse events, hypoglycemic episodes, or weight gain. CONCLUSION There is evidence for positive INI effects on cognition and gait. INI-treated T2DM participants walked faster, showed increased cerebral blood flow and decreased plasma insulin, while controls improved executive functioning and verbal memory. The MemAID trial provides proof-of-concept for preliminary safety and efficacy and supports future evaluation of INI role to treat T2DM and age-related functional decline.
Collapse
Affiliation(s)
- Vera Novak
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Rd, Boston, MA, 02215, USA.
| | - Christos S Mantzoros
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
- Department of Medicine, Boston VA Healthcare System, Boston, MA, USA
| | - Peter Novak
- Department of Neurology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Regina McGlinchey
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Research Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Weiying Dai
- Department of Computer Science, State University of New York (SUNY), Binghamton, NY, USA
| | - Vasileios Lioutas
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Rd, Boston, MA, 02215, USA
| | - Stephanie Buss
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Rd, Boston, MA, 02215, USA
| | - Catherine B Fortier
- Translational Research Center for TBI and Stress Disorders (TRACTS) and Geriatric Research Educational and Clinical Research Center (GRECC), VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Faizan Khan
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Rd, Boston, MA, 02215, USA
| | - Laura Aponte Becerra
- Department of Neurology, Beth Israel Deaconess Medical Center, Harvard Medical School, 185 Pilgrim Rd, Boston, MA, 02215, USA
| | - Long H Ngo
- Department of Medicine, Beth Israel Deaconess Medical Center and School of Public Health, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Zhang J, Liu Y, Guo X, Guo J, Du Z, He M, Liu Q, Xu D, Liu T, Zhang J, Yuan H, Wang M, Li S. Causal Structural Covariance Network Suggesting Structural Alterations Progression in Type 2 Diabetes Patients. Front Hum Neurosci 2022; 16:936943. [PMID: 35911591 PMCID: PMC9336220 DOI: 10.3389/fnhum.2022.936943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/16/2022] [Indexed: 12/02/2022] Open
Abstract
Background and Purpose According to reports, type 2 diabetes (T2D) is a progressive disease. However, no known research has examined the progressive brain structural changes associated with T2D. The purpose of this study was to determine whether T2D patients exhibit progressive brain structural alterations and, if so, how the alterations progress. Materials and Methods Structural magnetic resonance imaging scans were collected for 81 T2D patients and 48 sex-and age-matched healthy controls (HCs). Voxel-based morphometry (VBM) and causal structural covariance network (CaSCN) analyses were applied to investigate gray matter volume (GMV) alterations and the likely chronological processes underlying them in T2D. Two sample t-tests were performed to compare group differences, and the differences were corrected using Gaussian random field (GRF) correction (voxel-level p < 0.001, cluster-level p < 0.01). Results Our findings demonstrated that GMV alterations progressed in T2D patients as disease duration increased. In the early stages of the disease, the right temporal pole of T2D patients had GMV atrophy. As the diseases duration prolonged, the limbic system, cerebellum, subcortical structures, parietal cortex, frontal cortex, and occipital cortex progressively exhibited GMV alterations. The patients also exhibited a GMV alterations sequence exerting from the right temporal pole to the limbic-cerebellum-striatal-cortical network areas. Conclusion Our results indicate that the progressive GMV alterations of T2D patients manifested a limbic-cerebellum-striatal-cortical sequence. These findings may contribute to a better understanding of the progression and an improvement of current diagnosis and intervention strategies for T2D.
Collapse
Affiliation(s)
- Jiang Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
| | - Yuyan Liu
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Xiaonan Guo
- School of Information Science and Engineering, Yanshan University, Qinhuangdao, China
- Hebei Key Laboratory of Information Transmission and Signal Processing, Yanshan University, Qinhuangdao, China
| | - Jing Guo
- MOE Key Lab for Neuroinformation, The Clinical Hospital of Chengdu Brain Science Institute, University of Electronic Science and Technology of China, Chengdu, China
| | - Zhengcong Du
- School of Information Science and Technology, Xichang University, Xichang, China
| | - Muyuan He
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Qihong Liu
- College of Biomedical Engineering, Sichuan University, Chengdu, China
| | - Dundi Xu
- College of Electrical Engineering, Sichuan University, Chengdu, China
| | - Taiyuan Liu
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
| | - Junran Zhang
- College of Electrical Engineering, Sichuan University, Chengdu, China
- *Correspondence: Junran Zhang
| | - Huijuan Yuan
- Department of Endocrinology, Henan Provincial People's Hospital, Zhengzhou, China
- Huijuan Yuan
| | - Meiyun Wang
- Department of Medical Imaging, Henan Provincial People's Hospital, Zhengzhou, China
- Meiyun Wang
| | - Shasha Li
- The Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Boston, MA, United States
- Harvard Medical School, Boston, MA, United States
| |
Collapse
|