1
|
Walbert T, Avila EK, Boele FW, Hertler C, Lu-Emerson C, van der Meer PB, Peters KB, Rooney AG, Templer JW, Koekkoek JAF. Symptom management in isocitrate dehydrogenase mutant glioma. Neurooncol Pract 2025; 12:i38-i48. [PMID: 39776527 PMCID: PMC11703367 DOI: 10.1093/nop/npae088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025] Open
Abstract
According to the 2021 World Health Organization classification of CNS tumors, gliomas harboring a mutation in isocitrate dehydrogenase (mIDH) are considered a distinct disease entity, typically presenting in adult patients before the age of 50 years. Given their multiyear survival, patients with mIDH glioma are affected by tumor and treatment-related symptoms that can have a large impact on the daily life of both patients and their caregivers for an extended period of time. Selective oral inhibitors of mIDH enzymes have recently joined existing anticancer treatments, including resection, radiotherapy, and chemotherapy, as an additional targeted treatment modality. With new treatments that improve progression-free and possibly overall survival, preventing and addressing daily symptoms becomes even more clinically relevant. In this review we discuss the management of the most prevalent symptoms, including tumor-related epilepsy, cognitive dysfunction, mood disorders, and fatigue, in patients with mIDH glioma, and issues regarding patient's health-related quality of life and caregiver needs in the era of mIDH inhibitors. We provide recommendations for practicing healthcare professionals caring for patients who are eligible for treatment with mIDH inhibitors.
Collapse
Affiliation(s)
- Tobias Walbert
- Department of Neurology and Neurosurgery, Henry Ford Health, Wayne State and Michigan State University, Detroit, Michigan, USA
| | - Edward K Avila
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Florien W Boele
- Academic Unit of Health Economics, Leeds Institute of Health Sciences, Faculty of Medicine and Health, University of Leeds, Leeds, UK
- Patient Centred Outcomes Research, Leeds Institute of Medical Research at St. James’s, St. James’s University Hospital, University of Leeds, Leeds, UK
| | - Caroline Hertler
- Competence Center for Palliative Care, Department of Radiation Oncology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| | - Christine Lu-Emerson
- Department of Neurology, Maine Health/Maine Medical Center, Scarborough, Maine, USA
| | - Pim B van der Meer
- Department of Psychiatry, University Medical Center Utrecht Brain Center, Utrecht University, Utrecht, The Netherlands
| | - Katherine B Peters
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, North Carolina, USA
| | - Alasdair G Rooney
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, UK
| | - Jessica W Templer
- Department of Neurology, Northwestern University, Chicago, Illinois, USA
| | - Johan A F Koekkoek
- Department of Neurology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
2
|
Tomasino B, De Fraja G, Guarracino I, Ius T, D’Agostini S, Skrap M, Ida Rumiati R. Cognitive reserve and individual differences in brain tumour patients. Brain Commun 2023; 5:fcad198. [PMID: 37483531 PMCID: PMC10361024 DOI: 10.1093/braincomms/fcad198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 05/08/2023] [Accepted: 07/06/2023] [Indexed: 07/25/2023] Open
Abstract
The aim of the paper is to determine the effects of the cognitive reserve on brain tumour patients' cognitive functions and, specifically, if cognitive reserve helps patients cope with the negative effects of brain tumours on their cognitive functions. We retrospectively studied a large sample of around 700 patients, diagnosed with a brain tumour. Each received an MRI brain examination and performed a battery of tests measuring their cognitive abilities before they underwent neurosurgery. To account for the complexity of cognitive reserve, we construct our cognitive reserve proxy by combining three predictors of patients' cognitive performance, namely, patients' education, occupation, and the environment where they live. Our statistical analysis controls for the type, side, site, and size of the lesion, for fluid intelligence quotient, and for age and gender, in order to tease out the effect of cognitive reserve on each of these tests. Clinical neurological variables have the expected effects on cognitive functions. We find a robust positive effect of cognitive reserve on patients' cognitive performance. Moreover, we find that cognitive reserve modulates the effects of the volume of the lesion: the additional negative impact of an increase in the tumour size on patients' performance is less severe for patients with higher cognitive reserve. We also find substantial differences in these effects depending on the cerebral hemisphere where the lesion occurred and on the cognitive function considered. For several of these functions, the positive effect of cognitive reserve is stronger for patients with lesions in the left hemisphere than for patients whose lesions are in the right hemisphere. The development of prevention strategies and personalized rehabilitation interventions will benefit from our contribution to understanding the role of cognitive reserve, in addition to that of neurological variables, as one of the factors determining the patients' individual differences in cognitive performance caused by brain tumours.
Collapse
Affiliation(s)
- Barbara Tomasino
- Scientific Institute, IRCCS E. Medea, Unità Operativa Pasian di Prato, Udine 33037, Italy
| | - Gianni De Fraja
- Nottingham School of Economics, University of Nottingham, University Park, Nottingham NG7 2RD, UK
- CEPR, London EC1V 7DB, UK
| | - Ilaria Guarracino
- Scientific Institute, IRCCS E. Medea, Unità Operativa Pasian di Prato, Udine 33037, Italy
| | - Tamara Ius
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Serena D’Agostini
- Unità Operativa di Neuroradiologia, Azienda Sanitaria Universitaria Friuli Centrale, Udine, Italy
| | - Miran Skrap
- Unità Operativa di Neurochirurgia, Azienda Sanitaria Universitaria Friuli Centrale, Udine 33100, Italy
| | - Raffaella Ida Rumiati
- Neuroscience Area, Scuola Internazionale Superiore di Studi Avanzati, Trieste 34136, Italy
- Dipartimento di Medicina dei Sistemi, University of Rome ‘Tor Vergata’, Roma 00133, Italy
| |
Collapse
|
3
|
Liu K, Liao X, Chen Y, Jiang S. Adjuvant Chemoradiation Therapy Versus Chemotherapy Alone for Resected Oligodendroglioma: A Surveillance, Epidemiology and End Results (SEER) Analysis. World Neurosurg 2023; 170:e37-e44. [PMID: 36273731 DOI: 10.1016/j.wneu.2022.10.063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Accepted: 10/17/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The benefit of postoperative adjuvant therapy for survival of oligodendrocyte glioma remains unclear. In this study, we compared the effect of chemoradiation therapy (CRT) and chemotherapy (CT) alone in patients who underwent resection. We aim to identify which adjuvant therapy provides more survival benefits. METHODS We identified patients who underwent oligodendroglioma resection in the Surveillance, Epidemiology and End Results (SEER) database. A multivariate Cox regression analysis was used to evaluate the factors affecting survival rates. We used a propensity matching analysis to minimize selection bias in each group. We performed subgroup analyses based on patients' clinical characteristics. RESULTS This study identified 1826 patients who received adjuvant CT (n = 503) or adjuvant CRT (n = 1323). On multivariate analysis, elderly, white and other race, and temporal lobe and parietal lobe tumor site were independent risk factors for improved overall survival (OS). After 1:1 propensity match, we included 501 patients who received CT and 501 with CRT. Patients in the CT group showed improved overall survival rate compared with those who received CRT (median OS: 146 months vs. 111 months). Subgroup analysis showed that improved overall survival in CT group was more significant in patients who were younger or older, male or female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with gross total resection (GTR) (P < 0.05). CONCLUSIONS In patients with resected oligodendroglioma, adjuvant CT is associated with better survival compared to adjuvant CRT. The benefit was more significant in patients who were younger and older, male and female, white race, frontal lobe and parietal lobe tumor site, smaller tumor size (≤4 cm), and with GTR.
Collapse
Affiliation(s)
- Kepeng Liu
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Xiaozu Liao
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Yong Chen
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China
| | - Shengjie Jiang
- Department of Anesthesiology, Zhongshan Hospital of Sun Yat-Sen University (Zhongshan City People's Hospital), Zhongshan, Guangdong, China.
| |
Collapse
|
4
|
Rincon-Torroella J, Rakovec M, Materi J, Raj D, Vivas-Buitrago T, Ferres A, Reyes Serpa W, Redmond KJ, Holdhoff M, Bettegowda C, González Sánchez JJ. Current and Future Frontiers of Molecularly Defined Oligodendrogliomas. Front Oncol 2022; 12:934426. [PMID: 35957904 PMCID: PMC9358027 DOI: 10.3389/fonc.2022.934426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 06/13/2022] [Indexed: 11/17/2022] Open
Abstract
Oligodendrogliomas are a subtype of adult diffuse glioma characterized by their better responsiveness to systemic chemotherapy than other high-grade glial tumors. The World Health Organization (WHO) 2021 brain tumor classification highlighted defining molecular markers, including 1p19q codeletion and IDH mutations which have become key in diagnosing and treating oligodendrogliomas. The management for patients with oligodendrogliomas includes observation or surgical resection potentially followed by radiation and chemotherapy with PCV (Procarbazine, Lomustine, and Vincristine) or Temozolomide. However, most of the available research about oligodendrogliomas includes a mix of histologically and molecularly diagnosed tumors. Even data driving our current management guidelines are based on post-hoc subgroup analyses of the 1p19q codeleted population in landmark prospective trials. Therefore, the optimal treatment paradigm for molecularly defined oligodendrogliomas is incompletely understood. Many questions remain open, such as the optimal timing of radiation and chemotherapy, the response to different chemotherapeutic agents, or what genetic factors influence responsiveness to these agents. Ultimately, oligodendrogliomas are still incurable and new therapies, such as targeting IDH mutations, are necessary. In this opinion piece, we present relevant literature in the field, discuss current challenges, and propose some studies that we think are necessary to answer these critical questions.
Collapse
Affiliation(s)
- Jordina Rincon-Torroella
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
| | - Maureen Rakovec
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Josh Materi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Divyaansh Raj
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | | | - Abel Ferres
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
| | | | - Kristin J. Redmond
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Matthias Holdhoff
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Chetan Bettegowda
- Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- *Correspondence: Chetan Bettegowda, ; José Juan González Sánchez,
| | - José Juan González Sánchez
- Department of Neurosurgery, Hospital Clínic i Provincial, Barcelona, Spain
- *Correspondence: Chetan Bettegowda, ; José Juan González Sánchez,
| |
Collapse
|