1
|
Demir M, Elbe H, Cetinavci D, Saruhan E. Effects of Troxerutin on Oxidative Stress, Inflammation and Galectin- 3 Expression in Intracerebroventricular Kainic Acid-Induced Neurotoxicity. Inflammation 2025:10.1007/s10753-025-02301-9. [PMID: 40237932 DOI: 10.1007/s10753-025-02301-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 04/07/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Excitotoxicity caused by excessive concentration of the excitatory neurotransmitter glutamate causes neuronal cell death and promotes neurodegenerative disorders. The neuroexcitant neurotoxin kainic acid (KA) induces excitotoxicity, leading to neuronal death via oxidative stress and inflammation, and its experimental use is widespread. This study was designed to determine the protective effect of Troxerutin (TXR) and its relationship with Galectin-3 (Gal-3) in experimental excitotoxicity with neuroinflammation and oxidative stress. Fifty male Wistar rats were divided into five groups (n = 10): Control group rats received intraperitoneal (ip) normal saline for 6 days. Sham group rats received a single dose of intracerebroventricular (icv) normal saline on the first day. KA group rats were treated with a single dose of KA; icv-0.5 μg/μl). TXR group rats treated with TXR for 6 days: ip-100 mg/kg) and KA + TXR group rats treated with KA (single dose) and TXR (6 days). It was observed that malondialdehyde (MDA) and interleukin-1β (IL-1β) levels increased and reduced glutathione (GSH) levels decreased in the cerebral cortex of rats with KA neurotoxicity. TXR treatment caused a significant improvement in MDA and GSH levels and a significant decrease in IL-1β levels in rats with the excitotoxicity model. Gal-3 expressions in the hippocampus and cerebellum increased in KA-treated rats, whereas TXR treatment decreased Gal-3 expressions. In addition, histopathological changes caused by KA administration showed improvement in TXR-treated groups. In conclusion, the findings showed that TXR treatment attenuated KA-induced neurotoxicity by reducing oxidative tissue damage, inflammatory response and Gal-3 expression.
Collapse
Affiliation(s)
- Mehmet Demir
- Department of Physiology, Faculty of Medicine, Karabuk University, Karabuk, Turkey.
| | - Hulya Elbe
- Department of Histology and Embryology, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| | - Dilan Cetinavci
- Department of Histology and Embryology, Mugla Training and Research Hospital, Mugla, Turkey
| | - Ercan Saruhan
- Department of Medical Biochemistry, Faculty of Medicine, Mugla Sıtkı Kocman University, Mugla, Turkey
| |
Collapse
|
2
|
Wu NS, Lin YF, Ma IC, Ko HJ, Hong YR. Many faces and functions of GSKIP: a temporospatial regulation view. Cell Signal 2022; 97:110391. [PMID: 35728705 DOI: 10.1016/j.cellsig.2022.110391] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/06/2022] [Accepted: 06/16/2022] [Indexed: 11/25/2022]
Abstract
Glycogen synthase kinase 3 (GSK3)-β (GSK3β) interaction protein (GSKIP) is one of the smallest A-kinase anchoring proteins that possesses a binding site for GSK3β. Recently, our group identified the protein kinase A (PKA)-GSKIP-GSK3β-X axis; knowledge of this axis may help us decipher the many roles of GSKIP and perhaps help explain the evolutionary reason behind the interaction between GSK3β and PKA. In this review, we highlight the critical and multifaceted role of GSKIP in facilitating PKA kinase activity and its function as a scaffolding protein in signaling pathways. We also highlight how these pivotal PKA and GSK3 kinases can control context-specific functions and interact with multiple target proteins, such as β-catenin, Drp1, Tau, and other proteins. GSKIP is a key regulator of multiple mechanisms because of not only its location at certain subcellular compartments but also its serial changes during the developmental process. Moreover, the involvement of critical upstream regulatory signaling pathways in GSKIP signaling in various cancers, such as miRNA (microRNA) and lncRNA (long noncoding RNA), may help in the identification of therapeutic targets in the era of precision medicine and personalized therapy. Finally, we emphasize on the model of the early stage of pathogenesis of Alzheimer Disease (AD). Although the model requires validation, it can serve as a basis for diagnostic biomarkers development and drug discovery for early-stage AD.
Collapse
Affiliation(s)
- Nian-Siou Wu
- School of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Fan Lin
- School of Medicine, College of Medicine, National Taiwan University, Taipei 100, Taiwan.
| | - I Chu Ma
- China Medical University Hospital, Taichung 404, Taiwan.
| | - Huey-Jiun Ko
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Yi-Ren Hong
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Graduate Institutes of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan; Center for Cancer Research, Kaohsiung Medical University, Kaohsiung 807, Taiwan,; Neuroscience Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| |
Collapse
|
3
|
He CF, Xue WJ, Xu XD, Wang JT, Wang XR, Feng Y, Zhou HG, Guo JC. Knockdown of NRSF Alleviates Ischemic Brain Injury and Microvasculature Defects in Diabetic MCAO Mice. Front Neurol 2022; 13:869220. [PMID: 35645950 PMCID: PMC9136417 DOI: 10.3389/fneur.2022.869220] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/04/2022] [Indexed: 11/26/2022] Open
Abstract
Diabetes is one of the well-established risk factors of stroke and is associated with a poor outcome in patients with stroke. Previous studies have shown that the expression of neuron restrictive silencer factor (NRSF) is elevated in diabetes as well as ischemic stroke. However, the role of NRSF in regulating an outcome of diabetic ischemic stroke has not been completely understood. Here, we hypothesized that diabetes-induced NRSF elevation can aggravate brain injury and cognition impairment in ischemic stroke. The diabetic ischemic stroke mice model was established by 8 weeks of high-fat-diet feeding and 5 days of streptozotocin injection followed by 30 min of middle cerebral artery occlusion (MCAO). We found that diabetes enhanced the MCAO-induced elevation of NRSF in the hippocampus in accompany with an elevation of its corepressors, HDAC1, and mSin3A, and decrease of β-TrCP. By using histological/immunofluorescence staining and neurobehavioral testing, our results showed that the brain damage and learning/memory impairment were aggravated in diabetic ischemic mice but significantly attenuated after stereotaxic injection of NRSF-shRNA. Meanwhile, by performing whole-brain clearing with PEGASOS, microvascular reconstruction, western blotting, and ELISA, we found that NRSF-shRNA markedly alleviated the vasculature disorders and rescued the suppression of NRP-1, VEGF, and VEGFR2 in the hippocampus of diabetic ischemic mice. Therefore, our results demonstrated for the first time that the elevation of hippocampal NRSF plays an important role in alleviating brain injury and cognitive disabilities in diabetic ischemic mice, potentially via the reduction of NRP-1/VEGF signaling.
Collapse
Affiliation(s)
- Cheng-Feng He
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Wen-Jiao Xue
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Xiao-Die Xu
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
| | - Jian-Tao Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Xin-Ru Wang
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
| | - Yi Feng
- State Key Laboratory of Medical Neurobiology, Department of Integrative Medicine and Neurobiology, School of Basic Medical Sciences, Institutes of Brain Science, Brain Science Collaborative Innovation Center, Fudan Institutes of Integrative Medicine, Fudan University, Shanghai, China
- *Correspondence: Yi Feng
| | - Hou-Guang Zhou
- Department of Geriatric Neurology of Huashan Hospital, National Clinical Research Center for Aging and Medicine, Fudan University, Shanghai, China
- Hou-Guang Zhou
| | - Jing-Chun Guo
- State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Department of Translational Neuroscience, Jing'an District Centre Hospital of Shanghai, Institutes of Brain Science, Fudan University, Shanghai, China
- Jing-Chun Guo
| |
Collapse
|
4
|
Abulaiti X, Wang A, Zhang H, Su H, Gao R, Chen J, Gao S, Li L. Disrupted mossy fiber connections from defective embryonic neurogenesis contribute to SOX11-associated schizophrenia. Cell Mol Life Sci 2022; 79:180. [PMID: 35254515 PMCID: PMC11072709 DOI: 10.1007/s00018-022-04206-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/29/2022] [Accepted: 02/09/2022] [Indexed: 11/26/2022]
Abstract
Abnormal mossy fiber connections in the hippocampus have been implicated in schizophrenia. However, it remains unclear whether this abnormality in the patients is genetically determined and whether it contributes to the onset of schizophrenia. Here, we showed that iPSC-derived hippocampal NPCs from schizophrenia patients with the A/A allele at SNP rs16864067 exhibited abnormal NPC polarity, resulting from the downregulation of SOX11 by this high-risk allele. In the SOX11-deficient mouse brain, abnormal NPC polarity was also observed in the hippocampal dentate gyrus, and this abnormal NPC polarity led to defective hippocampal neurogenesis-specifically, irregular neuroblast distribution and disrupted granule cell morphology. As granule cell synapses, the mossy fiber pathway was disrupted, and this disruption was resistant to activity-induced mossy fiber remodeling in SOX11 mutant mice. Moreover, these mutant mice exhibited diminished PPI and schizophrenia-like behaviors. Activation of hippocampal neurogenesis in the embryonic brain, but not in the adult brain, partially alleviated disrupted mossy fiber connections and improved schizophrenia-related behaviors in mutant mice. We conclude that disrupted mossy fiber connections are genetically determined and strongly correlated with schizophrenia-like behaviors in SOX11-deficient mice. This disruption may reflect the pathological substrate of SOX11-associated schizophrenia.
Collapse
Affiliation(s)
- Xianmixinuer Abulaiti
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
| | - Aifang Wang
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Zhang
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
| | - Hang Su
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China
- Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China
| | - Rui Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Jiayu Chen
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Clinical and Translational Research Center of Shanghai First Maternity & Infant Hospital, Frontier Science Center for Stem Cells, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Lingsong Li
- Shanghai Advanced Research Institute Chinese Academy of Sciences, Shanghai, 201210, China.
- Henan Provincial People's Hospital of Zhengzhou University, Zhengzhou, 450003, Henan, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|