1
|
Cohen ME, Shechter Y, Dominko M, Shulman E, Dinur T, Revel-Vilk S, Eichel R, Yahalom G, Becker-Cohen M. Olfactory Perception in Parkinson's Disease: The Impact of GBA1 Variants (Sidransky Syndrome). Int J Mol Sci 2025; 26:5258. [PMID: 40508068 PMCID: PMC12155523 DOI: 10.3390/ijms26115258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/15/2025] [Accepted: 05/21/2025] [Indexed: 06/16/2025] Open
Abstract
Parkinson's disease (PD) associated with GBA1 mutations-recently termed Sidransky syndrome-differs from idiopathic PD (iPD) by earlier onset, more rapid progression, and higher rates of non-motor symptoms. Our objective was to assess whether GBA1 mutations contribute to olfactory dysfunction in PD and in asymptomatic carriers of the mutation. We compared olfactory and motor functions in 119 participants: Sidransky syndrome (n = 18), iPD (n = 30), GBA1 variant carriers without PD (n = 21), Gaucher disease patients (n = 20), and healthy controls (n = 30). All were evaluated with the Brief Smell Identification Test (BSIT®) and the motor part of the Movement Disorders Society Unified PD Rating Scale (MDS-mUPDRS). Mean age was 59.2 ± 11.7 years. Mean disease duration was 2.5 ± 2.2 years in Sidransky syndrome and 5.4 ± 4.9 years in iPD. We found that both PD groups had significantly lower BSIT® scores than non-PD groups (p < 0.001), particularly for leather, smoke, natural gas, pineapple, clove, rose, and lemon. Sidransky syndrome patients scored lower than iPD patients (p = 0.04). No significant olfactory deficits were observed in GBA1 carriers or Gaucher patients without PD. We conclude that hyposmia is more pronounced in Sidransky syndrome than in iPD. However, normal olfaction in non-parkinsonian GBA1 carriers suggests that GBA1 variants alone do not account for olfactory loss in PD. Hyposmia likely reflects broader PD pathology rather than a direct effect of the GBA1 mutation.
Collapse
Affiliation(s)
- Mikhal E. Cohen
- Department of Neurology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (Y.S.); (M.D.); (R.E.); (G.Y.)
- The Movement Disorders Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
| | - Yosef Shechter
- Department of Neurology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (Y.S.); (M.D.); (R.E.); (G.Y.)
- The Movement Disorders Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
| | - Melania Dominko
- Department of Neurology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (Y.S.); (M.D.); (R.E.); (G.Y.)
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
| | - Elena Shulman
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Tama Dinur
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Shoshana Revel-Vilk
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| | - Roni Eichel
- Department of Neurology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (Y.S.); (M.D.); (R.E.); (G.Y.)
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
| | - Gilad Yahalom
- Department of Neurology, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel; (Y.S.); (M.D.); (R.E.); (G.Y.)
- The Movement Disorders Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
| | - Michal Becker-Cohen
- Faculty of Medicine, Hebrew University, Jerusalem 9112102, Israel; (T.D.); (S.R.-V.); (M.B.-C.)
- Gaucher Unit, The Eisenberg R&D Authority, Shaare Zedek Medical Center, Jerusalem 9103102, Israel;
| |
Collapse
|
2
|
LoPiccolo MK, Wang Z, Maayan Eshed G, Fierro L, Stauffer C, Wang K, Zhang J, Tatsuoka C, Balwani M, Zou WQ, Alcalay RN. Skin α-Synuclein Seeding Activity in Patients with Type 1 Gaucher Disease. Mov Disord 2024; 39:2087-2091. [PMID: 39021250 PMCID: PMC11568949 DOI: 10.1002/mds.29935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 06/21/2024] [Accepted: 07/01/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND Patients with type 1 Gaucher disease (GD1) have a significantly increased risk of developing Parkinson's disease (PD). OBJECTIVE The objective of this study was to evaluate skin α-synuclein (αSyn) seeding activity as a biomarker for GD1-related PD (GD1-PD). METHODS This single-center study administered motor and cognitive examinations and questionnaires of nonmotor symptoms to adult patients with GD1. Optional skin biopsy was performed for skin αSyn seed amplification assay (αSyn SAA) using real-time quaking-induced conversion assay. RESULTS Forty-nine patients were enrolled, and 36 underwent skin biopsy. Two study participants had PD. Ten participants were αSyn SAA positive (27.8%), 7 (19.4%) were intermediate, and 19 (52.8%) were negative. Positive αSyn seeding activity was observed in the single GD1-PD case who consented to biopsy. αSyn SAA positivity was associated with older age (p = 0.043), although αSyn SAA positivity was more prevalent in patients with GD1 than historic controls. CONCLUSIONS Longitudinal follow-up is required to determine whether skin αSyn seeding activity can be an early biomarker for GD1-PD. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Mary Kate LoPiccolo
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Zerui Wang
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Gadi Maayan Eshed
- Movement Disorders Division, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
| | - Luca Fierro
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chanan Stauffer
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kelly Wang
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jing Zhang
- Department of Population and Quantitative Health Sciences, Case Western Reserve University School of Medicine, Cleveland, OH, USA
| | - Curtis Tatsuoka
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Manisha Balwani
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Wen-Quan Zou
- Departments of Pathology and Neurology, Case Western Reserve University School of Medicine, Cleveland, OH, USA
- Institute of Neurology, Jiangxi Academy of Clinical Medical Sciences, Department of Neurology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi Province, China
| | - Roy N. Alcalay
- Movement Disorders Division, Neurological Institute, Tel-Aviv Medical Center, Tel-Aviv, Israel
- Department of Neurology, Columbia University Medical Center, New York, NY, USA
| |
Collapse
|
3
|
Hertz E, Chen Y, Sidransky E. Gaucher disease provides a unique window into Parkinson disease pathogenesis. Nat Rev Neurol 2024; 20:526-540. [PMID: 39107435 DOI: 10.1038/s41582-024-00999-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2024] [Indexed: 09/04/2024]
Abstract
An exciting development in the field of neurodegeneration is the association between the rare monogenic disorder Gaucher disease and the common complex disorder Parkinson disease (PD). Gaucher disease is a lysosomal storage disorder resulting from an inherited deficiency of the enzyme glucocerebrosidase, encoded by GBA1, which hydrolyses the glycosphingolipids glucosylceramide and glucosylsphingosine. The observation of parkinsonism in a rare subgroup of individuals with Gaucher disease first directed attention to the role of glucocerebrosidase deficiency in the pathogenesis of PD. PD occurs more frequently in people heterozygous for Gaucher GBA1 mutations, and 3-25% of people with Parkinson disease carry a GBA1 variant. However, only a small percentage of individuals with GBA1 variants develop parkinsonism, suggesting that the penetrance is low. Despite over a decade of intense research in this field, including clinical and radiological evaluations, genetic studies and investigations using model systems, the mechanism underlying GBA1-PD is still being pursued. Insights from this association have emphasized the role of lysosomal pathways in parkinsonism. Furthermore, different therapeutic strategies considered or developed for Gaucher disease can now inform drug development for PD.
Collapse
Affiliation(s)
- Ellen Hertz
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Yu Chen
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA
| | - Ellen Sidransky
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
| |
Collapse
|
4
|
Skrahin A, Horowitz M, Istaiti M, Skrahina V, Lukas J, Yahalom G, Cohen ME, Revel-Vilk S, Goker-Alpan O, Becker-Cohen M, Hassin-Baer S, Svenningsson P, Rolfs A, Zimran A. GBA1-Associated Parkinson's Disease Is a Distinct Entity. Int J Mol Sci 2024; 25:7102. [PMID: 39000225 PMCID: PMC11241486 DOI: 10.3390/ijms25137102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GBA1-associated Parkinson's disease (GBA1-PD) is increasingly recognized as a distinct entity within the spectrum of parkinsonian disorders. This review explores the unique pathophysiological features, clinical progression, and genetic underpinnings that differentiate GBA1-PD from idiopathic Parkinson's disease (iPD). GBA1-PD typically presents with earlier onset and more rapid progression, with a poor response to standard PD medications. It is marked by pronounced cognitive impairment and a higher burden of non-motor symptoms compared to iPD. Additionally, patients with GBA1-PD often exhibit a broader distribution of Lewy bodies within the brain, accentuating neurodegenerative processes. The pathogenesis of GBA1-PD is closely associated with mutations in the GBA1 gene, which encodes the lysosomal enzyme beta-glucocerebrosidase (GCase). In this review, we discuss two mechanisms by which GBA1 mutations contribute to disease development: 'haploinsufficiency,' where a single functional gene copy fails to produce a sufficient amount of GCase, and 'gain of function,' where the mutated GCase acquires harmful properties that directly impact cellular mechanisms for alpha-synuclein degradation, leading to alpha-synuclein aggregation and neuronal cell damage. Continued research is advancing our understanding of how these mechanisms contribute to the development and progression of GBA1-PD, with the 'gain of function' mechanism appearing to be the most plausible. This review also explores the implications of GBA1 mutations for therapeutic strategies, highlighting the need for early diagnosis and targeted interventions. Currently, small molecular chaperones have shown the most promising clinical results compared to other agents. This synthesis of clinical, pathological, and molecular aspects underscores the assertion that GBA1-PD is a distinct clinical and pathobiological PD phenotype, necessitating specific management and research approaches to better understand and treat this debilitating condition.
Collapse
Affiliation(s)
- Aliaksandr Skrahin
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
| | - Mia Horowitz
- Shmunis School of Biomedicine and Cancer Research, Faculty of Life Sciences, Tel Aviv University, 6997801 Ramat Aviv, Israel
| | - Majdolen Istaiti
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
| | | | - Jan Lukas
- Translational Neurodegeneration Section Albrecht Kossel, Department of Neurology, University Medical Center Rostock, 18147 Rostock, Germany
- Center for Transdisciplinary Neurosciences Rostock (CTNR), University Medical Center Rostock, University of Rostock, 18147 Rostock, Germany
| | - Gilad Yahalom
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Mikhal E. Cohen
- Department of Neurology and Movement Disorders Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Shoshana Revel-Vilk
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| | - Ozlem Goker-Alpan
- Lysosomal and Rare Disorders Research and Treatment Center, Fairfax, VA 22030, USA
| | | | - Sharon Hassin-Baer
- Movement Disorders Institute, Department of Neurology, Chaim Sheba Medical Center, 5262101 Tel-Hashomer, Israel
- Department of Neurology and Neurosurgery, Faculty of Medical and Health Sciences, Tel Aviv University, 6997801 Tel-Aviv, Israel
| | - Per Svenningsson
- Department of Clinical Neuroscience, Karolinska Institute, 17177 Stockholm, Sweden
- Department of Basal and Clinical Neuroscience, King’s College London, London SE5 9RT, UK
| | - Arndt Rolfs
- Rare Disease Consulting RCV GmbH, Leibnizstrasse 58, 10629 Berlin, Germany
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Medical Faculty, University of Rostock, 18055 Rostock, Germany
| | - Ari Zimran
- Gaucher Unit, Shaare Zedek Medical Center, 9103102 Jerusalem, Israel
- Agyany Pharma Ltd., 9695614 Jerusalem, Israel
- Faculty of Medicine, Hebrew University of Jerusalem, 9112102 Jerusalem, Israel
| |
Collapse
|
5
|
Toffoli M, Chohan H, Mullin S, Jesuthasan A, Yalkic S, Koletsi S, Menozzi E, Rahall S, Limbachiya N, Loefflad N, Higgins A, Bestwick J, Lucas-Del-Pozo S, Fierli F, Farbos A, Mezabrovschi R, Lee-Yin C, Schrag A, Moreno-Martinez D, Hughes D, Noyce A, Colclough K, Jeffries AR, Proukakis C, Schapira AHV. Phenotypic effect of GBA1 variants in individuals with and without Parkinson's disease: The RAPSODI study. Neurobiol Dis 2023; 188:106343. [PMID: 37926171 DOI: 10.1016/j.nbd.2023.106343] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/08/2023] [Accepted: 11/01/2023] [Indexed: 11/07/2023] Open
Abstract
BACKGROUND Variants in the GBA1 gene cause the lysosomal storage disorder Gaucher disease (GD). They are also risk factors for Parkinson's disease (PD), and modify the expression of the PD phenotype. The penetrance of GBA1 variants in PD is incomplete, and the ability to determine who among GBA1 variant carriers are at higher risk of developing PD, would represent an advantage for prognostic and trial design purposes. OBJECTIVES To compare the motor and non-motor phenotype of GBA1 carriers and non-carriers. METHODS We present the cross-sectional results of the baseline assessment from the RAPSODI study, an online assessment tool for PD patients and GBA1 variant carriers. The assessment includes clinically validated questionnaires, a tap-test, the University of Pennsyllvania Smell Identification Test and cognitive tests. Additional, homogeneous data from the PREDICT-PD cohort were included. RESULTS A total of 379 participants completed all parts of the RAPSODI assessment (89 GBA1-negative controls, 169 GBA1-negative PD, 47 GBA1-positive PD, 47 non-affected GBA1 carriers, 27 GD). Eighty-six participants were recruited through PREDICT-PD (43 non-affected GBA1 carriers and 43 GBA1-negative controls). GBA1-positive PD patients showed worse performance in visual cognitive tasks and olfaction compared to GBA1-negative PD patients. No differences were detected between non-affected GBA1 carriers carriers and GBA1-negative controls. No phenotypic differences were observed between any of the non-PD groups. CONCLUSIONS Our results support previous evidence that GBA1-positive PD has a specific phenotype with more severe non-motor symptoms. However, we did not reproduce previous findings of more frequent prodromal PD signs in non-affected GBA1 carriers.
Collapse
Affiliation(s)
- Marco Toffoli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Harneek Chohan
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Stephen Mullin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Faculty of Health, University of Plymouth, Plymouth PL4 8AA, UK
| | | | - Selen Yalkic
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Sofia Koletsi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Elisa Menozzi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Soraya Rahall
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Naomi Limbachiya
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Nadine Loefflad
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Abigail Higgins
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - Jonathan Bestwick
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Sara Lucas-Del-Pozo
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Federico Fierli
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Audrey Farbos
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Roxana Mezabrovschi
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Chiao Lee-Yin
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anette Schrag
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
| | - David Moreno-Martinez
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust and University College London, London, UK
| | - Derralynn Hughes
- Lysosomal Storage Disorders Unit, Royal Free Hospital NHS Foundation Trust and University College London, London, UK
| | - Alastair Noyce
- Preventive Neurology Unit, Wolfson Institute of Population Health, Queen Mary University of London, UK
| | - Kevin Colclough
- Exeter Genomics Laboratory, Royal Devon University Healthcare NHS Trust, Exeter, UK
| | - Aaron R Jeffries
- Biosciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, UK
| | - Christos Proukakis
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Anthony H V Schapira
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
6
|
Chatterjee D, Krainc D. Mechanisms of Glucocerebrosidase Dysfunction in Parkinson's Disease. J Mol Biol 2023; 435:168023. [PMID: 36828270 PMCID: PMC10247409 DOI: 10.1016/j.jmb.2023.168023] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/15/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
Beta-glucocerebrosidase is a lysosomal hydrolase, encoded by GBA1 that represents the most common risk gene associated with Parkinson's disease (PD) and Lewy Body Dementia. Glucocerebrosidase dysfunction has been also observed in the absence of GBA1 mutations across different genetic and sporadic forms of PD and related disorders, suggesting a broader role of glucocerebrosidase in neurodegeneration. In this review, we highlight recent advances in mechanistic characterization of glucocerebrosidase function as the foundation for development of novel therapeutics targeting glucocerebrosidase in PD and related disorders.
Collapse
Affiliation(s)
- Diptaman Chatterjee
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA. https://twitter.com/NeilChatterBox
| | - Dimitri Krainc
- Ken and Ruth Davee Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA; Simpson Querrey Center for Neurogenetics, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.
| |
Collapse
|