1
|
You J, Fuchs J, Wang M, Hu Q, Tao X, Krolczyk E, Tirumala T, Bragin A, Liu H, Engel J, Li L. Preventive effects of transcranial photobiomodulation on epileptogenesis in a kainic acid-induced rat epilepsy model. Exp Neurol 2025; 383:115005. [PMID: 39419434 DOI: 10.1016/j.expneurol.2024.115005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 09/26/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
OBJECTIVE Temporal lobe epilepsy affects nearly 50 million people worldwide and is a major burden to families and society. A significant portion of patients are living in developing countries with limited access to therapeutic resources. This highlights the urgent need to develop more readily available, noninvasive treatments for seizure control. This research explored the effectiveness of transcranial photobiomodulation (tPBM), a non-invasive method utilizing photon-tissue interactions, for preventing epileptogenesis and controlling seizures. METHODS In a kainic acid (KA)-induced rat model of epilepsy, two different wavelengths of tPBM, 808 nm and 940 nm, were applied separately in two groups of animals (KA+808 and KA+940). The ability of tPBM for seizure control was evaluated by comparing the occurrence rate of interictal epileptiform discharges (IED) and behavioral seizures among three groups: KA, KA+808, KA+940. Prevention of epileptogenesis was assessed by comparing the occurrence rate of high frequency oscillations (HFOs), especially fast ripple (FR) rate, among the three groups. Nissl staining and immunostaining for the apoptosis marker caspase-3 were used as indications of neuroprotection. RESULTS The KA+808 group and the KA+940 group showed significantly lower FR and IED rates compared to the KA group. Weekly FR rates started to drop during the first week of tPBM treatment. The KA+808 and KA+940 groups also displayed milder seizure behaviors and less neuronal loss in hippocampal areas compared to KA rats without tPBM treatment. Similarly, lower caspase-3 levels in the KA+808 and KA+940 compared with the KA group suggested effectiveness of tPBM in reducing cell death. SIGNIFICANCE tPBM of 808 nm/940 nm showed effectiveness in suppressing epileptogenesis and ictogenesis in the KA-induced rat epilepsy model. This effectiveness of tPBM can be linked to the neuroprotection benefits of photon-tissue interactions. Further studies are warranted to elucidate the fundamental mechanism of tPBM protection, determine optimal treatment parameters and validate its effectiveness in other epilepsy models.
Collapse
Affiliation(s)
- Jing You
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Jannon Fuchs
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Miaomiao Wang
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Qichan Hu
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Xiaoxiao Tao
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Elizabeth Krolczyk
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Tanya Tirumala
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA
| | - Anatol Bragin
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA
| | - Hanli Liu
- Department of Bioengineering, University of Texas at Arlington, Arlington, TX, USA
| | - Jerome Engel
- Department of Neurology, University of California Los Angeles, Los Angeles, California, USA; Brain Research Institute, University of California, Los Angeles, California, USA; Department of Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, California, USA; Department of Psychiatry and Biobehavioral Sciences, David Geffen School of Medicine at UCLA, California, USA
| | - Lin Li
- Department of Biomedical Engineering, University of North Texas, Denton, TX, USA; Department of Neurology, University of California Los Angeles, Los Angeles, California, USA.
| |
Collapse
|
2
|
Ikenouchi A, Ide S, Hayasaki G, Adachi H, Yoshimura R. Hippocampal Sclerosis After Legionnaires' Disease: A Case Report. Cureus 2024; 16:e75773. [PMID: 39816309 PMCID: PMC11733525 DOI: 10.7759/cureus.75773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2024] [Indexed: 01/18/2025] Open
Abstract
Legionnaires' disease is a form of atypical pneumonia that can present with neurological symptoms, such as headaches, seizures, and focal neurological abnormalities. We report the case of a male patient who developed impaired consciousness and recurrent seizures following pneumonia caused by Legione lla. The patient received antibiotics and antiepileptic treatment and was discharged on hospital day 56. He was diagnosed with hippocampal sclerosis 10 months later. To our knowledge, this is the first reported case of hippocampal sclerosis following Legionnaires' disease globally. Clinicians should be aware of the risk of hippocampal sclerosis after Legionnaires' disease.
Collapse
Affiliation(s)
- Atsuko Ikenouchi
- Department of Psychiatry, University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
- Medical Center for Dementia, Hospital of the University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
| | - Satoru Ide
- Department of Radiology, University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
| | - Gaku Hayasaki
- Department of Psychiatry, University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
| | - Hiroaki Adachi
- Department of Neurology, University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
| | - Reiji Yoshimura
- Department of Psychiatry, University of Occupational and Environmental Health, Japan, Kitakyushu, JPN
| |
Collapse
|
3
|
Qian X, Sheng X, Ding J, Yiming Z, Zheng J, Zhong J, Zhang T, Li X, He S, Li W, Zhang M. Tropisetron, an Antiemetic Drug, Exerts an Anti-Epileptic Effect Through the Activation of α7nAChRs in a Rat Model of Temporal Lobe Epilepsy. CNS Neurosci Ther 2024; 30:e70086. [PMID: 39445711 PMCID: PMC11500210 DOI: 10.1111/cns.70086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 08/28/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Temporal lobe epilepsy (TLE), a prevalent chronic neurological disorder, affects millions of individuals and is often resistant to anti-epileptic drugs. Increasing evidence has shown that acetylcholine (ACh) and cholinergic neurotransmission play a role in the pathophysiology of epilepsy. Tropisetron, an antiemetic drug used for chemotherapy in clinic, has displayed potential in the treatment of Alzheimer's disease, depression, and schizophrenia in animal models. However, as a partial agonist of α7 nicotinic acetylcholine receptors (α7nAChRs), whether tropisetron possesses the therapeutic potential for TLE has not yet been determined. METHODS In this study, tropisetron was intraperitoneally injected into pilocarpine-induced epileptic rats for 3 weeks. Alpha-bungarotoxin (α-bgt), a specific α7nAChR antagonist, was applied to investigate the mechanism of tropisetron. Rats were assessed for spontaneous recurrent seizures (SRS) and cognitive function using video surveillance and Morris's water maze testing. Hippocampal impairment and synaptic structure were evaluated by Nissl staining, immunohistochemistry, and Golgi staining. Additionally, the levels of glutamate, γ-aminobutyric acid (GABA), ACh, α7nAChRs, neuroinflammatory cytokines, glucocorticoids and their receptors, as well as synapse-associated protein (F-actin, cofilin-1) were quantified. RESULTS The results showed that tropisetron significantly reduced SRS, improved cognitive function, alleviated hippocampal sclerosis, and concurrently suppressed synaptic remodeling and the m6A modification of cofilin-1 in TLE rats. Furthermore, tropisetron lowered glutamate levels without affecting GABA levels, reduced neuroinflammation, and increased ACh levels and α7nAChR expression in the hippocampi of TLE rats. The effects of tropisetron treatment were counteracted by α-bgt. CONCLUSION In summary, these findings indicate that tropisetron exhibits an anti-epileptic effect and provides neuroprotection in TLE rats through the activation of α7nAChRs. The potential mechanism may involve the reduction of glutamate levels, enhancement of cholinergic transmission, and suppression of synaptic remodeling. Consequently, the present study not only highlights the potential of tropisetron as an anti-epileptic drug but also identifies α7nAChRs as a promising therapeutic target for the treatment of TLE.
Collapse
Affiliation(s)
- Xu Qian
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xinwen Sheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
- Department of PharmacyThe First Affiliated Hospital of Guangzhou Medical UniversityGuangzhouChina
| | - Jiqiang Ding
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Zulipiya Yiming
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jingjun Zheng
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Jiagui Zhong
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Tengyue Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Xuemei Li
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Shuqiao He
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| | - Wei Li
- Department of Neurosurgery, The Six Affiliated Hospital (Dongguan Eastern Central Hospital)Jinan UniversityDongguanChina
| | - Mei Zhang
- Department of Clinical Pharmacy, School of PharmaceuticalGuangzhou Medical University and Key Laboratory of Molecular Target &Clinical PharmacologyGuangzhouChina
| |
Collapse
|
4
|
Olorocisimo JP, Ohta Y, Regonia PR, Castillo VCG, Yoshimoto J, Takehara H, Sasagawa K, Ohta J. Brain-implantable needle-type CMOS imaging device enables multi-layer dissection of seizure calcium dynamics in the hippocampus. J Neural Eng 2024; 21:046022. [PMID: 38925109 DOI: 10.1088/1741-2552/ad5c03] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/26/2024] [Indexed: 06/28/2024]
Abstract
Objective: Current neuronal imaging methods mostly use bulky lenses that either impede animal behavior or prohibit multi-depth imaging. To overcome these limitations, we developed a lightweight lensless biophotonic system for neuronal imaging, enabling compact and simultaneous visualization of multiple brain layers.Approach: Our developed 'CIS-NAIST' device integrates a micro-CMOS image sensor, thin-film fluorescence filter, micro-LEDs, and a needle-shaped flexible printed circuit. With this device, we monitored neuronal calcium dynamics during seizures across the different layers of the hippocampus and employed machine learning techniques for seizure classification and prediction.Main results: The CIS-NAIST device revealed distinct calcium activity patterns across the CA1, molecular interlayer, and dentate gyrus. Our findings indicated an elevated calcium amplitude activity specifically in the dentate gyrus compared to other layers. Then, leveraging the multi-layer data obtained from the device, we successfully classified seizure calcium activity and predicted seizure behavior using Long Short-Term Memory and Hidden Markov models.Significance: Taken together, our 'CIS-NAIST' device offers an effective and minimally invasive method of seizure monitoring that can help elucidate the mechanisms of temporal lobe epilepsy.
Collapse
Affiliation(s)
| | - Yasumi Ohta
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Paul R Regonia
- Department of Computer Science, University of the Philippines Diliman, Manila, The Philippines
| | - Virgil C G Castillo
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Junichiro Yoshimoto
- Department of Biomedical Data Science, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hironari Takehara
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Kiyotaka Sasagawa
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| | - Jun Ohta
- Division of Materials Science, Nara Institute of Science and Technology, Ikoma, Japan
| |
Collapse
|
5
|
Yang M, Li Y, Liu X, Zou S, Lei L, Zou Q, Zhang Y, Fang Y, Chen S, Zhou L. Autophagy-related genes in mesial temporal lobe epilepsy: an integrated bioinformatics analysis. ACTA EPILEPTOLOGICA 2024; 6:16. [PMID: 40217519 PMCID: PMC11960276 DOI: 10.1186/s42494-024-00160-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/27/2024] [Indexed: 04/14/2025] Open
Abstract
BACKGROUND Autophagy plays essential roles in the development and pathogenesis of mesial temporal lobe epilepsy (mTLE). In this research, we aim to identify and validate the autophagy-related genes associated with mTLE through bioinformatics analysis and experimental validations. METHODS We obtained the dataset GSE143272 and high-throughput sequencing results of mTLE from public databases. Potential differentially expressed autophagy-related genes related to mTLE were identified using R software. Subsequently, genomes pathway enrichment analysis, protein-protein interactions (PPIs), and the gene ontology (GO) enrichment were performed for the selected autophagy-related genes. The mRNA expression profiles of hub genes were then used to establish a least absolute shrinkage and selection operator (LASSO) model. Finally, seven hub candidate autophagy-related genes were confirmed in hippocampus using the lithium-pilocarpine chronic epilepsy model. RESULTS A total of 40 differential expression genes (DEGs) among the core autophagy-related genes were identified. The analysis results of PPI revealed that interactions among these DEGs. KEGG pathway and GO analysis of selected candidate autophagy-related genes indicated that those enriched terms mainly focused on macroautophagy, regulation of autophagy, cellular response to extracellular stimulus and mitochondrion disassembly. The results suggested that SQSTM1, VEGFA, BNIP and WIPI2 were consistent with the bioinformatics analysis. The expression levels of SQSTM1 and VEGFA in epilepsy model samples were significantly higher than those in normal control, while BNIP and WIPI2 expression levels were notably decreased. The final hub gene-based LASSO regression model accurately predicted the occurrence of epilepsy (AUC = 0.88). CONCLUSIONS Through bioinformatics analysis of public data, we identified 40 candidate autophagy-related genes associated with mTLE. SQSTM1, VEGFA, BNIP and WIPI2 may play significant roles in autophagy, influencing the onset and development of mTLE by regulating autophagy pathway. These findings deepen our understanding of mTLE, and may serve as sensitive and valuable indicators for the prognosis and diagnosis of this condition.
Collapse
Affiliation(s)
- Man Yang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yinchao Li
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Xianyue Liu
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shangnan Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Lei Lei
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Qihang Zou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yaqian Zhang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Yubao Fang
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China
| | - Shuda Chen
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| | - Liemin Zhou
- Department of Neurology, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518107, Guangdong Province, China.
| |
Collapse
|
6
|
Feng Y, Diego KS, Dong Z, Wick ZC, Page-Harley L, Page-Harley V, Schnipper J, Lamsifer SI, Pennington ZT, Vetere LM, Philipsberg PA, Soler I, Jurkowski A, Rosado CJ, Khan NN, Cai DJ, Shuman T. Distinct changes to hippocampal and medial entorhinal circuits emerge across the progression of cognitive deficits in epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.12.584697. [PMID: 38559224 PMCID: PMC10979962 DOI: 10.1101/2024.03.12.584697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Temporal lobe epilepsy (TLE) causes pervasive and progressive memory impairments, yet the specific circuit changes that drive these deficits remain unclear. To investigate how hippocampal-entorhinal dysfunction contributes to progressive memory deficits in epilepsy, we performed simultaneous in vivo electrophysiology in hippocampus (HPC) and medial entorhinal cortex (MEC) of control and epileptic mice 3 or 8 weeks after pilocarpine-induced status epilepticus (Pilo-SE). We found that HPC synchronization deficits (including reduced theta power, coherence, and altered interneuron spike timing) emerged within 3 weeks of Pilo-SE, aligning with early-onset, relatively subtle memory deficits. In contrast, abnormal synchronization within MEC and between HPC-MEC emerged later, by 8 weeks after Pilo-SE, when spatial memory impairment was more severe. Furthermore, a distinct subpopulation of MEC layer 3 excitatory neurons (active at theta troughs) was specifically impaired in epileptic mice. Together, these findings suggest that hippocampal-entorhinal circuit dysfunction accumulates and shifts as cognitive impairment progresses in TLE.
Collapse
Affiliation(s)
- Yu Feng
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | - Zhe Dong
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | | | | | | | | | | | | | - Ivan Soler
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | | | | - Nadia N Khan
- Icahn School of Medicine at Mount Sinai, New York, NY
| | - Denise J Cai
- Icahn School of Medicine at Mount Sinai, New York, NY
| | | |
Collapse
|
7
|
Sanli E, Sirin NG, Kucukali CI, Baykan B, Ulusoy CA, Bebek N, Yilmaz V, Tuzun E. Peripheral blood regulatory B and T cells are decreased in patients with focal epilepsy. J Neuroimmunol 2024; 387:578287. [PMID: 38241950 DOI: 10.1016/j.jneuroim.2024.578287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/12/2023] [Accepted: 01/06/2024] [Indexed: 01/21/2024]
Abstract
Patients with focal epilepsy of unknown cause (FEoUC) may display T cell infiltration in post-surgery brain specimens and increased serum levels of pro-inflammatory cytokines produced by B and T cells, indicating potential involvement of adaptive immunity. Our study aimed to investigate the peripheral blood distribution of B and T cell subgroups to find clues supporting the distinct organization of adaptive immunity in FEoUC. Twenty-two patients with FEoUC and 25 age and sex matched healthy individuals were included. Peripheral blood mononuclear cells were immunophenotyped by flow cytometry. Expression levels of anti-inflammatory cytokines and FOXP3 were measured by real-time PCR. Carboxyfluorescein succinimidyl ester (CFSE) proliferation assay was conducted using CD4+ T cells. Patients with FEoUC showed significantly decreased regulatory B (Breg), B1a, plasmablast and regulatory T (Treg) cell percentages, and increased switched memory B and Th17 cell ratios. Moreover, CD4+CD25+CD49d- Tregs of FEoUC patients displayed significantly reduced TGFB1 and FOXP3, but increased IL10 gene expression levels. CD4+ helper T cells of patients with FEoUC gave more exaggerated proliferation responses to phytohemagglutinin, anti-CD3 and anti-CD28 stimulation. Patients with FEoUC display increased effector lymphocyte, decreased regulatory lymphocyte ratios, and impaired Treg function and enhanced lymphocyte proliferation capacity. Overall, this pro-inflammatory phenotype lends support to the involvement of adaptive immunity in FEoUC.
Collapse
Affiliation(s)
- Elif Sanli
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey; Institute of Graduate Studies in Health Sciences, Istanbul University, Istanbul, Turkey
| | - Nermin Gorkem Sirin
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Cem Ismail Kucukali
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Betul Baykan
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey; Department of Neurology, EMAR Medical Center, Istanbul, Turkey
| | - Canan Aysel Ulusoy
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| | - Nerses Bebek
- Department of Neurology, Istanbul Faculty of Medicine, Istanbul University, Istanbul, Turkey
| | - Vuslat Yilmaz
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey.
| | - Erdem Tuzun
- Department of Neuroscience, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Turkey
| |
Collapse
|
8
|
Lang M, Colby S, Ashby-Padial C, Bapna M, Jaimes C, Rincon SP, Buch K. An imaging review of the hippocampus and its common pathologies. J Neuroimaging 2024; 34:5-25. [PMID: 37872430 DOI: 10.1111/jon.13165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/07/2023] [Accepted: 10/12/2023] [Indexed: 10/25/2023] Open
Abstract
The hippocampus is a complex structure located in the mesial temporal lobe that plays a critical role in cognitive and memory-related processes. The hippocampal formation consists of the dentate gyrus, hippocampus proper, and subiculum, and its importance in the neural circuitry makes it a key anatomic structure to evaluate in neuroimaging studies. Advancements in imaging techniques now allow detailed assessment of hippocampus internal architecture and signal features that has improved identification and characterization of hippocampal abnormalities. This review aims to summarize the neuroimaging features of the hippocampus and its common pathologies. It provides an overview of the hippocampal anatomy on magnetic resonance imaging and discusses how various imaging techniques can be used to assess the hippocampus. The review explores neuroimaging findings related to hippocampal variants (incomplete hippocampal inversion, sulcal remnant and choroidal fissure cysts), and pathologies of neoplastic (astrocytoma and glioma, ganglioglioma, dysembryoplastic neuroepithelial tumor, multinodular and vacuolating neuronal tumor, and metastasis), epileptic (mesial temporal sclerosis and focal cortical dysplasia), neurodegenerative (Alzheimer's disease, progressive primary aphasia, and frontotemporal dementia), infectious (Herpes simplex virus and limbic encephalitis), vascular (ischemic stroke, arteriovenous malformation, and cerebral cavernous malformations), and toxic-metabolic (transient global amnesia and opioid-associated amnestic syndrome) etiologies.
Collapse
Affiliation(s)
- Min Lang
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Samantha Colby
- Department of Neurosurgery, University of Utah Health, Salt Lake City, Utah, USA
| | | | - Monika Bapna
- School of Medicine, Georgetown University, Washington, DC, USA
| | - Camilo Jaimes
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Sandra P Rincon
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| | - Karen Buch
- Department of Radiology, Massachusetts General Hospital, Boston, Massachusetts, USA
- Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
9
|
Malekpour M, Salarikia SR, Kashkooli M, Asadi-Pooya AA. The genetic link between systemic autoimmune disorders and temporal lobe epilepsy: A bioinformatics study. Epilepsia Open 2023. [PMID: 36929812 DOI: 10.1002/epi4.12727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
OBJECTIVE We aimed to explore the underlying pathomechanisms of the comorbidity between three common systemic autoimmune disorders (SADs) [i.e., insulin-dependent diabetes mellitus (IDDM), systemic lupus erythematosus (SLE), and rheumatoid arthritis (RA)] and temporal lobe epilepsy (TLE), using bioinformatics tools. We hypothesized that there are shared genetic variations among these four conditions. METHODS Different databases (DisGeNET, Harmonizome, and Enrichr) were searched to find TLE-associated genes with variants; their single nucleotide polymorphisms (SNPs) were gathered from the literature. We also did a separate literature search using PubMed with the following keywords for original articles: "TLE" or "Temporal lobe epilepsy" AND "genetic variation," "single nucleotide polymorphism," "SNP," or "genetic polymorphism." In the next step, the SNPs associated with TLE were searched in the LitVar database to find the shared gene variations with RA, SLE, and IDDM. RESULTS Ninety unique SNPs were identified to be associated with TLE. LitVar search identified two SNPs that were shared between TLE and all three SADs (i.e., IDDM, SLE, and RA). The first SNP was rs16944 on the Interleukin-1β (IL-1β) gene. The second genetic variation was ε4 variation of apolipoprotein E (APOE) gene. SIGNIFICANCE The shared genetic variations (i.e., rs16944 on the IL-1β gene and ε4 variation of the APOE gene) may explain the underlying pathomechanisms of the comorbidity between three common SADs (i.e., IDDM, SLE, and RA) and TLE. Exploring such shared genetic variations may help find targeted therapies for patients with TLE, especially those with drug-resistant seizures who also have comorbid SADs.
Collapse
Affiliation(s)
- Mahdi Malekpour
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Mohammad Kashkooli
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ali A Asadi-Pooya
- Epilepsy Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Neurology, Jefferson Comprehensive Epilepsy Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
10
|
Kim JE, Park H, Kang TC. Peroxiredoxin 6 Regulates Glutathione Peroxidase 1-Medited Glutamine Synthase Preservation in the Hippocampus of Chronic Epilepsy Rats. Antioxidants (Basel) 2023; 12:antiox12010156. [PMID: 36671018 PMCID: PMC9855017 DOI: 10.3390/antiox12010156] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 01/11/2023] Open
Abstract
Clasmatodendrosis (an autophagic astroglial degeneration) plays an important role in the regulation of spontaneous seizure duration but not seizure frequency or behavioral seizure severity in chronic epilepsy rats. Recently, it has been reported that N-acetylcysteine (NAC), a precursor to glutathione (GSH), attenuates clasmatodendritic degeneration and shortens spontaneous seizure duration in chronic epilepsy rats, although the underlying mechanisms of its anti-convulsive effects are not fully understood. To elucidate this, the present study was designed to investigate whether NAC affects astroglial glutamine synthase (GS) expression mediated by GSH peroxidase 1 (GPx1) and/or peroxiredoxin 6 (Prdx6) in the epileptic hippocampus. As compared to control animals, GS and GPx1 expressions were upregulated in reactive CA1 astrocytes of chronic epilepsy rats, while their expressions were significantly decreased in clasmatodendritic CA1 astrocytes and reactive astrocytes within the molecular layer of the dentate gyrus. Prdx6 expression was increased in reactive CA1 astrocytes as well as clasmatodendritic CA1 astrocytes. In the molecular layer of the dentate gyrus, Prdx6 expression levels were similar to those in control animals. NAC ameliorated clasmatodendrosis through the increment of GS and GPx1 expressions, while it abolished Prdx6 upregulation. 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) alleviated clasmatodendrosis by enhancing GPx1 and GS expressions in clasmatodendritic CA1 astrocytes without changing the Prdx6 level. NAC or MJ33 did not affect GS, GPx1 and Prdx6 expression in astrocytes within the molecular layer of the dentate gyrus. These findings indicate that upregulated aiPLA2 activity of Prdx6 may abolish GPx1-mediated GS preservation and lead to clasmatodendrosis in CA1 astrocytes, which would extend spontaneous seizure duration due to impaired glutamate-glutamine conversion regulated by GS. Therefore, the present data suggest that aiPLA2 activity of Prdx6 in astrocytes may be one of the upstream effectors of seizure duration in the epileptic hippocampus.
Collapse
Affiliation(s)
- Ji-Eun Kim
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Hana Park
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
| | - Tae-Cheon Kang
- Department of Anatomy and Neurobiolog, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea
- Institute of Epilepsy Research, Hallym University, Chuncheon 24252, Republic of Korea
- Correspondence: ; Tel.: +82-33-248-2524; Fax: +82-33-248-2525
| |
Collapse
|
11
|
Sp1-Mediated Prdx6 Upregulation Leads to Clasmatodendrosis by Increasing Its aiPLA2 Activity in the CA1 Astrocytes in Chronic Epilepsy Rats. Antioxidants (Basel) 2022; 11:antiox11101883. [PMID: 36290607 PMCID: PMC9598987 DOI: 10.3390/antiox11101883] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 11/29/2022] Open
Abstract
Clasmatodendrosis is an autophagic astroglial degeneration (a non-apoptotic (type II) programmed cell death) whose underlying mechanisms are fully understood. Peroxiredoxin-6 (Prdx6), the “non-selenium glutathione peroxidase (NSGPx)”, is the only member of the 1-cysteine peroxiredoxin family. Unlike the other Prdx family, Prdx6 has multiple functions as glutathione peroxidase (GPx) and acidic calcium-independent phospholipase (aiPLA2). The present study shows that Prdx6 was upregulated in CA1 astrocytes in chronic epilepsy rats. 2-Cyano-3,12-dioxo-oleana-1,9(11)-dien-28-oic acid methyl ester (CDDO-Me) and N-acetylcysteine (NAC, a precursor of glutathione) ameliorated clasmatodendrosis accompanied by reduced Prdx6 level in CA1 astrocytes. Specificity protein 1 (Sp1) expression was upregulated in CA1 astrocyte, which was inhibited by mithramycin A (MMA). MMA alleviated clasmatodendrosis and Prdx6 upregulation. Sp1 expression was also downregulated by CDDO-Me and NAC. Furthermore, 1-hexadecyl-3-(trifluoroethgl)-sn-glycerol-2 phosphomethanol (MJ33, a selective inhibitor of aiPLA2 activity of Prdx6) attenuated clasmatodendrosis without affecting Prdx6 expression. All chemicals shortened spontaneous seizure duration but not seizure frequency and behavioral seizure severity in chronic epilepsy rats. Therefore, our findings suggest that Sp1 activation may upregulate Prdx6, whose aiPLA2 activity would dominate over GPx activity in CA1 astrocytes and may lead to prolonged seizure activity due to autophagic astroglial degeneration.
Collapse
|