1
|
Woock M, Rossi R, Jabrah D, Douglas A, Redfors P, Nordanstig A, Tatlisumak T, Ceder E, Dunker D, Carlqvist J, Szikora I, Tsivgoulis G, Psychogios K, Magoufis G, Rentzos A, Doyle KM, Jood K. Clot signature in patients with large vessel occlusion stroke and concomitant active cancer. Eur J Neurol 2025; 32:e70037. [PMID: 39760182 DOI: 10.1111/ene.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 12/23/2024] [Indexed: 01/07/2025]
Abstract
BACKGROUND AND PURPOSE Patients with active cancer face an increased risk of ischemic stroke. Also, stroke may be an initial indicator of cancer. In patients with large vessel occlusion (LVO) stroke treated with thrombectomy, analysis of the clot composition may contribute new insights into the pathological connections between these two conditions. METHODS We compared the content of 64 consecutively retrieved clots from LVO stroke patients with concomitant active cancer and 64 clots from matched-control LVO stroke patients without a history of cancer. Clots were analyzed with respect to histological composition by Martius Scarlet Blue, von Willebrand factor (vWF), citrullinated histone H3 (H3Cit, a biomarker of NETS), CD42b, and CD3 expression by immunohistochemistry. Orbit Image Analysis was used for quantification. Differences between groups were tested using the Mann-Whitney U-test and Chi-square Test. RESULTS Clots from patients with concomitant cancer had a significantly higher content of vWF (median 26 [IQR13-38]% vs. 10 [4-18]%, p < 0.0001) and H3Cit (median 0.11 [IQR0.02-0.46]% vs. 0.05 [0.00-0.28]% p = 0.027) than controls. The presence of collagen >1% within the retrieved clots was highly indicative of cancer, occurring in 16/64 with active cancer and in 3/64 controls, p = 0.002. After correction for multiple comparisons, the statistical significance for H3Cit was lost. Red and white blood cells, platelets, fibrin, and expression of CD3 and CD42b did not differ between the groups. CONCLUSIONS Clots from LVO patients with concomitant active cancer possess distinct characteristics, indicating an influence of cancer on the innate immune system, fibroblasts, and the vascular endothelium in the formation of LVO clots.
Collapse
Affiliation(s)
- Malin Woock
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, Galway, Ireland
- Institute of Biotechnology and Biomedicine, IBB, Autonomous University of Barcelona, Barcelona, Spain
| | - Duaa Jabrah
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, Galway, Ireland
| | - Petra Redfors
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Annika Nordanstig
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Erik Ceder
- Department of Radiology, Section of Diagnostic and Interventional Neuroradiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Dennis Dunker
- Department of Radiology, Section of Diagnostic and Interventional Neuroradiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Jeanette Carlqvist
- Department of Radiology, Section of Diagnostic and Interventional Neuroradiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, Budapest, Hungary
| | - Georgios Tsivgoulis
- Second Department of Neurology, National & Kapodistrian University of Athens, "Attikon" University Hospital, Athens, Greece
| | | | | | - Alexandros Rentzos
- Department of Radiology, Section of Diagnostic and Interventional Neuroradiology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Radiology, Institute of Clinical Sciences, Sahlgrenska Academy at the University of Gothenburg, Gothenburg, Sweden
| | - Karen M Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, Galway, Ireland
| | - Katarina Jood
- Department of Neurology, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Rossi R, Jabrah D, Douglas A, Prendergast J, Pandit A, Gilvarry M, McCarthy R, Redfors P, Nordanstig A, Tatlisumak T, Ceder E, Dunker D, Carlqvist J, Szikora I, Tsivgoulis G, Psychogios K, Thornton J, Rentzos A, Jood K, Juega J, Doyle KM. Investigating the Role of Brain Natriuretic Peptide (BNP) and N-Terminal-proBNP in Thrombosis and Acute Ischemic Stroke Etiology. Int J Mol Sci 2024; 25:2999. [PMID: 38474245 DOI: 10.3390/ijms25052999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/28/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
The need for biomarkers for acute ischemic stroke (AIS) to understand the mechanisms implicated in pathological clot formation is critical. The levels of the brain natriuretic peptides known as brain natriuretic peptide (BNP) and NT-proBNP have been shown to be increased in patients suffering from heart failure and other heart conditions. We measured their expression in AIS clots of cardioembolic (CE) and large artery atherosclerosis (LAA) etiology, evaluating their location inside the clots, aiming to uncover their possible role in thrombosis. We analyzed 80 thrombi from 80 AIS patients in the RESTORE registry of AIS clots, 40 of which were of CE and 40 of LAA etiology. The localization of BNP and NT-BNP, quantified using immunohistochemistry and immunofluorescence, in AIS-associated white blood cell subtypes was also investigated. We found a statistically significant positive correlation between BNP and NT-proBNP expression levels (Spearman's rho = 0.668 p < 0.0001 *). We did not observe any statistically significant difference between LAA and CE clots in BNP expression (0.66 [0.13-3.54]% vs. 0.53 [0.14-3.07]%, p = 0.923) or in NT-proBNP expression (0.29 [0.11-0.58]% vs. 0.18 [0.05-0.51]%, p = 0.119), although there was a trend of higher NT-proBNP expression in the LAA clots. It was noticeable that BNP was distributed throughout the thrombus and especially within platelet-rich regions. However, NT-proBNP colocalized with neutrophils, macrophages, and T-lymphocytes, suggesting its association with the thrombo-inflammatory process.
Collapse
Affiliation(s)
- Rosanna Rossi
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
- Institute of Biotechnology and Biomedicine, Universitat Autonoma de Barcelona (UAB), 08193 Bellaterra, Spain
| | - Duaa Jabrah
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Andrew Douglas
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| | - James Prendergast
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
| | - Abhay Pandit
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| | - Michael Gilvarry
- Cerenovus, Block 3, Corporate House, Ballybrit Business Park, H91 K5YD Galway, Ireland
| | - Ray McCarthy
- Cerenovus, Block 3, Corporate House, Ballybrit Business Park, H91 K5YD Galway, Ireland
| | - Petra Redfors
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Annika Nordanstig
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Turgut Tatlisumak
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Erik Ceder
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Dennis Dunker
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Jeanette Carlqvist
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - István Szikora
- Department of Neurointerventions, National Institute of Clinical Neurosciences, 1145 Budapest, Hungary
| | - Georgios Tsivgoulis
- Second Department of Neurology, "Attikon" University Hospital, National & Kapodistrian University of Athens, 157 72 Athens, Greece
| | | | - John Thornton
- Department of Radiology, Beaumont Hospital, Royal College of Surgeons in Ireland, D02 YN77 Dublin, Ireland
| | - Alexandros Rentzos
- Department of Interventional and Diagnostic Neuroradiology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
| | - Katarina Jood
- Department of Neurology, Sahlgrenska University Hospital, 41345 Gothenburg, Sweden
- Department of Clinical Neuroscience, Institute of Neuroscience and Physiology, Sahlgrenska Academy at University of Gothenburg, 41345 Gothenburg, Sweden
| | - Jesus Juega
- Neurology Department, Val d'Hebron Hospital, 08035 Barcelona, Spain
| | - Karen M Doyle
- Department of Physiology and Galway Neuroscience Centre, School of Medicine, University of Galway, University Road, H91 TK33 Galway, Ireland
- CÚRAM-SFI Research Centre in Medical Devices, University of Galway, H91 W2TY Galway, Ireland
| |
Collapse
|
3
|
Mutoh T, Yoshida Y, Tatewaki Y, Chin H, Tochinai R, Moroi J, Ishikawa T. Diffusion MRI Fiber Tractography and Benzodiazepine SPECT Imaging for Assessing Neural Damage to the Language Centers in an Elderly Patient after Successful Reperfusion Therapy. Geriatrics (Basel) 2024; 9:30. [PMID: 38525747 PMCID: PMC10961802 DOI: 10.3390/geriatrics9020030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/26/2024] Open
Abstract
BACKGROUND Intravenous thrombolysis and mechanical thrombectomy are the first-line reperfusion therapies for acute ischemic stroke. Here, we describe the utility of diffusion magnetic resonance imaging (MRI) fiber tractography and 123I-iomazenil benzodiazepine receptor single-photon emission computed tomography to estimate the prognosis of post-stroke aphasia after successful reperfusion therapy. CASE REPORT An 81-year-old man was admitted to the hospital approximately 3.5 h after the onset of symptoms, including decreased consciousness, right hemiparesis, and aphasia. An MRI revealed acute cerebral infarction due to M1 segment occlusion. Intravenous alteplase thrombolysis followed by endovascular thrombectomy resulted in recanalization of the left middle cerebral artery territory. A subsequent MRI showed no new ischemic or hemorrhagic lesions. Although the patient's motor hemiparesis gradually recovered, motor aphasia persisted. Diffusion MRI fiber tractography performed 2 weeks after admission revealed partial injury to the left arcuate fasciculus, indicated by lower fractional anisotropy values than on the contralateral side. A decreased benzodiazepine receptor density was also detected in the left perisylvian and temporoparietal cortices. The patient showed no clear signs of further improvement in the chronic stage post-stroke and was discharged to a nursing home after 3 months. CONCLUSIONS The application of functional neuroimaging techniques to assess neuronal damage to the primary brain regions 2 weeks after reperfusion therapy for large-vessel occlusion may allow for an accurate prognosis of post-stroke aphasia. This may have a direct clinical implication for navigating subacute-to-chronic phases of rehabilitative care.
Collapse
Affiliation(s)
- Tatsushi Mutoh
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita 010-0874, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Yasuyuki Yoshida
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita 010-0874, Japan
| | - Yasuko Tatewaki
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Hongkun Chin
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
| | - Ryota Tochinai
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita 010-0874, Japan
- Department of Aging Research and Geriatric Medicine, Institute of Development, Aging and Cancer, Tohoku University, Aoba-ku, Sendai 980-8575, Japan
- Department of Veterinary Pathophysiology and Animal Health, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Junta Moroi
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita 010-0874, Japan
| | - Tatsuya Ishikawa
- Department of Surgical Neurology, Research Institute for Brain and Blood Vessels, Akita Cerebrospinal and Cardiovascular Center, Akita 010-0874, Japan
| |
Collapse
|
4
|
Schütze S, Drevets DA, Tauber SC, Nau R. Septic encephalopathy in the elderly - biomarkers of potential clinical utility. Front Cell Neurosci 2023; 17:1238149. [PMID: 37744876 PMCID: PMC10512712 DOI: 10.3389/fncel.2023.1238149] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/22/2023] [Indexed: 09/26/2023] Open
Abstract
Next to acute sickness behavior, septic encephalopathy is the most frequent involvement of the brain during infection. It is characterized by a cross-talk of pro-inflammatory cells across the blood-brain barrier, by microglial activation and leukocyte migration, but not by the entry of infecting organisms into the brain tissue. Septic encephalopathy is very frequent in older persons because of their limited cognitive reserve. The predominant clinical manifestation is delirium, whereas focal neurological signs and symptoms are absent. Electroencephalography is a very sensitive method to detect functional abnormalities, but these abnormalities are not specific for septic encephalopathy and of limited prognostic value. Routine cerebral imaging by computer tomography usually fails to visualize the subtle abnormalities produced by septic involvement of the brain. Magnetic resonance imaging is by far more sensitive to detect vasogenic edema, diffuse axonal injury or small ischemic lesions. Routine laboratory parameters most suitable to monitor sepsis, but not specific for septic encephalopathy, are C-reactive protein and procalcitonin. The additional measurement of interleukin (IL)-6, IL-8, IL-10 and tumor necrosis factor-α increases the accuracy to predict delirium and an unfavorable outcome. The most promising laboratory parameters to quantify neuronal and axonal injury caused by septic encephalopathy are neurofilament light chains (NfL) and S100B protein. Neuron-specific enolase (NSE) plasma concentrations are strongly influenced by hemolysis. We propose to determine NSE only in non-hemolytic plasma or serum samples for the estimation of outcome in septic encephalopathy.
Collapse
Affiliation(s)
- Sandra Schütze
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics, AGAPLESION Markus Krankenhaus, Frankfurt, Germany
| | - Douglas A. Drevets
- Infectious Diseases, Department of Internal Medicine, University of Oklahoma HSC, Oklahoma City, OK, United States
| | - Simone C. Tauber
- Department of Neurology, University Medicine Aachen, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Roland Nau
- Department of Neuropathology, University Medicine Göttingen, Georg-August University Göttingen, Göttingen, Germany
- Department of Geriatrics Evangelisches Krankenhaus Göttingen-Weende, Göttingen, Germany
| |
Collapse
|
5
|
Michetti F, Clementi ME, Di Liddo R, Valeriani F, Ria F, Rende M, Di Sante G, Romano Spica V. The S100B Protein: A Multifaceted Pathogenic Factor More Than a Biomarker. Int J Mol Sci 2023; 24:ijms24119605. [PMID: 37298554 DOI: 10.3390/ijms24119605] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
S100B is a calcium-binding protein mainly concentrated in astrocytes in the nervous system. Its levels in biological fluids are recognized as a reliable biomarker of active neural distress, and more recently, mounting evidence points to S100B as a Damage-Associated Molecular Pattern molecule, which, at high concentration, triggers tissue reactions to damage. S100B levels and/or distribution in the nervous tissue of patients and/or experimental models of different neural disorders, for which the protein is used as a biomarker, are directly related to the progress of the disease. In addition, in experimental models of diseases such as Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, multiple sclerosis, traumatic and vascular acute neural injury, epilepsy, and inflammatory bowel disease, alteration of S100B levels correlates with the occurrence of clinical and/or toxic parameters. In general, overexpression/administration of S100B worsens the clinical presentation, whereas deletion/inactivation of the protein contributes to the amelioration of the symptoms. Thus, the S100B protein may be proposed as a common pathogenic factor in different disorders, sharing different symptoms and etiologies but appearing to share some common pathogenic processes reasonably attributable to neuroinflammation.
Collapse
Affiliation(s)
- Fabrizio Michetti
- Department of Neuroscience, Catholic University of the Sacred Heart, 00168 Rome, Italy
- IRCCS San Raffaele Scientific Institute, Università Vita-Salute San Raffaele, 20132 Milan, Italy
- Department of Medicine, LUM University, 70010 Casamassima, Italy
- Genes, Via Venti Settembre 118, 00187 Roma, Italy
| | | | - Rosa Di Liddo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - Federica Valeriani
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| | - Francesco Ria
- Department of Translational Medicine and Surgery, Section of General Pathology, Catholic University of the Sacred Heart, 00168 Rome, Italy
| | - Mario Rende
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Gabriele Di Sante
- Department of Medicine and Surgery, Section of Human, Clinical and Forensic Anatomy, University of Perugia, 06132 Perugia, Italy
| | - Vincenzo Romano Spica
- Laboratory of Epidemiology and Biotechnologies, Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", 00135 Rome, Italy
| |
Collapse
|